
Dominance Driven Search

Geoffrey Chu2 and Peter J. Stuckey1,2

1 National ICT Australia, Victoria Laboratory
2 Department of Computing and Information Systems,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

Abstract. Recently, a generic method for identifying and exploiting dominance
relations using dominance breaking constraints was proposed. In this method,
sufficient conditions for a solution to be dominated are identified and these con-
ditions are used to generate dominance breaking constraints which prune off the
dominated solutions. We propose to use these dominance relations in a different
way in order to boost the search for good/optimal solutions. In the new method,
which we call dominance jumping, when search reaches a point where all solu-
tions in the current domain are dominated, rather than simply backtrack as in the
original dominance breaking method, we jump to the subtree which dominates
the current subtree. This new strategy allows the solver to move from a bad sub-
tree to a good one, significantly increasing the speed with which good solutions
can be found. Experiments across a range of problems show that the method can
be very effective when the original search strategy was not very good at finding
good solutions.

1 Introduction

Recently, a generic method for identifying and exploiting dominance relations using
dominance breaking constraints was proposed in [3]. This method analyzes the effects
of different assignment mappings on the satisfiability and objective value of solutions,
and finds sufficient conditions under which a solution is dominated by (i.e., no better
than) another one. Dominance breaking constraints are then generated which prune off
these dominated solutions.

While symmetry and dominance breaking constraints are very powerful and can
produce orders of magnitude speedup on a wide range of problems, it is well known that
static symmetry breaking constraints (e.g., [20, 4, 14, 21, 8]) can conflict with the search
strategy, leading to less speedup or even a slowdown [10]. Static dominance breaking
constraints, which are a generalization of static symmetry breaking constraints, suffer
from a similar problem. In optimization problems, dominance breaking constraints pre-
vent the solver from finding any solution which is dominated. While such dominated
solutions may not be optimal, they may nevertheless improve the current best solution
and allow additional pruning through branch and bound. If the search strategy quickly
guides the search to good/optimal non-dominated solutions, then there is no conflict be-
tween the search and the dominance breaking constraints. However, if we have a search
strategy which keeps pushing the search into subtrees with only dominated solutions,
then the search will potentially conflict with the dominance breaking constraints.

Consider a situation where the next 100 solutions in the search tree are all domi-
nated, but one or more of them does improve the current best solution. A search with-
out dominance breaking constraints will go through that portion of the search space
without the pruning provided by the dominance breaking constraints, but once one of
these better solutions are found, it will gain some additional pruning from branch and
bound. A search with dominance breaking constraints will have the pruning provided
by the dominance breaking constraints, but none of the pruning from the better solution
that it could have found among these 100 solutions. Thus it is possible that the solver
is actually slower at finding the optimal solution with dominance breaking constraints
than without.

In symmetry breaking, the potential conflict between search strategy and static sym-
metry breaking constraints can be overcome by using a dynamic symmetry breaking
method such as symmetry breaking during search (SBDS) [1, 11] or symmetry break-
ing by dominance detection (SBDD) [5]. In this paper, we propose a different way to
overcome this problem in the dominance case. We propose an altered method called
dominance jumping, which exploits the information contained in the dominance rela-
tions in a different way. When a dominance breaking constraint prunes a partial as-
signment (because it is dominated by another), instead of simply backtracking as a
normal CP solver would do, we jump to the subtree represented by the partial assign-
ment which dominates the current one. Then, rather than getting stuck in a subtree
where all the solutions are dominated and therefore not discoverable by a search with
dominance breaking constraints, the dominance jumping can take us to a subtree with
non-dominated solutions, allowing the search to find good non-dominated solutions and
benefit from the additional pruning provided by branch and bound.

The rest of the paper is organized as follows: in the next section we introduce nota-
tion, and recall the approach to creating dominance breaking constraint described in [3].
In Section 3 we describe dominance jumping. In Section 4 we give experimental results
comparing dominance breaking and dominance jumping. In Section 5 we examine re-
lated work, and finally in Section 6 we conclude.

2 Definitions

2.1 Constraints, Literals, and COPs

Let ≡ denote syntactical identity, ⇒ denote logical implication and ⇔ denote logical
equivalence. We define variables and constraints in a problem independent way. A vari-
able v is a mathematical quantity capable of assuming any value from a set of values
called the default domain of v. Each variable is typed, e.g., Boolean or Integer, and its
type determines its default domain, e.g., {0,1} for Boolean variables and Z for Integer
variables. Given a set of variables V , let ΘV denote the set of valuations over V where
each variable in V is assigned to a value in its default domain. A constraint c over a set
of variables V is defined by a set of valuations solns(c)⊆ΘV . Given a valuation θ over
V ′ ⊃V , we say θ satisfies c if the restriction of θ onto V is in solns(c). Otherwise, we
say that θ violates c. A domain D over variables V is a set of unary constraints, one for
each variable in V . In an abuse of notation, if a symbol A refers to a set of constraints
{c1, . . . ,cn}, we will often also use the symbol A to refer to the constraint c1∧ . . .∧ cn.
This allows us to avoid repetitive use of conjunction symbols.

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D,C), where V is a set
of variables, D is a domain over V , and C is a set of n-ary constraints. A valuation θ

over V is a solution of P if it satisfies every constraint in D and C. The aim of a CSP
is to find a solution or to prove that none exist. In a Constraint Optimization Problem
(COP) P≡ (V,D,C, f), we also have an objective function f mapping ΘV to an ordered
set, e.g., Z or R, and we wish to minimize or maximize f over the solutions of P. In
this paper, we deal with finite domain problems only, i.e., where the initial domain D
constrains each variable to take values from a finite set of values.

CP solvers solve CSP’s by interleaving search with inference. We begin with the
original problem at the root of the search tree. At each node in the search tree, we
propagate the constraints to try to infer variable/value pairs which can no longer be
taken in any solution in this subtree. Such pairs are removed from the current domain.
If some variable’s domain becomes empty, then the subtree has no solution and the
solver backtracks. If all the variables are assigned and no constraint is violated, then a
solution has been found and the solver can terminate. If inference is unable to detect
either of the above two cases, the solver further divides the problem into a number of
more constrained subproblems and searches each of those in turn. COP’s are typically
solved via branch and bound where we solve a series of CSP’s with increasingly tight
bounds on the objective value.

2.2 Dominance breaking

Without loss of generality, assume that we are dealing with a minimization problem.
We say that assignment θ1 dominates θ2 if either: 1) θ1 is a solution and θ2 is a non-
solution, or 2) they are both solutions or both non-solutions and f (θ1)≤ f (θ2). In [3],
a generic method for identifying and exploiting dominance relations via dominance
breaking constraints was proposed. The method can be briefly outlined as follows:

Step 1 Choose a refinement of the objective function f ′ with the property that ∀θ1,θ2, f (θ1)<
f (θ2) implies f ′(θ1)< f ′(θ2).

Step 2 Find mappings σ : ΘV →ΘV which are likely to map solutions to better solu-
tions.

Step 3 For each σ , find a constraint scond(σ) s.t. if θ ∈ solns(C∧D∧ scond(σ)), then
σ(θ) ∈ solns(C∧D).

Step 4 For each σ , find a constraint ocond(σ) s.t. if θ ∈ solns(C∧D∧ocond(σ)), then
f ′(σ(θ))< f ′(θ).

Step 5 For each σ , post the dominance breaking constraint db(σ) ≡ ¬(scond(σ)∧
ocond(σ)).

The method analyzes the effects of different assignment mappings σ on the sat-
isfiability and objective value of solutions, and finds sufficient conditions scond(σ)∧
ocond(σ) under which a solution is dominated by another one. Dominance breaking
constraints db(σ)≡¬(scond(σ)∧ocond(σ)) are then generated which prune off these
dominated solutions. We now restate the main theorem from [3] showing the correct-
ness of the dominance breaking constraints generated by this method.

Theorem 1. Given a finite domain COP P≡ (V,D,C, f), a refinement of the objective
function f ′ satisfying ∀θ1,θ2, f (θ1)< f (θ2) implies f ′(θ1)< f ′(θ2), a set of mappings
S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying: ∀σ ∈ S,

if θ ∈ solns(C∧D∧scond(σ)), then σ(θ)∈ solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧
D∧ ocond(σ)), then f ′(σ(θ)) < f ′(θ), we can add all of the dominance breaking
constraints db(σ) ≡ ¬(scond(σ)∧ ocond(σ)) to P without changing its satisfiability
or optimal value.

A proof of this theorem and more details on the method can be found in [3].

Example 1. Consider the 0-1 knapsack problem where xi are 0-1 variables, we have
constraint ∑wixi≤W and we have objective f =−∑vixi, where wi and vi are constants.

Step 1 Initially, let us not refine the objective function leaving f ′ = f .

Step 2 Consider mappings which swap the values of two variables, i.e., ∀i < j,σi, j
swaps xi and x j.

Step 3 A sufficient condition for σi, j to map the current solution to another solution is:
scond(σi, j)≡ wix j +w jxi ≤ wixi +w jx j. Rearranging, we get: (wi−w j)(xi− x j)≥ 0.

Step 4 A sufficient condition for σi, j to map the current solution to an assignment with
a better objective value is: ocond(σi, j)≡ vix j +v jxi > vixi +v jx j. Rearranging, we get:
(vi− v j)(xi− x j)< 0.

Step 5 For each σi, j, we can post the dominance breaking constraint: db(σi, j)≡¬(scond(σi, j)∧
ocond(σi, j)). After simplifying, we have db(σi, j) ≡ xi ≤ x j if wi ≥ w j and vi < v j,
db(σi, j)≡ xi ≥ x j if wi ≤ w j and vi > v j, and db(σi, j)≡ true for all other cases.

These dominance breaking constraints ensure that if one item has worse value and
greater or equal weight to another, then it cannot be chosen without choosing the other
also.

We can refine the objective to get stronger dominance breaking constraints. In
Step 1, we can tie break solutions with equal objective value by the weight used,
and then lexicographically, i.e., f ′ = lex(f ,∑wixi,x1, . . . ,xn). In Step 4, we have: ∀i <
j,ocond(σi, j) ≡ σ(f ′) < f ′ ≡ ((vi− v j)(xi− x j) < 0)∨ ((vi− v j)(xi− x j) = 0∧ (wi−
w j)(xi−x j)> 0)∨ ((vi−v j)(xi−x j) = 0∧ (wi−w j)(xi−x j) = 0∧x j < xi). In Step 5,
after simplifying, in addition to the dominance breaking constraints we had before, we
would also have: db(σi, j)≡ xi ≤ x j if wi > w j and vi = v j, db(σi, j)≡ xi ≥ x j if wi < w j
and vi = v j, and db(σi, j)≡ xi ≤ x j if wi = w j and vi = v j which is a symmetry breaking
constraint. �

3 Dominance Jumping

A propagator for a dominance breaking constraint can do two things: 1) it can check the
consistency of the current domain w.r.t. the dominance breaking constraint, producing
failure if it is inconsistent, and 2) it can prune off variable/value pairs which, if taken,
will cause inconsistency. In the original method, the failure and propagation produced
by these propagators are treated the same as any other propagator in the system. In our
altered method, whenever dominance jumping is active, we modify this behavior as
follows: 1) we check consistency only and never prune any values using the dominance

breaking constraints, 2) when a failure is detected, we perform a dominance jump rather
than a normal backtrack.

As can be seen from the definitions in Section 2, each dominance breaking con-
straint db(σ) is generated from an assignment mapping σ . When a domain D is failed
by db(σ), it means that every solution θ in D is dominated by a corresponding solution
σ(θ). Rather than simply failing and backtracking, we can instead perform a domi-
nance jump to get to the part of the search tree that contains these better solutions. Let
us extend σ to also map domains to domains via solns(σ(D))≡{σ(θ) | θ ∈ solns(D)}.
Then, if D is failed by db(σ), the domain σ(D) must contain solutions which dominate
those in the current domain D. We want to calculate this new domain σ(D) and jump
to there. In this paper, we consider only σ which are literal mappings, i.e., assignment
mappings which map each equality literal x = v to the same or another equality literal
x′= v′ in all assignments. All of the σ used in [3] are literal mappings, and indeed we ex-
pect that most practically useful mappings for the method proposed in [3] will be literal
mappings. Let us extend σ to map equality literals to equality literals and disequality
literals to disequality literals such that if σ(x = v) = (x′ = v′), then σ(x 6= v) = (x′ 6= v′).

Any domain D can be expressed as a set of disequality literals litsD representing
which variable/value pairs from the original domain has been pruned. For example,
suppose the initial domain Dinit of x1,x2 were {1,2,3,4,5} and the current domain D
is x1 ∈ {1,3,5},x2 ∈ {2,3,4}. Then litsD ≡ {x1 6= 2,x1 6= 4,x2 6= 1,x2 6= 5}. Using the
set of literals σ(litsD) ≡ {σ(l) | l ∈ litsD} as decisions from the root node will take us
to the search space σ(D). We do this by backtracking to the deepest level such that
all previous decisions in the current search path are in σ(litsD). We then suspend the
normal search strategy and draw decisions from σ(litsD) until it is either exhausted,
or some conflict occurs. After that, we resume the normal search strategy. If D had
variables which were fixed, we can use those equality literals in litsD instead so we need
to make fewer decisions to get to σ(D). Similarly, if σ happens to also map inequality
literals to inequality literals (e.g., in a mapping which swaps variables), we can use
those to reduce the number of decisions.

Example 2. Consider the Photo problem. A group of people wants to take a group photo
where they stand in one line. Each person has preferences regarding who they want to
stand next to. We want to find the arrangement which satisfies the most preferences.

We can model this as follows. Let xi ∈ {1, . . . ,n} for i = 1, . . . ,n be variables where
xi represent the person in the ith place. Let p be a 2d integer array where p[i][j] =
p[j][i] = 2 if person i and j both want to stand next to each other, p[i][j] = p[j][i] = 1 if
only one of them wants to stand next to the other, and p[i][j] = p[j][i] = 0 if neither want
to stand next to each other. The only constraint is: alldiff ([x1, . . . ,xn]). The objective
function to be maximised is given by: f = ∑

n−1
i=1 p[xi][xi+1]. In MiniZinc [18] it would

be modelled as:

int: n; % number of people
set of int: Person = 1..n;
array[Person,Person] of 0..2: p; % preferences

array[Person] of Person: x; % person in position i;

constraint alldifferent(x);

solve maximize sum(i in 1..n-1)(p[x[i],x[i+1]]);

As described in [3], if we consider the mappings σi, j which flip a subsequence
of the x’s from the ith position to the jth (i.e., map xi to x j, xi+1 to x j−1, . . ., x j to
xi), we can generate a number of dominance breaking constraints. For 2 ≥ i < j ≤
n−1, db(σi, j)≡ p[xi−1][xi]+ p[x j][x j+1]+(xi < x j)> p[xi−1][x j]+ p[xi][x j+1]. For i =
1,2≤ j, db(σi, j)≡ p[x j][x j+1]+(xi < x j)> p[xi][x j+1]. For i≤ n−1, j = n, db(σi, j)≡
p[xi−1][xi]+ (xi < x j)> p[xi−1][x j]. For i = 1, j = n, db(σi, j)≡ (xi < x j)> 0.

We now illustrate the difference between dominance breaking and dominance jump-
ing on a simple example. Suppose n = 6 and person 1 wants to stand next to person 6,
person 6 wants to stand next to person 2, person 2 wants to stand next to person 5,
person 5 wants to stand next to person 3, and person 3 wants to stand next to person 4.
This is expressed by the MiniZinc data file:

n = 6;
p = [| 0, 0, 0, 0, 0, 1

| 0, 0, 0, 0, 1, 1
| 0, 0, 0, 1, 1, 0
| 0, 0, 1, 0, 0, 0
| 0, 1, 1, 0, 0, 0
| 1, 1, 0, 0, 0, 0 |];

Suppose we use a naive search strategy such as labelling the xi in order, trying
the lowest value available in the domain first. With neither dominance breaking nor
dominance jumping, it takes the search 51 conflicts to reach an optimal solution x1 =
1,x2 = 6,x3 = 2,x4 = 5,x5 = 3,x6 = 4. With dominance breaking, the search proceeds
as follows. At the first decision level, we try x1 = 1. At the second decision level, we try
x2 = 2. At this point, the constraint p[x1][x2]+(x2 < x6)> p[x1][x6] propagates to force
p[x1][x6] = 0, which forces x6 6= 6. At the third decision level, we try x3 = 3. At this
point, the constraint p[x2][x3] + (x3 < x6) > p[x2][x6] propagates to force p[x2][x6] =
0, which forces x6 6= 5, which forces x6 = 4. The constraint p[x3][x4] + (x4 < x6) >
p[x3][x6] now propagates and forces p[x3][x4] ≥ 2 because p[x3][x6] = p[3][4] = 1, and
x4 is either 5 or 6 so (x4 < x6) = 0. But then x4 6= 5 and x4 6= 6 and we have a failure. We
then backtrack and continue the search. After another 25 conflicts, we reach the optimal
solution. The search tree is shown in Figure 1.

With dominance jumping, the search proceeds as follows. We make the 5 decisions
x1 = 1,x2 = 2,x3 = 3,x4 = 4,x5 = 5, which forces x6 = 6. At this point, a number
of dominance breaking constraints are detected to be violated, telling us that certain
mappings can improve the solution. For example, db(σ2,6) is violated. Using the map-
ping σ2,6 to perform a jump means that we backtrack to decision level 1, and then try
the decisions x2 = 6,x3 = 5,x4 = 4,x5 = 3,x6 = 2. After these, we again detect that a
dominance breaking constraint is violated, e.g., db(σ3,6). Performing this jump means
that we backtrack to decision level 2 and try x3 = 2,x4 = 3,x4 = 4,x6 = 5. This vio-
lates db(σ4,6). Applying this jump causes us to backtrack to decision level 3 and try
x4 = 5,x5 = 4,x6 = 3. This violates db(σ5,6). Applying this jump causes us to back-
track to decision level 4 and try x5 = 3,x6 = 4, finally giving a non-dominated solution
of x1 = 1,x2 = 6,x3 = 2,x4 = 5,x5 = 3,x6 = 4. In this case, it only took 4 conflicts and
4 jumps to bring us to the optimal solution. The search tree is shown in Figure 2. �

x1

•

1

x2

•

2 3 4 5 6

x3

•

3 4 5 6

•

2 4 5 6

•

2 3 5 6

•

2 3 4 6

•

2

x4

• • •

3 4 6

• • •

2 5 6

•

2 4 6

• • •

2 6

• • • •

2 6

• • •

3 4 5

x5

• • • • • • • • • • • • • • • •

3

x6

•

4

•

Fig. 1. Search tree with dominance breaking.

The effect of dominance jumping is significantly different from dominance break-
ing. When a “bad” decision is made (e.g., x2 = 2 after x1 = 1 in Example 2), dominance
breaking is incapable of “fixing” the problem. Instead, it just helps the solver to fail
that bad subtree quicker so that it can backtrack out of the bad decision. However, in
general, it still takes exponential time to undo the bad decision. Dominance jumping on
the other hand, can potentially fix a bad decision and replace it with a good one very
quickly. In Example 2, after x1 = 1,x2 = 2, if some xi is set to 6, it is likely that flipping
the subsequence from 2 to i improves the objective. Thus dominance jumping will jump
to a subtree where x1 = 1,x2 = 6, immediately undoing the bad decision x2 = 2.

Note that dominance jumping does not require all variables involved in the domi-
nance breaking constraint to be fixed in order to jump.

Example 3. Consider a simple problem: x1 + x2 + x3 + x4 ≤ 9∧ alldiff (x1,x2,x3,x4)
with D(xi) = [1..6]. All variables are symmetric. So σi, j which swaps the values of xi
and x j is a mapping that preserves solutions. Using a lexicographic objective f ′ we
can compute db(σi, j) = xi ≤ x j for i < j. Imagine we label x2 = 1, then propagation
causes D(x1) = [2..6] and db(σ1,2) fails. We compute σ1,2(D) as D(x2) = [2..6] and
D(x1) = {1}. The dominance jump goes to the root and then sets x1 = 1 (which will
set D(x2) = [2..6]) and then continues its search. Of course for this trivial example
dominance breaking is clearly superior. ut

Both dominance breaking and dominance jumping are optimality preserving. As
Theorem 1 states, the addition of dominance breaking constraints to the problem does
not change its satisfiability or optimal value. Performing dominance jumping will not

x1

•

1

x2

•

2 6

x3

•

3

••

5 2

x4

•

4

•

4

••

3 5

x5

•

5

•

3

•

4

•

4 3

x6

•

RR

•

RR

•

TT

•

WW

•

4

•

Fig. 2. Search tree with dominance jumping.

change its satisfiability or optimal value either. When a dominance jump is performed,
nothing is actually pruned. We are only doing a restart and temporarily using a different
search strategy to guide the solver to another part of the search space. The subtree we
jumped away from is not counted as fully searched, so dominance jumping can never
prune off optimal solutions of the problem. However, there can be issues of terminabil-
ity when dominance jumping is used, as if we keep jumping, we may never complete
a full search of the search tree. Nogood learning techniques such as [13, 19, 6]) can be
used to overcome this problem. Such techniques record nogoods which tell us which
parts of the search tree the solver has proved contains no solution better than the current
best solution. Such nogoods allow the solver to keep track of which subtrees have been
exhaustively searched. If we keep all such nogoods permanently, the search will always
terminate and will be complete, guaranteeing that the correct optimal value is found.
We implemented dominance jumping in the nogood learning solver CHUFFED which
already has nogood learning built in, and thus it is capable of performing a complete
search with dominance jumping.

The effectiveness of dominance jumping depends significantly on how good the
original search strategy was. If the original search strategy was already good enough
that it very quickly leads the search to an optimal solution, then dominance jumping
is largely pointless. On the other hand, if the original search strategy was quite naive,
or is not designed for finding good solutions, then dominance jumping can be very
useful. It is quite common that the search strategies used in CP solvers are not good at
finding good solutions. This is because many of them are designed to reduce the size of
the search tree, rather than to order the subtrees so that good solutions are found first.
Many of the common dynamic search strategies such as first fail [12], dom/wdeg and
its variants [2], and activity based search [17] are purely designed to make the search

tree smaller and makes no effort whatsoever to try to guide the solver to good solutions
quickly. But when dominance jumping is used on top of them, even very naive search
strategies which are bad at finding solutions can turn into good ones, as a significant
amount of information about the objective and the structure of the problem is contained
in the dominance relations. By exploiting this through dominance jumping, we can
bring the solver to a good subtree even if the search strategy initially sent it to a bad
one.

While dominance jumping can be effective in the solution finding phase of an op-
timization problem, it is completely useless in the proof of optimization phase. In that
phase, we are no longer trying to find any solutions. Jumping around in the search
space will simply make it more difficult to complete the proof of optimality. Nogood
learning can prevent thrashing behavior caused by the jumping and allow a complete
proof of optimality to be derived. However, for large/hard problems, this may require
an unreasonably large number of nogoods to be stored, causing the solver to run out
of memory. Ideally, if a proof of optimality is desired, we should use some dynamic
method to switch off dominance jumping and go back to pure dominance breaking.
Such strategies will be explored in future work.

4 Experiments

The experiments were performed on Xeon Pro 2.4GHz processors using the state of the
art CP solver CHUFFED. We use a time out of 600 seconds. We compare the base solver
vs dominance breaking and dominance jumping. We use the 7 optimization problems
used in [3]: Photo-n the photo problem of Example 2 with n people, Knapsack-n
0-1 knapsack problem of Example 1 with n objects, Nurse-n nurse scheduling prob-
lem [15] with 15 nurses and n days, RCPSP resource constrained scheduling problem
J120 instances, Talent-n talent scheduling problem [9] with n scenes, SteelMill-n
steel mill scheduling [10] with n orders, and PCBoard-n-m PB board manufacturing
problem with n components and m devices. We use basic inorder fixed search strategies
that are not specifically designed to find good solutions. MiniZinc models and data for
the problems can be found at: www.cs.mu.oz.au/~pjs/dom-jump/

Results are shown in Table 1: opt is average of the best solution found; otime is
the geometric mean of time to find the best solution; etime is the geometric mean of
time to find a solution at least as good as the worser of the best solution found by
dominance breaking and the best solution found by dominance jumping, so we can
directly compare etime to see how much time each took to get the same quality solution;
stime is the geometric mean of the time to solve the instance completely (timeouts count
as 600); and finally svd the number of instances solved to optimality is given in brackets.
The best values out of the three methods are given in bold. When there is a tie on the
best value, we tie-break on the time required to achieve the value.

The results show that both dominance breaking and dominance jumping substan-
tially improve upon solving without dominance information. Dominance jumping is
clearly better at finding good solutions faster. The average best solution found is almost
always better. Dominance jumping almost always wins in etime, the only exception is
in smaller knapsacks and in nurse scheduling where dominance breaking is obviously
far superior. Notice how, as the difficulty of the instances grows with size, dominance
jumping becomes more advantageous.

Table 1. Comparison of the solver with nothing (none), with dominance breaking constraints
(dominance breaking), and with dominance jumping. dominance jumping

Problem none dominance breaking dominance jumping
opt otime stime svd opt otime etime stime svd opt otime etime stime svd

Photo-16 19.5 16.43 50.13 18 19.7 1.03 1.03 11.40 20 19.7 0.10 0.10 16.64 20
Photo-18 21.4 39.45 182.7 15 21.5 2.27 2.27 76.26 20 21.5 0.29 0.29 80.62 19
Photo-20 21.4 179.6 393.3 5 23.15 31.06 31.06 262.4 7 23.15 1.16 1.16 232.9 9
Photo-22 22.8 185.1 368.7 4 25.15 51.56 38.9 294.7 6 25.4 2.18 0.76 244.4 7
Photo-24 21.55 213.5 596.5 1 26.75 147.9 147.9 586.7 3 27.15 2.00 0.52 495.6 4
Knapsack-100 1827.95 222.3 600 0 2583.2 0.30 0.30 0.93 20 2583.2 0.60 0.60 1.52 20
Knapsack-150 3605.75 240.6 600 0 5810.35 13.8 13.82 47.62 19 5810.35 27.71 27.71 82.26 19
Knapsack-200 5910.55 299.2 600 0 10422.4 180.1 126.2 261.0 3 10415.8 220.7 206.2 491.9 2
Knapsack-250 8732.25 342.4 600 0 16235.25 253.9 186.2 600 0 16235.5 327.1 151.7 600 0
Knapsack-300 12000 288.9 600 0 23212 272.6 157.2 600 0 23294.9 302.2 123.0 600 0
Nurse-14 149.2 61.35 61.82 18 151.35 50.99 49.14 52.33 19 150.2 72.45 72.45 74.06 18
Nurse-21 137.1 416.5 600 0 172.7 248.0 217.6 600 0 172.4 280.7 254.3 600 0
Nurse-28 161.5 400.5 600 0 222.4 245.1 213.5 600 0 222.45 310.2 277.6 600 0
Nurse-35 187.5 355.0 600 0 275.75 339.8 164.7 600 0 275.1 223.7 196.4 600 0
Nurse-42 213.1 382.3 600 0 321.9 377.4 193.3 600 0 320.55 332.9 332.9 600 0
RCPSP 110.9 31.37 41.62 72 114.17 7.51 7.51 13.97 57 110.86 12.44 3.92 15.83 72
Talent-16 106.1 7.58 19.03 20 106.05 0.92 0.92 3.25 20 106.05 0.41 0.41 2.79 20
Talent-18 149.45 127.1 239.3 16 147 5.22 5.22 17.26 20 147 2.73 2.73 15.81 20
Talent-20 270.2 321.4 497.3 5 184.45 27.22 27.22 81.48 20 184.45 14.85 14.85 73.40 20
Talent-22 387.1 369.2 600 0 270.9 34.32 34.32 353.2 13 204.05 51.4 21.10 310.5 14
Talent-24 566.65 323.8 600 0 322.25 161.6 154.9 547.1 2 260.1 123.4 18.27 510.7 3
SteelMill-40 5.45 71.02 129.3 10 1.6 42.30 40.80 54.60 15 0.65 20.24 9.33 21.75 17
SteelMill-45 8.2 105.7 269.6 6 1.55 121.7 121.7 134.1 14 0.35 46.44 31.92 52.83 18
SteelMill-50 16.35 319.6 560.1 1 9.85 91.00 90.73 332.1 10 1.1 142.1 30.75 198.9 16
SteelMill-55 25.95 305.0 600 0 16.05 67.26 60.19 419.3 6 2.9 212.2 23.59 275.6 13
SteelMill-60 32.55 274.4 584.8 1 19.9 59.56 54.65 497.0 2 5 224.7 23.82 399.0 8
PCBoard-6-8 206.25 298.8 341.1 8 217.7 17.50 17.50 24.36 20 217.7 1.29 1.29 68.19 14
PCBoard-6-9 225.9 440.2 532.8 2 246.7 84.81 80.04 142.5 20 246.6 8.39 8.39 438.5 3
PCBoard-7-9 242.15 418.6 600 0 277.7 123.5 111.4 498.5 7 282.5 21.95 5.56 600 0
PCBoard-7-10 266.9 383.7 600 0 282.55 6.32 6.32 600 0 319.15 28.48 0.86 600 0
PCBoard-8-10 293.9 379.2 600 0 308.4 4.35 4.35 597 1 357.9 30.32 0.38 600 0

Unsuprisingly dominance jumping is usually better at proving optimality having
better stime in most of the smaller instances. Suprisingly dominance jumping actually
turns out to be preferable to dominance breaking even for proving optimality on RCPSP,
Talent and SteelMill. For these problems the proof of optimality is not the larger part of
the search space, that is once we find the optimal solution for these problems it is often
no too difficult to prove it optimal.

Next we compare the three methods using 3 different search heuristics for the Photo
problem, to see how the search strategy affects the effectiveness of dominance breaking
and dominance jumping. The first is the basic inorder fixed search used above (inorder).
The second greedily finds a person who most wants to stand next to an already assigned

person and assigns them next to them (greedy). The third uses the first fail heuristic to
pick which variable to assign next (first-fail).

Table 2. Comparison of dominance breaking and dominance jumping given different search
heuristics.

Problem Search none dominance breaking dominance jumping
opt otime stime svd opt otime etime stime svd opt otime etime stime svd

inorder 19.65 7.37 11.47 18 19.70 0.79 0.79 2.35 20 19.70 0.08 0.08 0.98 20
Photo-16 greedy 19.70 1.29 3.44 19 19.70 0.45 0.45 1.71 20 19.70 0.04 0.04 0.56 20

first-fail 19.70 0.72 1.22 20 19.70 0.24 0.24 0.65 20 19.70 0.13 0.13 0.76 20
inorder 21.45 18.47 45.25 19 21.50 1.42 1.42 9.71 20 21.50 0.20 0.20 5.60 20

Photo-18 greedy 21.50 0.69 7.80 19 21.50 0.39 0.39 4.09 20 21.50 0.08 0.08 2.72 20
first-fail 21.50 1.05 2.79 20 21.50 0.28 0.28 0.97 20 21.50 0.24 0.24 1.62 20
inorder 22.50 161.35 228.98 10 23.20 16.74 16.74 54.97 16 23.20 1.23 1.23 15.92 16

Photo-20 greedy 23.00 5.36 38.38 12 23.20 3.26 3.26 19.01 18 23.20 0.10 0.10 3.29 18
first-fail 23.20 4.90 12.95 17 23.20 1.17 1.17 3.45 20 23.20 0.54 0.54 3.46 20
inorder 23.70 137.69 254.99 55 25.35 44.46 44.46 102.18 13 25.40 2.09 1.57 12.27 14

Photo-22 greedy 25.15 8.28 60.94 11 25.40 9.54 9.54 36.68 15 25.45 0.60 0.60 5.38 15
first-fail 25.45 13.94 19.71 16 25.50 3.36 3.36 6.42 20 25.50 2.33 2.33 6.55 20
inorder 22.45 216.79 519.93 3 26.85 87.71 87.71 350.3 7 27.10 1.36 0.71 61.88 8

Photo-24 greedy 26.60 11.75 184.26 7 26.95 16.52 16.52 171.90 8 27.35 0.66 0.23 27.71 12
first-fail 26.55 43.17 88.59 12 27.45 13.10 13.10 33.29 19 27.45 5.12 5.12 20.97 19

The results in Table 2 show that dominance jumping is still much better at reach-
ing a good solution than dominance breaking, regardless of the search strategy. The
results clearly illustrate that the biggest advantage of dominance jumping arises in the
inorder search, which does not try to look for good solutions. But dominance jump-
ing is still advantageous over dominance breaking using the greedy search, although
to a lesser degree. Using first-fail dominance breaking is better at proving optimality,
since first-fail search also concentrates on reducing the search space, but as the size
of the problem grows, its advantage reduces, until for Photo-24 dominance jumping is
superior in proving optimality as well.

5 Related Work

Dominance breaking constraints were introduced only recently in [3] and there has been
little work analyzing how they may conflict with the search or how that problem can
be overcome. The closest related work is that for the special case of symmetry break-
ing. In this case, potential conflicts between the search and static symmetry breaking
constraints can be overcome by using dynamic symmetry breaking techniques such as
SBDS [1, 11] or SBDD [5]. However, neither of these methods obviously generalize
to the dominance case. In the case of symmetry, we have sets of equally good sym-
metric subtrees. The policy in SBDS/SBDD is to search the first member of each such
set encountered during search, and to prune all other members as soon as they are en-
countered. In dominance breaking however, we have pairs of subtrees where one may

be strictly better than the other (i.e., contains a strictly better solution). The ordering
between them is not up to us to decide as it is determined by the search strategy, and
we cannot simply decide to always search the first of the pair and prune the second. We
could try a different policy such as: if we encounter the good one first, we prune the bad
one later, and if we encounter the bad one first, we search both. Indeed, such a policy
was proposed in [7]. However, checking whether a subtree is dominated by any of the
previously searched subtrees is extremely complex in general, and is much harder than
simply determining whether it is dominated by some (possibly not yet explored) sub-
tree. In [7], it is shown how an incomplete version of such a dominance check can be
performed using greedy local search for the Travelling Salesman Problem. However, it
is not clear how complete it is or whether it can generalise to other problems. Also, even
if the dominance check can be performed efficiently, such a method will still perform
more search in general than the dominance jumping method presented here. In domi-
nance jumping, regardless of the order in which we encounter the pair of subtrees, we
will only search the good one and will always skip the bad one, because if we encounter
the bad one first, we will simply immediately jump to the good one.

Dominance jumping shares some features with local search/repair methods such as
min-conflict search [16]. However, such methods typically travel through the space of
infeasible solutions and jump at every node. Dominance jumping on the other hand is
a systematic search which remains within feasible space, and only occasionally jumps
when we are guaranteed to get to a better subtree.

Dominance jumping is also related to best first search. When best first search reaches
a node which is recognized as possibly dominated (since the lower bound on the objec-
tive is substantially worse than another part of the search tree), it jumps to what it thinks
is the best node and explores from there. In this case the jump is a heuristic, unlike in
dominance jumping where we have a proof that the current node is suboptimal and we
jump to a strictly better node.

6 Conclusion

We have developed a new method called dominance jumping to exploit the dominance
relations identified by the method proposed in [3]. Rather than failing and backtracking
as in the original method, we use the dominance relation to jump to a different part
of the search tree that dominates the current subtree. Unlike static dominance break-
ing constraints, the new method will not conflict with the search strategy. Experimen-
tal evidence shows that the method allows good/optimal solutions to be found much
more quickly on a wide range of problems. Important future work is to examine how
to automatically determine when during search to switch from dominance jumping to
dominance breaking, so that we can take advantage of the strengths of both approaches.

Acknowledgments NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council.

References
1. Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search. In

Proc. CP 1999, volume 1713 of LNCS, pages 73–87. Springer, 1999.

2. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. In Procs. of ECAI04, pages 146–150, 2004.

3. G. Chu and P.J. Stuckey. A generic method for systematically identifying and exploiting
dominance relations. In Proc. CP 2012, number 7514 in LNCS, pages 6–22. Springer, 2012.

4. James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proceedings of the 5th International Conference
on Principles of Knowledge Representation and Reasoning, pages 148–159. Morgan Kauf-
mann, 1996.

5. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Principles and Practice
of Constraint Programming - CP 2001, 7th International Conference, pages 93–107, 2001.

6. Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In Proc. of CP
2009, volume 5732 of LNCS, pages 352–366. Springer, 2009.

7. Filippo Focacci and Paul Shaw. Pruning sub-optimal search branches using local search. In
CPAIOR, volume 2, pages 181–189, 2002.

8. Alan M. Frisch, Christopher Jefferson, and Ian Miguel. Constraints for Breaking More Row
and Column Symmetries. In Francesca Rossi, editor, Proc. of CP 2003, volume 2833 of
LNCS, pages 318–332. Springer, 2003.

9. Maria Garcia de la Banda, Peter J. Stuckey, and Geoffrey Chu. Solving talent scheduling
with dynamic programming. INFORMS Journal on Computing, 23(1):120–137, 2011.

10. Antoine Gargani and Philippe Refalo. An efficient model and strategy for the steel mill slab
design problem. In Proc. of CP 2007, volume 4741 of LNCS, pages 77–89. Springer, 2007.

11. I. Gent and B.M. Smith. Symmetry breaking in constraint programming. In 14th European
Conference on Artificial Intelligence, pages 599–603, 2000.

12. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 1980.

13. Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Nogood Recording
from Restarts. In Manuela M. Veloso, editor, Proc. of IJCAI 2007, pages 131–136, 2007.

14. Eugene M. Luks and Amitabha Roy. The Complexity of Symmetry-Breaking Formulas.
Ann. Math. Artif. Intell., 41(1):19–45, 2004.

15. H.E. Miller, W.P. Pierskalla, and G.J. Rath. Nurse scheduling using mathematical program-
ming. Operations Research, pages 857–870, 1976.

16. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58(1):161–205, 1992.

17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an efficient
SAT solver. In Procs. of DAC2001, pages 530–535, 2001.

18. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a Standard CP Modelling Language. In Proc. of CP 2007,
volume 4741 of LNCS, pages 529–543. Springer, 2007.

19. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause genera-
tion. In Proc. of CP 2007, volume 4741 of LNCS, pages 544–558. Springer, 2007.

20. Jean Francois Puget. On the Satisfiability of Symmetrical Constrained Satisfaction Prob-
lems. In Henryk Jan Komorowski and Zbigniew W. Ras, editors, Proceedings of the 7th
International Symposium on Methodologies for Intelligent Systems, volume 689 of LNCS,
pages 350–361. Springer, 1993.

21. Jean Francois Puget. Breaking symmetries in all different problems. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, Proc. of IJCAI 2005, pages 272–277. Professional Book
Center, 2005.

