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Abstract. Many scheduling problems involve reasoning about tasks which
may or may not actually occur, so called optional tasks. The state-of-
the-art approach to modelling and solving such problems makes use of
interval variables which allow a start time of ⊥ indicating the task does
not run. In this paper we show we can model interval variables in a lazy
clause generation solver, and create explaining propagators for schedul-
ing constraints using these interval variables. Given the success of lazy
clause generation on many scheduling problems, this combination ap-
pears to give a powerful new solving approach to scheduling problems
with optional tasks. We demonstrate the new solving technology on well-
studied flexible job-shop scheduling problems where we are able to close
36 open problems.

1 Introduction

Many resource-constrained scheduling problems involve reasoning about tasks
which may or may not actually occur, so called optional tasks. The state-of-the-
art approach in Constraint Programming (CP) to modelling and solving such
problems makes use of so-called interval variables [12] which represent a start
time, end time, and duration of a task, or ⊥ indicating the task does not run.
Propagation algorithms can update the possible start and end times of a task,
without knowing whether the task actually runs or not.

In 2008, Laborie and Rogerie [12] introduce interval variables for resource-
constrained scheduling to IBM ILOG CP Optimizer [11] as a “first-class citizen”
variable type for CP systems. In that work and later follow up work [13,14],
they show how to handle these variables in the context of planning and schedul-
ing. The benefits of interval variables are not only in giving a neat conceptual
model for representing optional tasks, but also the additional propagation ob-
tained that is possible by reasoning on start and end times even without knowing
whether a task executes. However, interval variables do not come for free, they
may introduce additional variables into a model, and their propagation is more
complex.

Standard CP systems that do not support interval variables are still able
to model and solve problems with optional tasks, but suffer from the weaker
propagation. For example, each optional task can be associated with a Boolean



variable representing whether it executes or not [1,2] or a non-optional task
composed of exclusive optional tasks can be associated with an index variable
representing which one of the optional tasks runs [16]. In order to strengthen the
propagation, special global constraints have been introduced (see, e.g., [1,2,16]).

For CP systems that support interval variables, propagation algorithms have
been proposed for the resource constraints disjunctive and cumulative with
optional tasks (see, e.g., [26,31,30,29]). These algorithms record tentative start
and end times of optional task and once the optional task is known to execute
these become the actual start and end time variables.

In this paper, we not only show how to mimic interval variables with integer
variables, but also how propagators defined for constraints on optional tasks can
be extended to explain their propagation, which is required for CP solvers with
learning. One of those solvers is a lazy clause generation (Lcg) (Lcg) [19] solver
which has proven to be remarkably effective on many scheduling problems defin-
ing the state-of-the-art in Rcpsp [24,23], Rcpsp/max [25], and RcpspDc [22]
problems. We implement the handling of optional tasks in the re-engineered ver-
sion of Lcg solver [7], and then demonstrate the combination on the well-studied
flexible job shop scheduling problem, where we are able to close a number of open
instances.

2 Preliminaries

At first, we introduce lazy clause generation and then scheduling with optional
tasks.

2.1 Lazy Clause Generation

CP solves constraint satisfaction problems by interleaving propagation, which re-
move impossible values of variables from the domain, with search, which guesses
values. All propagators are repeatedly executed until no change in domain is
possible, then a new search decision is made. If propagation determines there is
no solution then search undoes the last decision and replaces it with the oppo-
site choice. If all variables are fixed then the system has found a solution to the
problem. For more details see, e.g., [21].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V, each of which takes values from a given initial finite set of values or
domain D0(x). The domain D keeps track of the current set of possible values
D(x) for a variable x. Define D v D′ iff D(x) ⊆ D′(x),∀x ∈ V. The constraints
of the problem are represented by propagators f which are functions from do-
mains to domains which are monotonically decreasing f(D) v f(D′) whenever
D v D′, and contracting f(D) v D. If all values are removed from one domain
of a variable x, i.e., D(x) = ∅ then the constraints cannot be satisfied with
the search decisions made and a failure is triggered. Given a domain D then
lbD(x) = minD(x) and ubD(x) = maxD(x). We will omit the subscript D when
the domain is clear from the context.



We make use of CP with learning using the Lcg [19] approach. Learning
keeps track of what caused changes in domain to occur, and on failure computes
a nogood which records the reason for failure. The nogood prevents search making
the same incorrect set of decisions again.

In an Lcg solver integer domains are also represented using Boolean vari-
ables. Each variable x with initial domain D0(x) = [l..u] is represented by two
sets of Boolean variables Jx = dK, l ≤ d ≤ u and Jx ≤ dK, l ≤ d < u which define
which values are in D(x). We use Jx 6= dK as shorthand for ¬Jx = dK, and Jd ≤ xK
as shorthand for ¬Jx ≤ d−1K. An Lcg solver keeps the two representations of the
domain in sync. For example if variable x has initial domain [0..5] and at some
later stage D(x) = {1, 3} then the literals Jx ≤ 3K, Jx ≤ 4K,¬Jx ≤ 0K,¬Jx = 0K,
¬Jx = 2K,¬Jx = 4K,¬Jx = 5K will hold. Explanations are defined by clauses over
this Boolean representation of the variables.

Example 1. Consider a simple constraint satisfaction problem with constraints
b → x + 3 ≤ y, ¬b → y + 3 ≤ x, b′ → y ≤ 3, ¬b′ → x ≤ 3, with initial domains
D0(b) = D0(b′) = {0, 1}, and D0(x) = D0(y) = {0, 1, 2, 3, 4, 5, 6}. There is no
initial propagation. Setting Jy = 2K makes the first constraint propagate D(b) =
{0} with explanation Jy = 2K → ¬b, then the second constraint propagates
D(x) = {5, 6} with explanation ¬b ∧ Jy = 2K → J5 ≤ xK. The third constraint
propagates D(b′) = {0} with explanation Jy = 2K→ ¬b′ and the last constraint
sets D(x) = ∅, with explanation J5 ≤ xK ∧ ¬b′ → false. The graph of the
implications is

¬b // J5 ≤ xK
((

Jy = 2K

66

//

33

¬b′ // false

Any cut separating the decision Jy = 2K from false gives a nogood. The simplest
one is Jy = 2K→ false. 2

2.2 Scheduling and Optional Tasks

Scheduling applications deal with non-optional and optional tasks. A typical task
is specified by a start time variable Si and a processing time/duration di (which
may also be variable). For simplicity we assume durations are fixed, it is easy to
extend the results of the paper to variable durations. Given a task and current
domain D we define the earliest start time ecti = lbD(Si), earliest completion
time ecti = lbD(Si) + di, latest start time lsti = ubD(Si), and latest completion
time lsti = ubD(Si) + di.

Some tasks need resources, such as e.g., labour, space, or particular machin-
ery, from a limited pool for their execution. A schedule of those tasks must
ensure that the demand on a resource does not exceed the resource capacity in
any time period. In this work, we consider renewable resources characterised by
the constant resource capacity R over time. Such a resource can be modelled by



the cumulative constraint

cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn], R)

≡

(
∀τ :

n∑
i=1

runsiτ · ri ≤ R

)
,

where τ is a time period, ri is the resource usage of task i, and runsiτ expresses
whether task i runs at time period τ .

The disjunctive constraint disjunctive, requiring that no two tasks are
executing at the same time, encodes the special case of cumulative when the
resource capacity is 1, and the resource usage for each task is 1.

disjunctive([S1, . . . , Sn], [d1, . . . , dn])

≡ cumulative([S1, . . . , Sn], [d1, . . . , dn], [1, . . . , 1], 1)

Specialised propagation algorithms [26,31] are available for the disjunctive

constraint.
Laborie and Rogerie [12] introduce interval variables to represent optional

tasks. The domain of an interval variable ranges over ⊥∪{[s, e) | s, e ∈ Z, e ≥ s}.
A fixed interval variable represents either an absent interval ⊥ or a present
interval [s, e). Accordingly, an optional task is absent or present if its interval
is absent or present respectively. If the interval [s, e) is present then s and e
respectively represent its start and end time and e− s its length and it must be
that s ≤ e. If a is an interval variable then let sa, ea, and xa denote the start
time, end time, and presence state, respectively.

A task 0 can be composed of other tasks 1, . . . , n and modelled with interval
variables a0 and a1, . . . , an, respectively. Then the relation between the tasks is
described via a span constraint [14]:

span(a0, {a1, . . . , an}) ≡


(xa0 ↔

∨n
i=1 x

a
i )

∧ (sa0 = min1≤i≤n:xa
i
sai )

∧ (↔ ea0 = max1≤i≤n:xa
i
eai )

(1)

That is, task 0 starts when the earliest task in {1, . . . , n} that is present starts,
and ends when the latest task that is present ends. It is present iff at least one
of tasks 1, . . . , n is present.

An important specialisation of the span constraint is the alternative con-
straint [14] which allows only one task 1, . . . , n to be present (thus representing
a choice for task 0).

alternative(a0, {a1, . . . , an}) ≡

{ ∑n
i=1 x

a
i ≤ 1

∧ span(a0, {a1, . . . , an})
(2)

Note if the task 0 is present then exactly one task in {1, . . . , n} is present too;
otherwise all are absent.



3 Modelling Optional Tasks

The crucial requirement for effective modelling of optional tasks is to be able
to reason about finite domain integer variables which have an additional value
⊥, which we will call int⊥ variables. These variables can then represent start
times of optional tasks. They can also be useful for other reasoning, for example
reasoning about databases with null values. In this section we show how to
model int⊥ variables using integer and Boolean variables. We then discuss how
to model compositional constraints such as span and alternative. Finally we
discuss how tracking implications between presence of tasks can be modelled, to
help improve propagation.

3.1 Integers with Bottom

Lcg solvers do not currently support int⊥ variables. But we can make use
of existing integer and Boolean variables to model an int⊥ variable and thus
interval variables.

We model an int⊥ variable S with initial domain D0(S) = [lS ..uS ] and
⊥ as S = (S, S, xS) using two integer variables S, S, and a Boolean variable
xS : S holds the lower bound of the int⊥ variable S; while S holds the upper
bound of the int⊥ variable S; and xS holds the presence state of the int⊥
variable. The initial domains are D0(S) = lS ..uS + 1 are D0(S) = lS − 1..uS .
The representatives (S, S, xS) are constrained by

intbot(S) ≡ xS ↔ (S = S) ∧ ¬xS ↔ S > uS ∧ ¬xS ↔ S < lS

Thus if the int⊥ variable S is present, i.e., S 6= ⊥, the lower and upper bound
are identical. If the lower and upper bound are not compatible, i.e., S > S, then
the int⊥ variable must be absent, i.e., S = ⊥, and if the int⊥ variable is absent
we set the lower bound to uS + 1 and the upper bound to lS − 1. Note S < S
never holds.

The constraint S ≥ v represents that S ≥ v ∨ S = ⊥. The constraint S ≤ v
represents that S ≤ v ∨ S = ⊥.

Propagation on the int⊥ variable is enforced using the appropriate bound.
Hence a new (tentative) lower bound S ≥ v is enforced by S ≥ v, and a new
(tentative) upper bound S ≤ v is enforced as S ≤ v. Asserting that S 6= v
is enforced by S 6= v ∧ S 6= v. Asserting S = v if S is present is enforced by
S ≥ v ∧ S ≤ v. Two integer variables are required to model an int⊥ variable
so that if the bounds cross we do not get a domain wipe-out, which would
incorrectly trigger a failure.

Care must be taken in using the tripartite representation of int⊥ variables,
because of the special role taken by the sentinel values uS + 1 for S and lS − 1
for S. If a propagator ever tries to set S ≥ k where k > uS + 1, this should
be replaced by setting S ≥ uS + 1. Similarly if a propagator ever tries to set
S ≤ k where k < lS − 1, we should instead set S ≤ lS − 1. Since propagators are
aware that they are dealing with int⊥ variables, they can be modified to act
accordingly, without changing the integer variables used to represent S and S.



Given we have int⊥ variables, we can model an interval variable a as a
pair (S, d) of an int⊥ variable S = (S, S, xS) and an integer d by xa = xS ,
sa = lb(S), and ea = ub(S) + d. Note that [12,13,14] introduce interval variables
as an abstract type for tasks and here we consider tasks with fixed duration,
thus an end time variable is not required.

3.2 Compositional Constraints

The span constraint can be modelled using int⊥ variables and constraints sup-
ported by most CP solvers as follows:

span((S0, d0), [(S1, d1), . . . , (Sn, dn)])

≡



S0 ≥ min{Si + (1− xSi )(uS0 − uSi ) | 1 ≤ i ≤ n} ∪ {uS0 + 1}
∧ S0 ≤ max{Si + (1− xSi )(lS0 − lSi ) | 1 ≤ i ≤ n} ∪ {lS0 − 1}
∧ d0 ≥ min{Si + di − S0 + (1− xSi )(ud0 + 1− di) | 1 ≤ i ≤ n} ∪ {ud0 + 1}
∧ d0 ≤ max{Si + di − S0 + (1− xSi )(ld0 − 1− di) | 1 ≤ i ≤ n} ∪ {ld0 − 1}
∧ xS0 ≥

∑n
i=1 x

S
i ,

The interval S0 is constrained to be lie around the Si that are present. The
duration interval d0 is constrained to be large enough to reach the minimal end
time of tasks that is present, and small enough not to reach beyond the last
possible end time of a task which is present. Note the last element in each line
ensures that none of the upper or lower bound variables is every bound too
strongly to remove the sentinel value.

The alternative constraint can be modelled similarly. It propagates more
strongly if it is modelled directly rather than making use of span. The model is:

alternative((S0, d0), [(S1, d1), . . . , (Sn, dn)])

≡



S0 ≥ min{Si + (1− xSi )(uS0 − uSi ) | 1 ≤ i ≤ n} ∪ {uS0 + 1}
∧ S0 ≤ max{Si + (1− xSi )(lS0 − lSi ) | 1 ≤ i ≤ n} ∪ {lS0 − 1}
∧ d0 ≥ min{di + (1− xSi )(ud0 + 1− di) | 1 ≤ i ≤ n} ∪ {ud0 + 1}
∧ d0 ≤ max{di + (1− xSi )(ld0 − 1− di) | 1 ≤ i ≤ n} ∪ {ld0 − 1}
∧ xS0 =

∑n
i=1 x

S
i ,

The duration d0 is easier to model since it must be one of the durations of
the alternatives. The last constraint enforces that exactly one optional task is
actually present if the task 0 is present.

3.3 Presence Implications

Laborie and Rogerie [12] illustrate how reasoning about the presence of optional
tasks can substantially improve propagation. The key knowledge is, given two
tasks, i and j, does the presence of i imply the presence of j, i.e., xSi → xSj .



Such knowledge allows one to perform propagation on i using the information
of j even when the presence of both tasks is still unknown. This relationship
might initially be available in the modelling stage or might dynamically become
available during the solving stage.

Define impl(i, j) as the representation of xSi → xSj we shall use in explanation.
For models where there is no information about relative presence we just use
impl(i, j) = xSj . If presence implications can be statically determined from the
model we can define the representation statically, hence impl(i, j) = true if task
i is present then so must be j, and xSj otherwise. We also add the constraint

xSi → xSj to enforce the presence relationship.
For models where the relative execution information is dynamically deter-

mined we introduce new Boolean variables Ii,j to represent the information and
let impl(i, j) = Ii,j . We also add a transitivity constraint transitive(I, [xS1 , . . . , x

S
n ])

which ensures that Ii,j∧Ij,k → Ii,k and Ii,j ↔ (¬xSi ∨xSj ). In practice the Boolean
variables Ii,j can be created as required during the execution, they do not all
need to be created initially. Our use of transitive corresponds to the logical
network of [12].

Example 2. Suppose we have a model with tasks i, j, and k and variable sum
where we know that xSi → xSj , and if sum ≥ 0 then xSi → xSk , but nothing
else about presence implications. For this model we have that impl(i, j) = true,
impl(i, k) = Ii,k where sum ≥ 0 → Ii,k and Ii,k ↔ (¬xSi ∨ xSk ). Since we can
never determine any presence implications between j and k, impl(j, k) = xSk ,
and similarly impl(k, j) = xSj , impl(k, i) = impl(j, i) = xSi . 2

4 Explanations for Propagation with Optional Tasks

Propagation with optional tasks requires the generation of explanations for the
use in a CP solver with nogood learning. Here, we present explanations for prun-
ing on lower bounds of the start time variables making use of generalised prece-
dences, detectable precedences, and time-table, and energetic reasoning propa-
gation. Pruning on corresponding upper bounds is symmetric and thus omitted.
These explanations are extensions of the explanation presented in [24,23] and
the same generalisation steps apply for optional tasks for creating a strongest
explanation as possible. However, we omit consideration of generalisation here,
since it works equivalently to the non-optional tasks case.

For the remainder of this paper, we only consider optional tasks. A non-
optional task with a start time variable S and duration d can be represented
as an optional task with start time S = S = S and xS = true and duration d.
While we only consider fixed durations, the explanations can all be extended to
use variable durations by replacing d with lb(d) and adding literals Jlb(d) ≤ dK
to explanations.

We assume a given domain D, for which we are defining explanations. We
lift the definitions of lsti and ecti to optional tasks.

lsti := ub(Si) ecti := lb(Si) + di lcti := ub(Si) + di esti := lb(Si)



If lsti < ecti then we say the task i has a compulsory part [lsti, ecti).

Generalised Precedences Given the constraint Sj + v ≤ Si where Si and Sj are
int⊥ variables and v is an integer, then we can propagate on the lower bound
of Si if impl(i, j) is currently known to be true. The lower bound is estj + v. In
order to prevent the wipe out of all values in Si if the new bound is greater than
uSi +1 we reduce it to this. Consequently, only an update to min(estj+v, uSi +1)
is permissible. The corresponding explanation is

impl(i, j) ∧ Jestj ≤ SjK→ Jmin(estj + v, uSi + 1) ≤ SiK

Note that the explanation holds regardless of whether i or j executes.
We can extend this reasoning to half-reified [6] precedences of the form b→

Sj + v ≤ Si by simply adding b to the left hand of the explanation.

Example 3. Suppose that Sk + 3 ≤ Si for the tasks described in Example 2.
Suppose Ii,k is currently true, and D(Si) = [2..5] and D(Sk) = [6..10]. The we
propagate J9 ≤ SiK assuming uSi ≥ 8 with an explanation Ii,k + J3 ≤ SkK →
J9 ≤ SiK. Suppose instead that uSi = 7, then we propagate with explanation
Ii,k + J3 ≤ SkK→ J8 ≤ SiK which will cause xSi = false. 2

Detectable Precedences Given the constraint disjunctive([S1, . . . , Sn], [d1, . . . , dn])
over n tasks with start time int⊥ variables Si and fixed duration di, 1 ≤ i ≤ n.
Then two tasks i, j can not be run concurrently if lstj < ecti and we can con-
clude that j must finish before i (j � i) if they are both present. If we detect
that currently lstj < ecti holds and also impl(i, j) then we can propagate as in
the case above. The new bound is min(ectj , u

S
i + 1) with explanation:

impl(i, j) ∧ Jt+ 1− di ≤ SiK ∧ JSj ≤ tK→ Jmin(ectj , u
S
i + 1) ≤ SiK

where t can be any integer in [lstj , ecti).

Time-Table Propagation Given n tasks which are competing for a resource with
capacityR. Then cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn], R) must hold.
Let i be a task for which we want to propagate the lower bound and Ω be subset
of tasks {j | 1 ≤ j 6= i ≤ n} which are known to be present if i is present,
i.e., impl(i, j), j ∈ Ω are known to be true currently. If the tasks j ∈ Ω create
a compulsory part overlapping the interval [begin, end), i.e., lstj ≤ begin and
end ≤ ectj , and it holds that begin < ecti and ri +

∑
j∈Ω ri > R then the lower

bound of Si can be updated to min(end, uSi + 1). If ecti < end then Lcg solvers
break down the propagation in several steps, so that ecti ≥ end holds for the
interval considered (see [24] for details). Then, the point-wise explanation [24] is

Jend− di ≤ SjK ∧
∧
j∈Ω

impl(i, j) ∧ Jend− dj ≤ SjK ∧ JSj ≤ end− 1K

→ Jmin(end, uSi + 1) ≤ SiK



Explaining conditional task overload requires a set of tasks Ω ⊆ {1, . . . , n}
that are all either present together or none present, that is all of impl(i, j) cur-
rently hold for {i, j} ∈ Ω, and all have a compulsory part overlapping [begin, end)
where

∑
i∈Ω ri > R. Then none of the tasks in Ω can be present, which can be

explained as:∧
{i,j}∈Ω

impl(i, j) ∧
∧
j∈Ω

Jt− dj ≤ SjK ∧ JSj ≤ t− 1K→
∧
j∈Ω
¬xSj ,

where t can be any value in [begin, end). Note that this explanation creates |Ω|
clauses due to the conjunction on the right hand side.

Energetic Reasoning Propagation Given n tasks which are competing for a re-
source with capacityR. Then cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn], R)
must hold. Let i be a task for which we want to propagate the lower bound
and Ω be subset of tasks {j | 1 ≤ j 6= i ≤ n} which are known to be
present if i is present, i.e., impl(i, j), j ∈ Ω are known to be true currently.
If the tasks j ∈ Ω are partially processed in the interval [begin, end), i.e.,
begin < ectj and lstj < end for j ∈ Ω, then the lower bound of Si can
be updated to min(begin + drest/rie, uSi + 1) if begin < ecti, rest > 0, and
min(di, end− begin) +

∑
j∈Ω rj · pj(begin, end) > R · (end− begin) where

rest =
∑
j∈Ω

rj · pj(begin, end)− (R− di) · (end− begin) and

pj(begin, end) = max(0,min(ectj − begin, end− lstj , end− begin)) j ∈ Ω .

Thus, the explanation is as follows with t = min(begin+ drest/rie, ui).

Jbegin− di < SiK ∧
∧
j∈Ω

impl(i, j) ∧ JSj ≤ end− pj(begin, end)K∧

∧
j∈Ω

Jbegin+ pj(begin, end)− dj ≤ SjK→ Jt ≤ SiK

Note that t might not be the largest lower bound for this update, but just
as for time-table propagation, for Lcg solvers using energetic reasoning it is
preferable to perform a step-wise update (see [25] for details). Moreover, since
energetic reasoning generalises (extended) edge-finding and time-tabling edge-
finding propagation, the explanation presented covers these cases too.

5 Experiments on Flexible Job Shop Scheduling

Experiments were carried out on challenging flexible job-shop scheduling prob-
lems (FJSP) [5] where we seek a minimal makespan. FJSP consists of a set
of jobs J to be executed on a set of machines M . Each job j ∈ J is made up
of a sequence of tasks Tj1, . . . Tjnj

, and the tasks can be executed on different
machines which may cause them to have different duration. Executing a task
Tjk on machine m ∈M requires djkm time. The aim is to complete all the tasks
in the minimum amount of time.



5.1 Model

For FJSP instance, we model each task Tjk using a integer start time variable Sjk
and duration variable djk (if the processing time of the task differs on different
machines), as well as int⊥ start time variables Sjkm and fixed durations djkm
for the optional task of execution task Tjk on machine m. The constraints of the
model are∧

m∈M .disjunctive([Sjkm | j ∈ J, k ∈ [1..nj ]], [djkm | j ∈ J, k ∈ [1..nj ]]) ∧∧
j∈J,k∈[1..nj ]

. alternative(Sjk, djk, [Sjkm | m ∈M ], [djkm | m ∈M ]) ∧∧
j∈J,k∈[1..nj−1] .Sjkm + djkm ≤ Sjk+1m ∧∧
j∈J,k∈[1..nj ],m∈M intbot(Sjkm)

We can add a redundant cumulative constraint to improve propagation

cumulative([Sjk | j ∈ J, k ∈ [1..nj ]], [djk | j ∈ J, k ∈ [1..nj ]],

[1 | j ∈ J, k ∈ [1..nj ]], |M |) .

In this model there are no presence implications and impl(ai, aj) = xaj and
similarly for b.

Example 4. Consider a FJSP problem with 2 machines (a, b) and 5 jobs each
made up of a single task where the durations (da, db) of each task if it is executed
on machine a,b respectively are given by (12,9), (5,11), (6,7), (9,6), (7,8). We aim
to schedule the tasks on the two machines with no two tasks on the same machine
overlapping within a makespan of at most 22. This is modelled with 5 (non-
optional) tasks with start times S1, S2, S3, S4, S5 and (variable) durations d1 ∈
[9..12], d2 ∈ 5..11, d3 ∈ 6..7, d4 ∈ 6..9, d5 ∈ 7..8. And 5 optional tasks with time-
intervals a1, a2, a3, a4, a5 and fixed durations da = [12, 5, 6, 9, 7] representing that
task i runs on machine a. And 5 optional tasks with time-intervals b1, b2, b3, b4, b5
with fixed durations db = [9, 11, 7, 6, 8] representing that task i runs on machine
b. This constraints of the model are:

disjunctive([a1, a2, a3, a4, a5], [12, 5, 6, 9, 6])

∧ disjunctive([b1, b2, b3, b4, b5], [9, 11, 7, 6, 8])

∧ cumulative([S1, S2, S3, S4, S5], [d1, d2, d3, d4, d5], [1, 1, 1, 1, 1], 2)

∧
∧5

i=1
alternative(Si, di, [ai, bi], [dai, dbi])

∧
∧5

i=1
intbot(ai) ∧

∧5

i=1
intbot(bi) ∧

∧5

i=1
Si + di ≤ 22

The first disjunctive ensures that no tasks that run on machine a overlap,
while the second ensures the same for machine b. The cumulative is a redundant
constraint that ensures that at most two tasks run at any time. The alternative
constraints model the relationship between each (non-optional) task the two
alternatives running on machines a and b. Finally the intbot constraints ensure
that the interval variables are accurately modelled by triples.
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Fig. 1: Implication graph for the search of Example 4. Literals above the dotted
lines are decisions.

Suppose search first schedules task 1 on machine a, setting xa1 = true and
S1 = 0. This forces a1 = a1 = 0. The first disjunctive constraint then imposes
that a2 ≥ 12, a3 ≥ 12, a4 ≥ 12, a5 ≥ 12. Suppose search next schedules task
2 on machine b, setting xb2 = true and S2 = 0. This forces b2 = b2 = 0. The
second disjunctive constraint then imposes that b3 ≥ 11, b3 ≥ 11, b3 ≥ 11.
The alternative constraints enforce that S3 ≥ 11, S4 ≥ 11 and S5 ≥ 11. The
cumulative constraint discovers that task 3 has a compulsory part in [16, 17),
task 4 has a compulsory part in [16, 17) and task 5 has a compulsory part in
[15, 18). This leads to a resource overload at time 16 and failure is detected. The
(relevant part) of the implication graph is shown in Figure 1. The 1UIP nogood
is: Ja3 ≥ 12K ∧ Ja4 ≥ 12K ∧ Ja5 ≥ 12K ∧ xb2 ∧ JS2 = 0K → false. Note how the
interval variables play an important role in propagation and in the final nogood.
2

5.2 Experiments

The experiments were run on a X86-64 architecture running GNU/Linux and
an Intel(R) Core(TM) i7 CPU processor at 2.8 GHz. The code was written
using the G12 Constraint Programming Platform [28]. The model was written
in MiniZinc [18] and executed by mzn-g12lazy, the Lcg solver described in [7].
The disjunctive propagator in the Lcg solver performs the time-table and
edge-finding consistency check before filtering the bounds on the start times via
detectable precedences and edge-finding (denoted disjDPEF). We also ran the
experiments with filtering via detectable precedences disabled (denoted disjEF).
Since there were no significant differences between both cases, we only present
disjEF. Appendix A shows the full results for both cases. We compare our results
with the current best known lower and upper bounds of the makespan.

We used different benchmark suites for which a brief overview is given in
Table 1 where #inst is the number of instances considered, #mach the range
of the number of machines, #jobs the range of the number of jobs, #task the



Table 1: Overview of the benchmark suites used.
suite sub-suite #inst #mach #jobs #task #o-task

BC 21 11–18 10–15 100–225 110–270
Bm [4] 10 4–15 10–20 55–240 115–716
Hu [9] edata 43 5–10 6–20 36–225 42–341

rdata 43 5–10 6–20 36–225 74–592
vdata 43 5–10 6–20 36–225 103–1507

range of the number of task per job, and #o-task the range of the total number
of optional tasks.

5.3 Upper Bounds Computations

Upper bound computations approach the optimal solution by generating feasible
solutions, potentially sub-optimal, and then restricting the objective correspond-
ingly before continuing the search. Many methods (see, e.g., [15,20,33]) have been
proposed for finding feasible solutions. Most of them are incomplete, i.e., they
have no guarantee for finding the optimal solution and proving its optimality,
but they are fast.

We use branch and bound for minimising the makespan and an activity-based
search (an adaption of Vsids [17]) with restart. A geometric restart policy [32]
on the number of node failures was used with a factor of 2.0 and a base of 256.
The upper bound on the makespan was initialised to the rounded up value of
the average makespan computed by [15], because [15] provides a method that
quickly finds high quality solutions.

Tables 2–4 are organised as follow: the column Inst provides the instance
names; the column LB-UB the best known lower and upper bound with respect
to [10,15,20,3,33]; the column Initial presents the rounded up average UB ob-
tained by [15] over several runs and its average run time in seconds;3 the column
disjEF shows the best obtained UB and the run time in seconds in which a bold
UB indicates that disjEF could improve the best known bound or closed the in-
stance, and an asterisk after UB indicates that the disjEF was able to find the
optimal solution and prove it. An entry n/a in UB indicates that the Lcg solver
was not able to find a solution with the given initial UB within the run time
limit of 10 minutes.

Our method performed exceptionally well on instances from BC (see Ta-
ble 2), all instances could be solved within the time limit given. In contrast, the
instances from Bm were harder to solve for our methods (see Table 3), although
the instance Mk04 was closed. Only five instances could be solved and a solution
could be found for only one of the remaining five instances.

Table 4 show the result on a subset of instances from Hu. Due to space
limits, we omit the instances mt06, mt10, mt20, and la01–la20 from the sub-

3 The numbers were taken from the appendix of [15] provided at http://www.idsia.

ch/~monaldo/fjsp.html



Table 2: Results on BC with initial UB from [15].
Inst #o-task LB-UB Initial Sol disjEF

UB time UB time

mt10c1 110 655-927 928 2.33s 927* 4.47s
mt10cc 120 655-908 910 10.04s 908* 3.66s
mt10x 110 655-918 918 4.31s 918* 2.45s
mt10xx 120 655-918 918 1.73s 918* 2.21s
mt10xxx 130 655-918 918 1.10s 918* 2.87s
mt10xy 120 655-905 906 4.02s 905* 4.41s
mt10xyz 130 655-847 851 5.50s 847* 2.98s
setb4c9 165 857-914 920 14.02s 914* 12.45s
setb4cc 180 857-907 912 12.95s 907* 8.60s
setb4x 165 846-925 925 7.45s 925* 12.86s
setb4xx 180 846-925 927 14.87s 925* 14.31s
setb4xxx 195 846-925 925 7.99s 925* 15.02s
setb4xy 180 845-910 916 3.15s 910* 8.40s
setb4xyz 195 838-903 909 7.35s 902* 6.77s
seti5c12 240 1027-1171 1175 19.49s 1169* 54.68s
seti5cc 255 955-1136 1137 11.91s 1135* 95.27s
seti5x 240 955-1198 1204 15.85s 1198* 28.34s
seti5xx 255 955-1197 1201 23.64s 1194* 12.43s
seti5xxx 270 955-1197 1199 23.51s 1194* 8.84s
seti5xy 255 955-1136 1137 11.91s 1135* 95.20s
seti5xyz 270 955-1125 1127 17.13s 1125* 337.98s

Table 3: Results on Bm with initial UB from [15].
Inst #o-task LB-UB Initial Sol disjEF

UB time UB time

Mk01 115 40 40 0.01s 40* 0.25s
Mk02 238 24-26 26 0.73s n/a 598.72s
Mk03 451 204 204 0.01s 204* 2.10s
Mk04 172 48-60 60 0.08s 60* 0.45s
Mk05 181 168-172 173 0.96s 173 598.40s
Mk06 490 33-57 59 3.26s 59 599.28s
Mk07 283 133-139 147 8.91s n/a 598.10s
Mk08 322 523 523 0.02s 523* 4.95s
Mk09 606 307 307 0.15s 307* 9.69s
Mk10 716 165-196 200 7.69s n/a 599.96s

suites edata and rdata since they are easily solvable. We also omit the entire
sub-suite vdata, because no new results could be obtained. The full results are
presented in Appendix A. The Lcg solver disjEF solves all instances of the sub-
suite edata except 7 and closes 9 of them. For the sub-suite rdata, the Lcg solver
closes 5 instances, but for 13 instances it could not find a solution within the
time limit.



Table 4: Results on Hu with initial UB from [15].
Inst #o-task LB-UB Initial Sol disjEF

UB time UB time

edata/la11 113 1087-1103 1103 1.91s 1103* 0.45s
edata/la21 173 895-1009 1024 2.83s 1013 598.97s
edata/la22 173 832-880 883 4.29s 880* 6.21s
edata/la23 171 950 950 2.97s 950* 17.26s
edata/la24 174 881-908 912 3.88s 908* 80.21s
edata/la25 174 894-936 945 1.76s 936* 21.89s
edata/la26 227 1089-1107 1127 5.48s 1127 598.72s
edata/la27 227 1181 1189 9.25s 1189 598.86s
edata/la28 226 1116-1142 1149 3.44s 1144 599.30s
edata/la29 227 1058-1111 1121 5.47s 1121 598.84s
edata/la30 227 1147-1195 1214 9.22s 1208 599.52s
edata/la31 341 1523-1533 1541 9.58s 1538 600.11s
edata/la32 341 1698 1698 1.85s 1698* 101.44s
edata/la33 339 1547 1547 1.40s 1547* 27.53s
edata/la34 339 1592-1599 1600 9.35s 1599* 52.03s
edata/la35 339 1736 1736 0.41s 1736* 3.37s
edata/la36 258 1006-1160 1164 8.08s 1160* 26.01s
edata/la37 258 1397 1397 3.48s 1397* 1.59s
edata/la38 257 1019-1143 1147 6.90s 1141* 436.15s
edata/la39 257 1151-1184 1186 8.68s 1184* 13.12s
edata/la40 258 1034-1144 1152 7.78s 1144* 473.22s

rdata/la02 94 529-530 531 1.31s 529* 431.20s
rdata/la19 196 647-700 702 1.90s 700* 1.35s
rdata/la20 199 756 841 7.81s n/a 598.79s
rdata/la22 306 737-758 764 5.14s 764 598.97s
rdata/la23 306 816-832 846 6.50s n/a 598.88s
rdata/la24 297 775-801 814 4.06s n/a 598.82s
rdata/la25 302 752-785 795 3.38s 793 599.34s
rdata/la26 391 1056-1061 1064 7.69s n/a 599.00s
rdata/la27 392 1085-1090 1093 7.47s n/a 598.96s
rdata/la28 402 1075-1080 1082 7.54s n/a 599.00s
rdata/la29 399 993-997 999 4.03s n/a 599.15s
rdata/la30 392 1068-1078 1081 7.78s n/a 599.04s
rdata/la31 576 1520-1521 1522 8.61s n/a 599.37s
rdata/la32 585 1657-1659 1660 12.67s n/a 599.36s
rdata/la33 581 1497-1498 1500 11.48s n/a 599.28s
rdata/la34 584 1535-1536 1537 7.28s n/a 599.41s
rdata/la35 592 1549-1550 1551 15.28s n/a 599.33s
rdata/la36 439 1016-1028 1032 4.90s 1023* 38.98s
rdata/la37 437 989-1066 1081 9.52s 1077 600.50s
rdata/la38 444 943-960 968 9.32s 954* 44.19s
rdata/la39 436 966-1018 1034 2.78s 1011* 539.80s
rdata/la40 441 955-956 974 6.11s 968 601.03s



Overall we close 36 open instances and improve the best known upper bounds
of 11 instances. Our approach is strongest on examples without too many tasks,
we plan to investigate the combination with large neighbourhood search (as
in [20]) to improve results on larger problems.

6 Conclusion and Outlook

Scheduling with optional tasks generalises the case of scheduling with tasks that
must always execute. It provides considerable expressiveness for defining complex
scheduling problems. In this paper we show how to extend Lcg solvers to support
scheduling with optional tasks. The resulting system combines the advantages
of scheduling with optional tasks with learning. We demonstrate the power of
the combination on hard flexible job-shop scheduling problems. In the future
we plan to extend our implementation for optional tasks to more propagators,
and probably to implement a native int⊥ variable in our Lcg solvers (although
we do not expect the native implementation to be much more efficient than the
tripartite model we use here).
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A Detailed Upper Bound Results

Tables 5–9 show all results of the experiments conducted.

Table 5: Results on BC with initial UB and time taken from [15].
Inst #o-task LB-UB Initial Sol disjEF disjDPEF

UB time UB time UB time

mt10c1 110 655-927 928 2.33s 927* 4.47s 927* 5.84s
mt10cc 120 655-908 910 10.04s 908* 3.66s 908* 3.52s
mt10x 110 655-918 918 4.31s 918* 2.45s 918* 2.02s
mt10xx 120 655-918 918 1.73s 918* 2.21s 918* 2.38s
mt10xxx 130 655-918 918 1.10s 918* 2.87s 918* 3.27s
mt10xy 120 655-905 906 4.02s 905* 4.41s 905* 5.93s
mt10xyz 130 655-847 851 5.50s 847* 2.98s 847* 3.11s
setb4c9 165 857-914 920 14.02s 914* 12.45s 914* 13.49s
setb4cc 180 857-907 912 12.95s 907* 8.60s 907* 8.23s
setb4x 165 846-925 925 7.45s 925* 12.86s 925* 20.70s
setb4xx 180 846-925 927 14.87s 925* 14.31s 925* 18.37s
setb4xxx 195 846-925 925 7.99s 925* 15.02s 925* 17.55s
setb4xy 180 845-910 916 3.15s 910* 8.40s 910* 13.23s
setb4xyz 195 838-903 909 7.35s 902* 6.77s 902* 10.01s
seti5c12 240 1027-1171 1175 19.49s 1169* 54.68s 1169* 55.26s
seti5cc 255 955-1136 1137 11.91s 1135* 95.27s 1135* 202.41s
seti5x 240 955-1198 1204 15.85s 1198* 28.34s 1198* 32.85s
seti5xx 255 955-1197 1201 23.64s 1194* 12.43s 1194* 13.06s
seti5xxx 270 955-1197 1199 23.51s 1194* 8.84s 1194* 21.62s
seti5xy 255 955-1136 1137 11.91s 1135* 95.20s 1135* 202.23s
seti5xyz 270 955-1125 1127 17.13s 1125* 337.98s 1125* 566.15s

Table 6: Results on Bm with initial UB and time taken from [15].
Inst #o-task LB-UB Initial Sol disjEF disjDPEF

UB time UB time UB time

Mk01 115 40 40 0.01s 40* 0.25s 40* 0.25s
Mk02 238 24-26 26 0.73s n/a 598.72s n/a 598.64s
Mk03 451 204 204 0.01s 204* 2.10s 204* 2.48s
Mk04 172 48-60 60 0.08s 60* 0.45s 60* 0.44s
Mk05 181 168-172 173 0.96s 173 598.40s 173 598.36s
Mk06 490 33-57 59 3.26s 59 599.28s n/a 599.09s
Mk07 283 133-139 147 8.91s n/a 598.10s n/a 598.54s
Mk08 322 523 523 0.02s 523* 4.95s 523* 3.59s
Mk09 606 307 307 0.15s 307* 9.69s 307* 30.45s
Mk10 716 165-196 200 7.69s n/a 599.96s n/a 600.06s



Table 7: Results on Hu edata with initial UB and time taken from [15].
Inst #o-task LB-UB Initial Sol disjEF disjDPEF

UB time UB time UB time

la01 60 609 609 0.01s 609* 0.19s 609* 0.16s
la02 60 655 655 0.04s 655* 0.28s 655* 0.30s
la03 59 550 550 1.00s 550* 0.17s 550* 0.15s
la04 59 568 568 0.36s 568* 0.18s 568* 0.17s
la05 60 503 503 0.01s 503* 0.15s 503* 0.13s
la06 86 833 833 0.00s 833* 0.20s 833* 0.27s
la07 86 762 762 0.35s 762* 0.28s 762* 0.26s
la08 86 845 845 0.02s 845* 0.27s 845* 0.45s
la09 86 878 878 0.04s 878* 0.18s 878* 0.26s
la10 87 866 866 0.01s 866* 0.32s 866* 0.26s
la11 113 1087-1103 1103 1.91s 1103* 0.45s 1103* 0.56s
la12 114 960 960 0.02s 960* 0.46s 960* 0.50s
la13 114 1053 1053 0.02s 1053* 0.78s 1053* 0.58s
la14 113 1123 1123 0.03s 1123* 0.44s 1123* 0.59s
la15 113 1111 1111 0.30s 1111* 0.50s 1111* 0.68s
la16 113 892 892 0.25s 892* 0.42s 892* 0.51s
la17 113 707 707 0.58s 707* 0.26s 707* 0.32s
la18 113 842 842 0.79s 842* 0.73s 842* 0.71s
la19 113 796 796 1.53s 796* 1.08s 796* 1.33s
la20 113 857 857 0.88s 857* 0.41s 857* 0.41s
la21 173 895-1009 1024 2.83s 1013 598.97s 1014 599.43s
la22 173 832-880 883 4.29s 880* 6.21s 880* 6.02s
la23 171 950 950 2.97s 950* 17.26s 950* 10.44s
la24 174 881-908 912 3.88s 908* 80.21s 908* 66.11s
la25 174 894-936 945 1.76s 936* 21.89s 936* 21.57s
la26 227 1089-1107 1127 5.48s 1127 598.72s 1125 599.11s
la27 227 1181 1189 9.25s 1189 598.86s 1189 598.85s
la28 226 1116-1142 1149 3.44s 1144 599.30s 1147 599.13s
la29 227 1058-1111 1121 5.47s 1121 598.84s 1116 599.53s
la30 227 1147-1195 1214 9.22s 1208 599.52s n/a 598.80s
la31 341 1523-1533 1541 9.58s 1538 600.11s n/a 598.97s
la32 341 1698 1698 1.85s 1698* 101.44s 1698* 52.09s
la33 339 1547 1547 1.40s 1547* 27.53s 1547* 45.41s
la34 339 1592-1599 1600 9.35s 1599* 52.03s 1599* 148.32s
la35 339 1736 1736 0.41s 1736* 3.37s 1736* 11.90s
la36 258 1006-1160 1164 8.08s 1160* 26.01s 1160* 67.89s
la37 258 1397 1397 3.48s 1397* 1.59s 1397* 1.45s
la38 257 1019-1143 1147 6.90s 1141* 436.15s 1141* 365.34s
la39 257 1151-1184 1186 8.68s 1184* 13.12s 1184* 14.44s
la40 258 1034-1144 1152 7.78s 1144* 473.22s 1144* 510.35s
mt06 42 55 55 0.00s 55* 0.09s 55* 0.07s
mt10 113 871 873 1.61s 871* 2.13s 871* 2.21s
mt20 113 1088 1089 3.52s 1088* 0.91s 1088* 0.56s



Table 8: Results on Hu rdata with initial UB and time taken from [15].
Inst #o-task LB-UB Initial Sol disjEF disjDPEF

UB time UB time UB time

la01 96 570 572 1.97s 570 598.55s 571 598.60s
la02 94 529-530 531 1.31s 529* 431.20s 529* 472.77s
la03 99 477 479 1.36s 477 598.64s 477 598.57s
la04 101 502 503 0.62s 502 598.61s 502 598.70s
la05 103 457 458 1.78s 457 598.63s 457 598.64s
la06 141 799 800 2.99s 799 598.65s 799 598.70s
la07 147 749 750 1.13s 749 598.68s 749 598.77s
la08 145 765 766 0.35s 765 598.64s 765 598.68s
la09 144 853 854 2.29s 853 598.55s 853 598.68s
la10 147 804 805 1.32s 804 598.54s 804 598.61s
la11 203 1071 1071 2.56s 1071 598.65s 1071 598.78s
la12 199 936 936 0.08s 936 598.42s 936 598.64s
la13 198 1038 1038 0.90s 1038 598.13s 1038 598.68s
la14 197 1070 1070 0.28s 1070 598.73s 1070 598.59s
la15 198 1089 1090 1.76s 1089 598.70s 1089 598.82s
la16 201 717 717 0.07s 717* 0.71s 717* 0.67s
la17 193 646 646 0.03s 646* 0.86s 646* 0.87s
la18 199 666 666 1.79s 666* 0.58s 666* 0.61s
la19 196 647-700 702 1.90s 700* 1.35s 700* 1.10s
la20 199 756 756 0.03s 756* 0.65s 756* 0.66s
la21 301 808-833 841 7.81s n/a 598.79s n/a 599.01s
la22 306 737-758 764 5.14s 764 598.97s n/a 598.93s
la23 306 816-832 846 6.50s n/a 598.88s n/a 598.99s
la24 297 775-801 814 4.06s n/a 598.82s 814 599.05s
la25 302 752-785 795 3.38s 793 599.34s n/a 598.96s
la26 391 1056-1061 1064 7.69s n/a 599.00s n/a 599.05s
la27 392 1085-1090 1093 7.47s n/a 598.96s n/a 598.95s
la28 402 1075-1080 1082 7.54s n/a 599.00s n/a 599.02s
la29 399 993-997 999 4.03s n/a 599.15s n/a 599.12s
la30 392 1068-1078 1081 7.78s n/a 599.04s n/a 599.02s
la31 576 1520-1521 1522 8.61s n/a 599.37s n/a 599.40s
la32 585 1657-1659 1660 12.67s n/a 599.36s n/a 599.53s
la33 581 1497-1498 1500 11.48s n/a 599.28s n/a 599.50s
la34 584 1535-1536 1537 7.28s n/a 599.41s n/a 599.48s
la35 592 1549-1550 1551 15.28s n/a 599.33s n/a 599.53s
la36 439 1016-1028 1032 4.90s 1023* 38.98s 1023* 65.48s
la37 437 989-1066 1081 9.52s 1077 600.50s 1073 601.50s
la38 444 943-960 968 9.32s 954* 44.19s 954* 37.67s
la39 436 966-1018 1034 2.78s 1011* 539.80s 1011* 575.64s
la40 441 955-956 974 6.11s 968 601.03s 964 602.38s
mt06 74 47 47 0.00s 47* 0.13s 47* 0.13s
mt10 196 686 686 2.71s 686* 0.91s 686* 0.86s
mt20 194 1022 1023 3.53s 1022 598.74s 1022 598.75s



Table 9: Results on Hu vdata with initial UB and time taken from [15].
Inst #o-task LB-UB Initial Sol disjEF disjDPEF

UB time UB time UB time

la01 142 570 571 1.08s 570 598.59s 570 598.53s
la02 134 529 530 2.29s 529 598.74s 529 598.58s
la03 128 477 478 0.58s 477 598.63s 477 598.64s
la04 119 502 502 1.15s 502 598.54s 502 598.57s
la05 119 457 458 1.40s 457 598.55s 457 598.59s
la06 182 799 799 0.97s 799 598.71s 799 598.60s
la07 182 749 750 3.55s 750 598.67s 749 598.77s
la08 194 765 766 1.81s 765 598.65s 765 598.85s
la09 190 853 853 2.59s 853 598.28s 853 598.28s
la10 200 804 804 1.66s 804 598.53s 804 598.74s
la11 253 1071 1071 0.68s 1071 598.62s 1071 598.79s
la12 248 936 936 0.59s 936 598.72s n/a 598.79s
la13 245 1038 1038 0.65s 1038 598.61s 1038 598.67s
la14 244 1070 1070 0.53s 1070 598.32s 1070 598.30s
la15 263 1089 1090 1.55s 1090 598.78s 1089 598.74s
la16 470 717 717 0.01s 717* 1.61s 717* 1.59s
la17 479 646 646 0.01s 646* 1.65s 646* 1.74s
la18 479 663 663 0.01s 663* 1.69s 663* 1.74s
la19 480 617 617 0.12s 617* 1.63s 617* 1.60s
la20 487 756 756 0.01s 756* 1.90s 756* 1.97s
la21 715 800-804 808 4.66s n/a 599.57s n/a 599.45s
la22 677 733-735 740 6.42s n/a 599.42s n/a 599.36s
la23 680 809-813 816 5.66s n/a 599.41s n/a 599.45s
la24 727 773-775 779 6.79s n/a 599.44s n/a 599.60s
la25 725 751-756 757 6.27s n/a 599.46s n/a 599.47s
la26 917 1052-1053 1055 8.55s n/a 599.75s n/a 599.71s
la27 915 1084 1086 6.44s n/a 599.75s n/a 599.76s
la28 897 1069 1071 12.73s n/a 599.83s n/a 599.90s
la29 881 993-994 995 13.06s n/a 599.77s n/a 599.87s
la30 930 1068-1069 1070 9.60s n/a 599.80s n/a 599.86s
la31 1380 1520 1520 16.92s n/a 600.89s n/a 600.67s
la32 1362 1657-1658 1658 13.00s n/a 600.70s n/a 600.68s
la33 1354 1497 1498 17.14s n/a 600.23s n/a 600.75s
la34 1387 1535 1536 13.50s n/a 600.72s n/a 600.96s
la35 1394 1549 1549 20.69s n/a 600.81s n/a 601.05s
la36 1507 948 948 0.28s 948* 55.62s 948* 25.41s
la37 1492 986 986 0.44s 986* 55.52s 986* 198.16s
la38 1479 943 943 0.09s 943* 49.89s 943* 27.80s
la39 1470 922 922 0.22s 922* 12.57s 922* 29.49s
la40 1458 955 955 0.26s 955* 26.07s 955* 24.82s
mt06 103 47 47 0.00s 47* 0.17s 47* 0.18s
mt10 448 655 655 0.02s 655* 1.36s 655* 1.40s
mt20 262 1022 1022 3.79s 1022 598.71s n/a 598.81s


