
Explaining Propagators for Edge-valued
Decision Diagrams

Graeme Gange1, Peter J. Stuckey1,2, and Pascal Van Hentenryck1,2

1 National ICT Australia, Victoria Laboratory
2 Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia
ggange@csse.unimelb.edu.au

{peter.stuckey,pvh}@nicta.com.au

Abstract. Propagators that combine reasoning about satisfiability and
reasoning about the cost of a solution, such as weighted all-different, or
global cardinality with costs, can be much more effective than reasoning
separately about satisfiability and cost. The cost-mdd constraint is a
generic propagator for reasoning about reachability in a multi-decision di-
agram with costs attached to edges (a generalization of cost-regular).
Previous work has demonstrated that adding nogood learning for mdd
propagators substantially increases the size and complexity of problems
that can be handled by state-of-the-art solvers. In this paper we show
how to add explanation to the cost-mdd propagator. We demonstrate
on scheduling benchmarks the advantages of a learning cost-mdd global
propagator, over both decompositions of cost-mdd and mdd with a sep-
arate objective constraint using learning.

1 Introduction

Optimization constraints merge the checking of feasibility and optimization con-
ditions into a single propagator. A propagator for an optimization constraint
filters decisions for variables which cannot take part in a solution which is better
than the best known solution. They also propagate the bounds on the cost vari-
able to keep track of its lower bound, and hence allow fathoming of the search,
when no better solution can be found. There is a significant body of work on
optimization constraints including: weighted alldifferent [1] and global cardinality
with costs [2]. In this paper we examine the cost-mdd optimization constraint
which is a generalization of the cost-regular [3] constraint.

Previous work has explored the use of Boolean Decision Diagrams (BDDs) [4,
5] and Multi-valued Decision Diagrams (MDDs) [6] for automatically construct-
ing efficient global propagators. But these propagators do not handle costs. And
adding a separate objective function constraint to encode the costs, leads to
significantly weaker propagation.

cost-mdd is a generic constraint that can be used to encode many problems
where the feasibility of a sequence of decisions is represented by an MDD, and
the costs of the sequence of decisions is given by the sum of the weights on the

edges taken in this MDD. cost-regular [3] is encoded as a particular form of
cost-mdd where the set of states at each level is uniform, and the transition
from one level to another is uniform. The weighted-grammar constraint [7] is
a similar optimization constraint which permits a more concise encoding of some
constraints than cost-mdd, but is less convenient to construct and manipulate.

In this paper we investigate how to incorporate cost-mdd global propagators
into a lazy clause generation [8] based constraint solver. The principle challenge
is to be able to explain propagations as concisely as possible, in order that the
nogoods learnt are as reusable as possible. We give experimental evidence that
explaining cost-mdd propagators outperform both decompositions of cost-
mdd and previous mdd-based propagators.

2 Preliminaries

Constraint programming solves constraint satisfaction problems by interleaving
propagation, which remove impossible values of variables from the domain, with
search, which guesses values. All propagators are repeatedly executed until no
change in domain is possible, then a new search decision is made. If propagation
determines there is no solution then search undoes the last decision and replaces
it with the opposite choice. If all variables are fixed then the system has found
a solution to the problem. For more details see e.g. [9].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V, each of which takes values from a given initial finite set of values
or domain Dinit(x). The domain D keeps track of the current set of possible
values D(x) for a variable x. Define D v D′ iff D(x) ⊆ D′(x),∀x ∈ V. We
let lbD(x) = minD(x) and ubD(x) = maxD(x), and will omit the D subscript
when D is clear from the context. The constraints of the problem are repre-
sented by propagators f which are functions from domains to domains which
are monotonically decreasing f(D) v f(D′) whenever D v D′, and contracting
f(D) v D.

We make use of constraint programming with learning using the lazy clause
generation [8] approach. Learning keeps track of what caused changes in domain
to occur, and on failure computes a nogood which records the reason for failure.
The nogood prevents search making the same incorrect set of decisions later.

In a lazy clause generation solver integer domains are also represented using
Boolean variables. Each variable x with initial domain Dinit(x) = [l..u] is repre-
sented by two sets of Boolean variables [[x = d]], l ≤ d ≤ u and [[x ≤ d]], l ≤ d < u
which define which values are inD(x). We use Jx 6= dK as shorthand for ¬ Jx = dK,
and Jx ≥ dK as shorthand for ¬ Jx ≤ d− 1K. A lazy clause generation solver keeps
the two representations of the domain in sync. For example if variable x has
initial domain [0..5] and at some later stage D(x) = {1, 3} then the literals
[[x ≤ 3]], [[x ≤ 4]],¬[[x ≤ 0]],¬[[x = 0]], ¬[[x = 2]],¬[[x = 4]],¬[[x = 5]] will hold. Ex-
planations are defined by clauses over this Boolean representation of the vari-
ables.

Example 1. Consider a simple constraint satisfaction problem with constraints
b ↔ x + y ≤ 2, x + y ≤ 2, b′ ↔ x ≤ 1, b → b′, with initial domains
Dinit(b) = Dinit(b

′) = {0, 1}, and Dinit(x) = Dinit(y) = {0, 1, 2}. There is
no initial propagation. Setting x = 2 makes the third constraint propagate
D(b′) = {0} with explanation Jx = 2K→ Jb′ = 0K, this makes the last constraint
propagate D(b) = {0} with explanation Jb′ = 0K→ Jb = 0K. The first constraint
propagates that D(y) = {1, 2} with explanation Jb = 0K→ Jy ≥ 1K and the sec-
ond constraint determines failure with explanation Jx = 2K ∧ Jy ≥ 1K → false.
The graph of the implications is

Jb′ = 0K // Jb = 0K // Jy ≥ 1K

((
Jx = 2K

55

// false

Any cut separating the decision Jx = 2K from false gives a nogood. The simplest
one is Jx = 2K→ false or equivalently Jx 6= 2K. 2

2.1 Edge-valued Decision Diagrams

A Multi-valued Decision Diagram (MDD) encodes a propositional formula as
a directed acyclic graph with a single terminal T representing true (the false
terminal is typically omitted for MDDs). In an MDD G, each internal node
n = node(xi, [(v1, n1), (v2, n2), . . . , (vk, nk)]) is labelled with a variable xi, and
outgoing edges consisting of a value vj and destination node nj . Each node
represents the formula

〈n〉 ⇔
k∨

j=1

(x = vj ∧ 〈nj〉)

where 〈n〉 is a Boolean representing the reachability of node n, and 〈T 〉 = true.
The MDD constraint enforces 〈G.root〉 = true where G.root is the root of the
MDD.

In this paper we restrict ourselves to layered MDDs. In a layered MDD G each
node n is assigned to a layer k and all its child nodes must be at layer k+1. Each
node at layer k is labelled with the same variable xk, and the root node G.root
is at layer 1. This encodes an ordered MDD with no long edges, which typically
propagate faster than MDDs with long edges [6]. Each assignment satisfying the
constraint represented by G corresponds to a path from the root G.root to the
terminal T . If, at the i-th layer, the path follows an edge with value vj , the
corresponding assignment has xi = vj .

An Edge-valued MDD (EVMDD) G is a (layered) MDD with a weight at-
tached to each edge. Hence nodes are of the form

n = node(xi, [(v1, w1, n1), (v2, w2, n2), . . . , (vk, wknk)]),
where wj is the weight of the jth outgoing edge. The cost of a solution θ = [x1 =
d1, x2 = d2, . . . , xn = dn] which defines a path from the root of G to T is given
by the sum of the weights along the corresponding path in the EVMDD. Each

Tx1 x2 x3

0 0 0

2 2 2

Fig. 1: A simple EVMDD with only paths of even cost.

node n enforces the constraint:

〈〈n〉〉 =

{
0 n = T
min{wj + 〈〈nj〉〉 | j = 1, .., k ∧ xi = vj} otherwise

where 〈〈n〉〉 holds the cost of the minimal weight path from n to T .
For convenience, we denote edges by 4-tuples (n, xi = vj , wj , nj), represent-

ing the edge with source n (in layer i), destination nj (in layer i + 1) and
weight wj corresponding to the value vj . We will refer to the components as
(e.begin, e.var = e.val, e.weight, e.end).

We use s.out edges to refer to all the edges of the form (s, , ,), i.e. those
leaving node s, and d.in edges to refer to edges of the form (, , , d), i.e. those
entering node d. We use G.edges(xi, vj) to record the set of edges of the form
(, xi = vj , ,) in EVMDD G.

The cost-mdd constraint cost-mdd(G, [x1, . . . , xn], ./, C) requires that
〈〈G.root〉〉 ./ C where ./∈ {≤,=,≥}. Note that the constraint (except the ≥
incarnation) enforces satisfiability, i.e., that there is a path from G.root to T ,
since otherwise 〈〈G.root〉〉 = ∞. The cost-mdd constraint can represent cost-
regular as well as other constraints representable by automata with counters.

Our definition of EVMDDs differs from the standard treatment of edge-
valued BDDs [10], apart from the extension from Boolean variables to finite-
domain variables. We do not require the graph to be deterministic; a single
node may have multiple edges annotated with the same value. Also, we do not
require the edge weights to be normalized; normalization may reduce the size
of the graph by inducing additional sharing, but does not affect propagation or
explanation.

3 EVMDD Propagation

An incremental algorithm for propagating cost-regular constraints was de-
scribed in [3]. This algorithm essentially converts the cost-regular constraint
into a cost-mdd constraint where ./ is =, then performs propagation on this
transformed representation. This algorithm operates by incrementally maintain-
ing the distance of the shortest up[n] and longest lup[n] path from the root to
each node n, and the distance of the shortest dn[n] and longest ldn[n] path from
each node n to T . Given a constraint cost-mdd(G, [x1, . . . , xn],=, C), an edge
e may be used to build a path from G.root to T only if up[e.start] + e.weight+
dn[e.end] ≤ ub(C) and lup[e.start] + e.weight+ ldn[e.end] ≥ lb(C).

The description in [3] does not mention how changes to the bounds of C
are handled. When the upper bound of C is reduced, the lengths of all shortest

paths remain the same; however, the domains of variables xi may change, if the
shortest path through xi = vj is longer than the updated bound.

Example 2. Consider the EVMDD (EVBDD) G shown in Figure 1 where edges
for value 0 are shown dotted, and edges for value 1 are shown full. The constraint
cost-mdd(G, [x1, x2, x3],=, C) encodes the equation 2x1 + 2x2 + 2x3 = C. If
we initially have D(C) = [0..2], no values may be eliminated, as every edge can
occur on a path of cost at most 2. However, if we reduce ub(C) to 1, we must
eliminate xi = 1 from the domain of each variable.

The authors claim that their propagation algorithm enforces domain con-
sistency on the x variables in a cost-mdd constraint. This statement is not
correct.

Example 3. Consider again the EVMDD G shown in Figure 1. The algorithm
of [3] makes no propagation for the constraint cost-mdd(G, [x1, x2, x3],=, C)
when D(C) = {3}. This is because every edge can take part in a path which is
both longer (length 4) or shorter (length 2) than the bounds of C. But there is
no support for any value of xi since there is no path of length exactly 3. 2

In fact even bounds propagation is NP-hard for cost-mdd where ./ is =,
using any applicable definition of bounds consistency [11].

Theorem 1. Domain propagation, bounds(Z) or bounds(D) consistent propa-
gation for cost-mdd(G, [x1, . . . , xn],=, C) is NP-hard

Proof. We map SUBSETSUM to cost-mdd propagation. Given a set S =
{s1, . . . , sm} of numbers and target T we build an EVBDD with m 0-1 vari-
ables x1, . . . , xm and m nodes n1, . . . , nm (nm+1 = T) with 2m edges (ni, xi =
0, 0, ni+1) and (ni, xi = 1, si, ni+1). Enforcing domain (or equivalently in this
case bounds(Z) or bounds(D)) consistency on cost-mdd(G, [x1, . . . , xn],=, C)
with D(C) = {T} generates a false domain unless the SUBSETSUM holds. 2

In this paper we restrict consideration to the cost-mdd constraint of the
form cost-mdd(G, [x1, . . . , xn],≤, C). This is the critical form of the constraint
when we are trying to minimize costs. Treatment of cost-mdd(G, [x1, . . . , xn],≥
, C) is identical by negating each edge weight and the cost variable; the treatment
of cost-mdd(G, [x1, . . . , xn],=, C) in [3] is effectively combining propagators for
each of cost-mdd(G, [x1, . . . , xn],≤, C) and cost-mdd(G, [x1, . . . , xn],≥, C).

We give a non-incremental propagation algorithm for the constraint
cost-mdd(G, [x1, . . . , xn],≤, C) in Figure 2.3 evmdd prop first records the short-
est path (given the current domain D) from each node n to T in dn[n] using
mark paths. It returns the shortest path from G.root to T . It then visits using
infer all the edges reachable from G.root that appear on paths of length less
than ub(C). Initially the negation of all edge labels are placed in inferences.
When an edge that appears on a path of length less than or equal to ub(C) is

3 This is not novel with respect to [3] but they don’t formally define their algorithm.

discovered, the negation of its label is removed from inferences. The algorithm
returns the a lower bound of C (which may not be new) and any new inferences
on xi variables.

Example 4. Consider the propagation that occurs with the EVMDD of Fig-
ure 1 with C ≤ 2 when we set x1 6= 1 (x1 = 0) and x2 6= 0 (x2 = 1).
mark paths sets dn[T] = 0, dn[x3] = 0 (using the variable name for the node
name), dn[x2] = 2 and dn[x1] = 2 and returns 2. infer initially starts with
inferences = {Jx1 6= 0K , Jx1 6= 1K , Jx3 6= 0K , Jx3 6= 1K}. It sets up[x1] = 0 then
removes Jx1 6= 0K from inferences setting up[x2] = 0. It then removes Jx2 6= 2K
from inferences setting up[x3] = 2. It removes Jx3 6= 0K from inferences, but then
when examining the full edge from x3 the distance test fails. Hence it returns
{Jx3 6= 1K}. The final inferences are {JC ≥ 2K , Jx3 6= 1K}.

Proposition 1. evmdd prop maintains domain consistency for
cost-mdd(G, [x1, . . . , xn],≤, C).

Proof. After evmdd prop finishes if vj ∈ D(xi) then there is an edge (s, xi =
vj , w, d) in G where up[s] + w + dn[d] ≤ ub(C). Hence there is a path of edges
from G.root to s of length up[s] and a path of edges from d to T of length dn[d].
If we set each variable to the value given on this path and C = ub(C) we have
constructed a solution supporting xi = vj. Similarly, given l = lb(C) then after
evmdd prop finishes there is a path from G.root to T of length l. If we set each
variable to the value given on this path, and C to any value d ∈ D(C) domain
we have constructed a solution supporting C = d. 2

It is straightforward to make the above algorithm incremental in changes in
x variables. A removed edge e = (s, x = v, w, d) forces the recalculation of dn[s]
which may propagates upward, and up[s] which may propagate downwards. If a
change reaches G.root or T then the lower bound on C may change. When the
upper bound of C changes, we simply scan the edges for each value until we find
one that is still feasible (infeasible edges are not checked on later calls).

4 Explaining EVMDD Propagation

A nogood learning solver, upon reaching a conflict, analyses the inference graph
to determine some subset of assignments that results in a conflict. This subset
is then added to the solver as a nogood constraint, preventing the solver from
making the same set of assignments again, and reducing the search space. In
order to be incorporated in a nogood learning solver, the EVMDD propagator
must be able to explain its inferences.

4.1 Minimal Explanation

The explanation algorithm is similar in concept to that used for BDDs and
MDDs. To explain Jx 6= vK we assume Jx = vK and hence make the EVMDD

evmdd prop(G, [x1, . . . , xn], C,D)
ĉ := mark paths(G,D)
L := infer(G, [x1, . . . , xn], D, ub(C))
return {JC ≥ ĉK} ∪ L

mark paths(G,D)
for(n ∈ G.nodes) dn[n] := ∞
dn[T] := 0; queue := {T }
while(queue 6= ∅)

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e in node.in edges)
if(e.val ∈ D(e.var))

dn[e.begin] := min(dn[s.begin], e.weight + dn[node])
nqueue ∪={e.begin}

queue := nqueue
return dn[G.root]

infer(G, [x1, . . . , xn], D, u)
inferences := {Jxi 6= vjK | 1 ≤ i ≤ n, vj ∈ D(xi)}
for(n ∈ G.nodes) up[n] := ∞
up[G.root] := 0; queue := {G.root}
while(queue 6= ∅)

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e ∈ node.out edges)
if(e.val ∈ D(e.var))

if(up[node] + e.weight + dn[e.end] ≤ u)
inferences := inferences − {Je.var 6= e.valK}
up[e.end] := min(up[e.end], e.weight + up[node])
nqueue ∪={e.end}

queue := nqueue
return inferences

Fig. 2: Algorithm for inferring newly propagated literals.

unsatisfiable. A correct explanation is (the negation of) all the values for other
variables which are currently false. We then progressively remove assignments
(unfix literals) from this explanation while ensuring the constraint as a whole
remains unsatisfiable. We are guaranteed to create a minimal explanation (but
not the smallest minimal explanation)

∧
l∈expln l → Jx 6= vK since removing

any literal l′ from the expln would mean cost-mdd(G, [x1, . . . , xn],≤, C) ∧∧
l∈expln−{l′} l ∧ Jx = vK is satisfiable. Constructing a smallest minimal expla-

nation for an EVMDD is NP-hard just as for BDDs [12].

We adapt the minimal MDD explanation algorithm used in [6] to cost-
mdd constraints. The propagator conflicts when the shortest path from G.root
to T (under the current domain) is longer than ub(C). To construct a minimal

evmdd explain(G,C,D, Jx 6= vK)
D′ := D with D(x) replaced by D′(x) = {v}
ĉ := mark paths(G,D′)
if(ĉ <∞ or choice) u := ub(C) + 1
else u := ∞
return Jx 6= vK← collect expln(G,C, x, v, u)

evmdd explain lb(G,C,D, JC ≥ lK)
mark paths(G,D) % unnecessary if just run evmdd prop
return JC ≥ lK← collect expln(G,C,⊥,⊥, l)− {JC ≤ l − 1K}

collect expln(G,C, x, v, u)
queue := {G.root}; up[G.root] := 0; s := ∞
while(queue 6= ∅)

for(node in queue)
for(e ∈ node.out edges)

up[e.end] := ∞
if(e.var 6= x and up[node] + e.weight + dn[e.end] < u)

explanation∪= Je.var 6= e.valK
else s := min(s, up[node] + e.weight + dn[e.end])

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e ∈ node.out edges)
if ((e.var = x and e.val = v)

or (e.var 6= x and Je.var 6= e.valK /∈ explanation))
nqueue ∪={e.end}
up[e.end] := min(up[e.end], up[node] + e.weight)

queue := nqueue
return explanation ∪ JC ≤ s− 1K

Fig. 3: Algorithms for computing a minimal explanation.

explanation, we begin with the set of values that have been removed from variable
domains, and progressively restore any values which would not re-introduce a
path of length ≤ ub(C).

The minimal explanation algorithm is illustrated in Figure 3. To explain
Jx 6= vK under current domain D, we first create the domain D′ where D′(x) =
{v} and otherwise D′ agrees with D. With this domain the constraint is unsat-
isfiable. We use mark paths to compute the shortest path from each node n to T
and store this in dn[n]. It returns the shortest path ĉ from root to T . If ĉ is finite,
or we choose to (by setting global choice true) we use an upper bound of C in
the explanation, by setting u 6=∞. collect expln traverses the EVMDD from the
root, building an explanation of literals which if not true would cause a path of
length < u to be created in the EVMDD. The algorithm examines all reachable
nodes on a level (initially just the root) and if adding an edge would create a
path shorter than u then the (negation of) the label on the edge is added to the
explanation, if not then we update s which records the shortest path found from

root to T with length ≥ u. The algorithm then adds all the nodes of the next
level which are still reachable, and updates the shortest path from the root to
each such node n storing this in up[n]. This continues while there are still some
reachable nodes. At the end the algorithm returns the collected explanation,
plus the relaxed upper bound literal JC ≤ s− 1K, which ensures that none of the
paths found from root to T can be traversed.

Since the procedures mark paths and collect expln perform one and two breadth-
first traversals of the graph, respectively, the explanation requires O(|G|) time.

Proposition 2. evmdd explain(G,C,D, Jx 6= vK returns a correct minimal ex-
planation for Jx 6= vK.

Proof. (Sketch) The algorithm implicitly maintains the invariant that there is
no path in G through an edge labelled x = v of length less than or equal to
lb(C) which does not make use of an edge in DE. Initially DE is the set of
edges e where e.var 6= x and e.val 6∈ D(e.var). The base case holds using the
correctness of evmdd prop. During collect expl we remove processed edges from
this implicit set DE, except those kept in explanation. Whenever we remove an
edge from DE the shortest path through the edge that uses an edge labeled x = v
and none of the edges in DE is > ub(C). This demonstrates the correctness of
the algorithm, since the explanation literals force that Jx 6= vK holds since there
is no feasible path through any edges labelled x = v.

For minimality we can reason that if we remove any literal from the expla-
nation, then we would have added a path that was too short passing through an
edge labelled x = v. The minimality of the bound constraint JC ≤ s− 1K follows
since if we relax it we will allow a path of length s through x = v. ut

Explaining a new lower bound l for C is similarly defined by evmdd explain lb.
We compute dn[n] for each reachable node using mark paths with the current
domain D, then choose a set of literals to ensure no shorter paths are allowed.
In this case collect expln will always return JC ≤ l − 1K in the explanation which
we can safely omit. Explaining failure of the whole constraint is identical to
explaining why C ≥ ∞.

Example 5. Consider the constraint defined by the EVMDD shown in Figure 4,
which encodes a simple scheduling constraint requiring shifts to be of even length.
Assume the solver first propagates C ≤ 2, then fixes Jx1 6= 1K and Jx2 6= 0K. The
only satisfying assignment is then [x1, x2, x3, x4] = [0, 1, 1, 0].

If we are asked to explain the inference x4 6= 1, we first compute the shortest
paths from each node to T through x4 = 1, using mark paths. This is shown in
Figure 4(b). Notice that the cost at the root node is∞. This indicates that, even
without a cost bound, there is no feasible path through x4 = 1. We have the
choice of either omitting the cost bound (obtaining an explanation not dependent
on C) or including it and possibly obtaining a smaller explanation.

Whether or not we include a bound on C, we proceed by sweeping down
level-by-level from the r1. Assuming we include the bound JC ≤ 2K, so u = 3,
we first check if any of the outgoing edges would introduce a path of length

T

x1

x2 x2

x3x3

x4 x4

11

1 1

1

1
0

0

0

0

T

x1

x2 x2

x3x3

x4 x4

11

1 1

1

1

0

0

0

[0]

[∞]

[∞]

[∞]

[∞]

[1]

[2]

[3]

T

1:x1

2:x2 3:x2

4:x35:x3

6:x4 7:x4

11

1 1

1

1

0

0

0

[0,∞]

[0,∞]

[0]

[∞]

[∞]

[1, 3]

[1]

[2]

(a) (b) (c)

Fig. 4: (a) An EVMDD which requires shifts to be assigned in blocks of two.
(b) We compute the shortest path from each node to T . (c) Enqueued nodes are
shown circled in blue, and have been annotated with the shortest path from n1
under the current assignment.

less than 3. We find that the edge from n1 to n3 can safely be restored, since
up[n1] + 1 + dn[n3] = 4 ≥ u = 3. We update s = 4. As no edges introduce a
feasible path, we update up for both n2 and n3, and add them to the queue for
the next level.

At the second level, we discover that restoring the edge from n2 to n4 would
introduce a feasible path, as up[n2]+0+dn[n4] = 2 < u = 3. The literal Jx2 6= 0K
must then be added to the explanation. Since n4 is still reachable via n3, both
n4 and n5 are added to the queue for the next level; however, up[n4] is only
updated by the edge from n3, and not from n2. This process continues until no
further nodes remain. At the end s = 4 so we didn’t need the bound on paths to
be ub(C) it could have been looser. Hence we add JC ≤ 3K to the explanation.
The explanation returned is Jx4 6= 1K ← JC ≤ 3K ∧ Jx2 6= 0K. This is a minimal
explanation.

If we omit the cost bound, then we cannot restore the edge from n1 to n3;
so we construct the alternate explanation Jx4 6= 1K← Jx1 6= 1K∧ Jx2 6= 0K which
is also minimal. Note we omit the redundant literal JC ≤ ∞− 1K created by
collect expl. 2

4.2 Incremental Explanation

Example 6. Unfortunately, on large EVMDDs, constructing a minimal explana-
tion can be expensive since explaining each inference may involve exploring the
entire EVMDD. For these cases, we present a greedy algorithm for constructing
valid, but not necessarily minimal, explanations in an incremental manner, often
only examining a small part of the EVMDD.

We adapt the incremental MDD algorithm of [6] to cost-mdd. As in the
MDD case, we explain Jx 6= vK beginning from the set of edges corresponding to

mdd inc explain(G, x, v, u)
for(n ∈ G.nodes) upe[n] := ∞
for(n ∈ G.nodes) dne[n] := ∞
kfa := {} % edges killed from above
kfb := {} % edges killed from below
for(e in G.edges(x, v))

% Split possible supports
Assign pup, pdn subject to:

pup + e.weight + pdn ≥ u ∧ pup ≤ up[e.begin] ∧ pdn ≤ dn[e.end]
if(pup > up0[e.begin])

kfa ∪={edge}
upe[e.begin] := max(upe[e.begin], pup)

if(pdn > dn0[e.end])
kfb ∪={edge}
dne[e.end] := max(dne[e.end], pdn)

% Explain all those killed from below
return explain down(kfb)
% And all those killed from above

∪ explain up(kfa)

Fig. 5: Top-level wrapper for incremental explanation.

x = v. For all such edges e = (s, x = v, w, d), we know that up[s] + w + dn[d] >
ub(C). If we have up[s] + w + dn[d] = ub(C) + 1, then there is no flexibility
in the bounds; we must select an explanation which ensures the shortest path
from G.root to s has cost up[s], and the shortest path from e to T has cost
dn[d]. We record the amount of cost that needs to be explained on all paths to
s; this is denoted by upe[s]. We then sweep upwards, level-by-level, collecting an
explanation which guarantees this minimum cost. At each level, we maintain the
set of edges which need to be explained. If for some edge we have up[s] + w <
upe[d], then Jx 6= vK must be added to the current explanation; otherwise, a
feasible path would be introduced. We perform an initial pass over the edges at
the current level to determine which values must be included in the explanation;
during the second pass, we update upe for the source node of each edge that
hasn’t been excluded, and enqueue the set of incoming edges to be processed
at the next level. If at any point we have upe[s] is no greater than up0 [s] (the
shortest path to s under the initial variable domains), then we don’t need to
enqueue the incoming edges, as an empty explanation is sufficient.

If up[s] +w+ dn[d] > ub(C) + 1, then we can potentially relax the generated
explanation. Obviously, the amount by which we relax up[s] affects the amount
of slack available to dn[d]. To relax the bounds as far as possible, we would
initially allocate as much slack as possible to up[s], and collect the corresponding
explanation. Before performing the downward pass, we would then propagate the
newly reduced path lengths back to the current layer, to determine how much
slack remains for the explanation of d.

explain down(kfb)
reason = {}
% Traverse the MDD downwards, breadth first
while(¬is empty(kfb))

% Scan the current level for edges that will need explaining.
pending = {}
for(e in kfb)

% For each edge requiring explanation
if(e.val /∈ D(e.var) and

e.weight + dn[e.end] < dne[e.begin])
% There is no later explanation,
% so add Je.var 6= e.valK to the reason.
reason ∪={Je.var 6= e.valK}

else
pending ∪={e}

next = {}
% Collect the edges that haven’t been explained at this level.
for(e in pending)

if(Je.var 6= e.valK 6∈ reason and e.weight + dn0[e.end] < dne[e.begin])
% If e is not explained already collect its outgoing edges
next ∪= e.end.out edges
dne[e.end] := max(dne[e.end], dne[e.begin]− e.weight

% Continue with the next layer of edges.
kfb = next

return reason

Fig. 6: Pseudo-code for incremental explanation of EVMDDs. explain up acts in
exactly the same fashion as explain down, but in the opposite direction.

T

x1

x2 x2

x3x3

x4 x4

11

1 1

1

1
0

0

0

0

[0, 2]

[0, 2]

[1, 1]

[2, 0]

[2, 0]

[∞, 1]

[∞, 0]

[∞, 1]

T

1:x1

2:x2 3:x2

4:x35:x3

6:x4 7:x4

1

1

1

1

1

1

0

0

0

0

[0, 2]

[0, 2] [∞, 1]

(2)

(1)

(a) (b)

Fig. 7: The EVMDD from Example 5. (a) Values of [up, dn] for each node. (b)
Edges enqueued while explaining Jx4 6= 1K.

Instead, we determine a priori how the slack is allocated in the explanation.
If either up[s] or dn[d] is∞, then we build the explanation in only that direction
(if both, we arbitrarily explain upwards). Otherwise, we explain as much as
possible in the upward pass, and allocate all possible slack to the downwards
pass. Alternative strategies for relaxing the bounds is interesting future work.

Consider again the case described in Example 5. During incremental propa-
gation, we maintain up and dn for each node. These are shown in Figure 7(a).
To explain Jx4 6= 1K, we need to eliminate some set of values which ensures that
up[n7] + 1 + dn[T] ≥ 3.

Under the current assignment, up[n7] = ∞. However, as our current cost
bound is 2, we only need to ensure up[n7] + 1 ≥ 3. We set upe[n7] = 2, the
amount of cost that must be guaranteed from above, and add n7 to the queue.
Expanding n7, we find that it has only one parent, which is the edge from n4 with
weight 1. This edge cannot be eliminated, so we set upe[n4] = upe[n7] − 1 = 1,
and enqueue n4.

n4 has 2 incoming edges, so we first check both edges to determine if any
values must be added to the explanation. Examining the edge from n2 to n4, we
have upe[n4]−0 = 1 > up[n2]. This indicates that, if the edge from n2 to n4 were
restored, a path of length 2 would be introduced. Jx2 6= 0K is therefore added to
the explanation. The edge from n3 to n4 is safe, as up[n3] =∞ ≥ upe[n3]− 1.

We then make a second pass through the edges, to determine which new
nodes must be enqueued. As Jx2 6= 0K is in the explanation, we don’t need to
expand the node from n2 to n4. The edge from n3 to n4 is traversable, so we
update upe[n3]. However, since upe[n3] = 0, and the base cost to reach n3 is 1
(that is, upe[n3] ≤ up0[n3]), we don’t need to enqueue n3, since the cost to n3
will always be at least 0. Since we have no nodes enqueued, the upwards pass
is finished. Since there are no nodes which must be propagated downwards, this
yields the final explanation Jx4 6= 1K← JC ≤ 2K ∧ Jx2 6= 0K.

Observe that this is not minimal, since the explanation is still valid if we
replace JC ≤ 2K with JC ≤ 3K. 2

5 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 4 Gb of RAM run-
ning Ubuntu GNU/Linux 10.04. The propagators were implemented in chuffed,
a state-of-the-art lazy-clause generation [8] based constraint solver. All experi-
ments were run with a 10 minute time limit. For the minimal explanation algo-
rithm, we always selected to use upper bounds in the explanation if possible.

We evaluate the cost-mdd constraints on a standard set of shift scheduling
benchmarks. For the experiments, dec denotes propagation using a decomposi-
tion of cost-mdd like that of [13] but introducing a cost variable per layer of
the EVMDD and summing them to compute cost, and decmdd uses the domain-
consistent Boolean decomposition described in [14] (or equivalently in [6]) and a
separate cost constraint. mdd denotes using a separate MDD propagator [6] and
cost constraint, ev-mdd denotes cost-mdd using incremental propagation and

minimal explanations, ev-mddI denotes cost-mdd using incremental propaga-
tion and greedy explanations. We also tried a domain consistent decomposition
of cost-mdd based on [7] but it failed to solve any of the shown instances, and
is omitted.

5.1 Shift Scheduling

Shift scheduling, a problem introduced in [3], allocates n workers to shifts such
that (a) each of k activities has a minimum number of workers scheduled at
any given time, and (b) the overall cost of the schedule is minimised, without
violating any of the additional constraints:

– An employee must work on a task (Ai) for at least one hour, and cannot
switch tasks without a break (b).

– A part-time employee (P) must work between 3 and 5.75 hours, plus a 15
minute break.

– A full-time employee (F) must work between 6 and 8 hours, plus 1 hour for
lunch (L), and 15 minute breaks before and after.

– An employee can only be rostered while the business is open.

These constraints can be formulated as a grammar constraint as follows:

S → RP [13,24]R | RF [30,38]R

F → PLP P →WbW

W → A
[4,...]
i Ai → aiAi | ai

L → llll R → rR | r

We convert the grammar constraint into a Boolean formula, as described
in [13]; however, we convert the formula directly into an MDD, rather than a
s-DNNF circuit; the MDD and cost-MDD propagators, as well as the decom-
positions, are all constructed from this MDD. This process is similar to the
reformulation described in [15]. Note that some of the productions for P , F
and Ai are annotated with restricted intervals – while this is no longer strictly
context-free, it can be integrated into the graph construction with no additional
cost.

The coverage constraints and objective function are implemented using the
monotone BDD decomposition described in [16].

The model using mdd is substantially better than the cost-mdd decompo-
sition, and also superior to the mdd decomposition. It already improves upon
the best published CP/SAT models for these problems4 in [15]. The results for
ev-mdd show that modelling the problem using cost-mdd is substantially bet-
ter than separately modelling cost and an mdd constraint. Incremental greedy
explanation can improve on minimal explanations, but the results demonstrate

4 The best results for these problems use dynamic programming as a column generator
in a branch-and-price solution [17].

Table 1: Comparison of different methods on shift scheduling problems.

Inst. dec decmdd mdd ev-mdd ev-mddI
time fails time fails time fails time fails time fails

1,2,4 — — 14.51 39700 3.49 21888 0.20 607 0.17 635
1,3,6 — — 11.25 40675 19.00 76348 0.87 4045 0.91 4156
1,4,6 36.48 86762 2.62 7582 0.69 3518 0.11 350 0.27 1077
1,5,5 5.64 32817 0.41 1585 0.52 3955 0.07 239 0.06 238
1,6,6 7.32 35064 0.40 1412 0.21 1161 0.08 249 0.11 413
1,7,8 27.58 77757 4.03 13149 2.43 12046 0.73 3838 0.83 4279
1,8,3 67.74 126779 0.85 5002 0.39 3606 0.06 219 0.07 262
1,10,9 321.44 441884 17.55 44222 19.77 68688 1.23 5046 1.31 7419
2,1,5 1.29 12520 0.14 691 0.24 1490 0.02 78 0.01 45
2,2,10 — — — — 131.29 286747 43.62 99583 49.05 100958
2,3,6 — — 188.77 187760 144.99 289568 2.39 6443 5.94 13695
2,4,11 — — — — 391.59 918438 42.38 111567 92.89 220568
2,5,4 — — 25.85 59635 12.18 50340 0.65 1545 0.48 1541
2,6,5 — — 83.78 104911 30.27 80046 6.18 12100 7.63 16074
2,8,5 — — 90.28 153331 34.69 110917 4.99 15507 10.02 26565
2,9,3 — — 6.10 20472 9.17 42105 0.86 1898 0.47 1593
2,10,8 — — 349.88 303227 95.61 168720 8.85 26331 17.22 37356

Total — — — — 896.53 2139581 113.29 289645 187.44 436874
Mean — — — — 52.74 125857.71 6.66 17037.94 11.03 25698.47
Geom. — — — — 7.92 31465.82 0.86 2667.65 1.03 3428.35

that minimal explanations are preferable. This contrasts with results for explain-
ing mdd [6] where greedy incremental explanations were almost always superior.
This may be because the presence of path costs in EVMDDs means that deci-
sions higher in the graph have a greater impact on explanations further down
(whereas for MDDs, the explanation only changes if a node is rendered com-
pletely unreachable).

6 Conclusion

In this paper we have defined how to explain the propagation of an EVMDD.
Interestingly we have a trade-off between using cost bounds or literals on x to
explain the same propagation. We define non-incremental minimal and incre-
mental non-minimal explanation algorithms for EVMDDs. Using EVMDD with
explanation to define a cost-mdd constraint, we are able to substantially im-
prove on other modelling approaches for solving problems with cost-mdd with
explanation.

Acknowledgments NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council.

References

1. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Proceedings
of the 5th International Conference on Principles and Practice of Constraint Pro-
gramming. Volume 1713 of Lecture Notes in Computer Science., Springer (1999)
189–203

2. Régin, J.C.: Arc consistency for global cardinality constraints with costs. In:
Proceedings of the 5th International Conference on Principles and Practice of
Constraint Programming. Volume 1713 of Lecture Notes in Computer Science.,
Springer (1999) 390–404

3. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4) (2006) 315–333

4. Cheng, K., Yap, R.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: 14th International Conference on Principles and Process of Constraint
Programming. Volume 5202 of LNCS. (2008) 509–523

5. Gange, G., Stuckey, P., Lagoon, V.: Fast set bounds propagation using a BDD-SAT
hybrid. Journal of Artificial Intelligence Research 38 (2010) 307–338

6. Gange, G., Stuckey, P.J., Szymanek, R.: MDD propagators with explanation.
Constraints 16(4) (2011) 407–429

7. Katsirelos, G., Narodytska, N., Walsh, T.: The weighted grammar constraint.
Annals OR 184(1) (2011) 179–207

8. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357–391

9. Schulte, C., Stuckey, P.: Efficient constraint propagation engines. ACM Transac-
tions on Programming Languages and Systems 31(1) (2008) Article No. 2

10. Vrudhula, S.B., Pedram, M., Lai, Y.T.: Edge valued binary decision diagrams. In:
Representations of Discrete Functions. Springer (1996) 109–132

11. Choi, C., Harvey, W., Lee, J., Stuckey, P.: Finite domain bounds consistency
revisited. In: Proceedings of the Australian Conference on Artificial Intelligence
2006. Volume 4304 of LNCS., Springer-Verlag (2006) 49–58

12. Subbarayan, S.: Efficent reasoning for nogoods in constraint solvers with BDDs. In:
Proceedings of Tenth International Symposium on Practical Aspects of Declarative
Languages. Volume 4902 of LNCS. (2008) 53–57

13. Quimper, C., Walsh, T.: Global grammar constraints. In: Proceedings of the 12th
International Conference on Principles and Practice of Constraint Programming.
Volume 4204 of LNCS. (2006) 751–755

14. Jung, J.C., P., B., Katsirelos, G., Walsh, T.: Two encodings of DNNF theories.
ECAI Workshop on Inference Methods Based on Graphical Structures of Knowl-
edge (2008)

15. Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar con-
straints. Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (2009) 132–147

16. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: BDDs for pseudo-
boolean constraints - revisited. In: SAT. (2011) 61–75

17. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Management Science 57(1) (2011) 151–
163

