
The Proper Treatment of
Undefinedness in Constraint Languages

Alan M. Frisch1 and Peter J. Stuckey2 !

1 Artificial Intelligence Group, Dept. of Computer Science, Univ. of York, UK.
frisch@cs.york.ac.uk

2 National ICT Australia. Dept. of Computer Science and Software Engineering,
Univ. of Melbourne, Australia. pjs@csse.unimelb.edu.au

Abstract. Any sufficiently complex finite-domain constraint modelling
language has the ability to express undefined values, for example division
by zero, or array index out of bounds. This paper gives the first system-
atic treatment of undefinedness for finite-domain constraint languages.
We present three alternative semantics for undefinedness, and for each
of the semantics show how to map models that contain undefined ex-
pressions into equivalent models that do not. The resulting models can
be implemented using existing constraint solving technology.

1 Introduction

Finite-domain constraint modelling languages enable us to express complicated
satisfaction and optimization problems succinctly in a data independent way.
Undefinedness arises in any reasonable constraint modelling language because,
for convenience, modellers wish to use functional syntax to express their prob-
lems and in particular they want to be able to use partial functions. The two
most common partial functions used in constraint models are division, which is
undefined if the denominator is zero, and array lookup, a[i], which is undefined
if the value of i is outside the range of index values of a. Other partial functions
available in some constraint modelling systems are square root, which is unde-
fined on negative values, and exponentiation, which is undefined if the exponent
is negative.

A survey of some existing constraint languages and solvers shows a bewil-
dering pattern of behaviour in response to undefined expressions. Fig. 1 shows
the results of solving five problems in which undefinedness arises with five finite-
domain solvers: ECLiPSe 6.0 #42 [1], SWI Prolog 5.6.64 [2], SICStus Prolog
4.0.2 [3], OPL 6.2 [4] and MiniZinc 1.0 [5, 6]. The three rightmost columns, which
are explained later in the paper, show the correct answers according to the three

! Much of this research was conducted while Alan Frisch was a visitor at the Univ. of Mel-
bourne. His visit was supported by the Royal Society and the Univ. Melbourne. For many
useful discussions we thank the members of the Essence and Zinc research teams, especially
Chris Jefferson and Kim Marriott. We thank David Mitchell for advise about complexity.
NICTA is funded by the Australian Government as represented by the Dept. of Broadband,
Communications and the Digital Economy and the Australian Research Council.



Problem ECLiPSe SWI SICStus OPL MiniZinc Relational Kleene Strict

(1) y ∈ {0, 1} y "→ 0 y "→ 0 none none y "→ 0 y "→ 0 y "→ 0 none
1/y = 2 ∨ y < 1

(2) y ∈ {−1, 0} none y "→ −1 y "→ −1 none
1 =

√
y ∨ y < 0

(3) y ∈ {3, 4}
a[y] = 1 ∨ y > 3 y "→ 4 y "→ 4 y "→ 4 y "→ 4 none
where a is [1, 4, 9]
and indexed 1..3

(4) y ∈ {0, 1, 2} y "→ 0 y "→ 0 y "→ 0 y "→ 0 y "→ 0
T ∨ 1/y = 1 y "→ 1 y "→ 1 y "→ 1 y "→ 1 y "→ 1 y "→ 1 y "→ 1 y "→ 1

y "→ 2 y "→ 2 y "→ 2 y "→ 2 y "→ 2 y "→ 2 y "→ 2
(5) y ∈ {0, 1} y "→ 0 y "→ 0 none none y "→ 0 y "→ 0 none none

¬(1/y = 1)

Fig. 1. Examples of how undefinedness is handled.

semantics we introduce. Note that T is notation for true, and empty cells indicate
that either the solver does not provide a square root function or that it does not
allow an array to be accessed with a decision variable using functional notation.
All five example problems involve Boolean operators (¬ or ∨) because it is on
such constraints that differences arise between and among implementations, our
intuitions, and the three semantics introduced in this paper.

The first thing to notice is the disagreement among the solvers. The only com-
patible pairs of solvers are SICStus and OPL, and MiniZinc and SWI. The second
observation is that some of the solvers behave irregularly. Problems (1), (2) and
(3) are analogous—they just involve different partial functions—yet ECLiPSe
finds a solution to (1) but not (2) and OPL finds a solution to (3) but not (1).

The issue of undefinedness in constraint languages and solvers has been the
attention of almost no systematic thought. Consequently, as these examples
show, implementations treat undefinedness in a rather haphazard manner and
users do not know what behaviour to expect when undefinedness arises.

This paper directly confronts the two fundamental questions about unde-
finedness in constraint languages: What is the intended meaning of a model
containing partial functions and how can those models be implemented? We ad-
dress these questions by considering a simple modelling language, E , that has
two partial functions: division and array lookup. We first present three alterna-
tive truth-conditional semantics for the language: the relational semantics, the
Kleene semantics, and the strict semantics. Each is obtained by starting with a
simple intuition and pushing it systematically through the language. Following
the standard convention that “f(a) = ⊥” means that f is a partial function that
is undefined on a, all three semantics use the value ⊥ to represent the result of
division by zero and out-of-bounds array lookups. The semantics differ in how
other operators, including logical connectives and quantifiers, behave when ap-
plied to expressions that denote ⊥. On models in which undefinedness does not
arise, the semantics agree with each other, with existing implementations, and
with our intuitions.

After presenting the three semantics for E we show how each can be imple-
mented. Existing constraint modelling languages are implemented by mapping
a constraint with nested operations into an existentially quantified conjunction



of un-nested, or flat, constraints. For example, b ∨ (x/y ≥ z) gets mapped to

∃ b′, t. (t = x/y) ∧ (b′ = t ≥ z) ∧ (T = b ∨ b′).

Solvers then use libraries that provide procedures for propagating each of the
flat constraints. Two difficulties confront attempts to use this approach when
expressions can denote ⊥. Firstly, existing propagation procedures do not han-
dle ⊥. For example, the propagator that handles t = x/y can bind an integer
value to t when the values of x and y are known and y is non-zero, but cannot
bind ⊥ to t if y is known to be zero. Secondly, the transformations that flatten
nested constraints are equivalence preserving in classical logic, but some are not
equivalence preserving in a non-classical semantics that uses ⊥. For example,
rewriting T ∨ exp to T in not equivalence preserving for the strict semantics.

This paper employs a novel approach for implementing the three seman-
tics for E . Rather than transform constraints in E to flattened constraints, we
transform the E-model to another one that has the same solutions but in which
undefinedness cannot arise. A different transformation is used for each of the
semantics. Since undefinedness cannot arise in the resulting E models, they can
be implemented using the well-understood techniques that are standardly used
in the field.

2 A Simple Constraint Language

We use a simplified form of Essence [7], called E , as our language for modelling
decision problems, not just problem instances. Every model in E has exactly
three statements, signalled by the keywords given, find and such that. As an
example consider the following model of the graph colouring problem.

given k:int, n:int, Edge : array[1..n, 1..n] of bool
find Colour : array[1..n] of int(1..k)
such that ∀v:1..n− 1. ∀v′:v..n. Edge[v, v′] → Colour[v] (= Colour[v′]

The given statement specifies three parameters: k, the number of colours; n, the
number of vertices in the graph to be coloured; and Edge, an incidence matrix
specifying the graph to be coloured. The integers 1..n represent the vertices of
the graph. The find statement says that the goal of the problem is to find
Colour, an array that has an integer 1..k for each vertex. Finally the such that
statement requires that a solution must satisfy the constraint that for any two
nodes, if there is an edge between them then they must have different colours.

The language has three main syntactic categories: statements, expressions
and domains. Each expression of the language has a unique type that can be
determined independently of where the expression appears. Where τ is a type we
write exp:τ to denote an arbitrary expression of type τ . The types of the language
are int, bool, and array [IR] of τ , where τ is any type and IR is an integer
range specifying the index values of the array. Throughout the language, an
integer range, always denoted IR, is of the form exp1:int..exp2:int and never
contains a decision variable. Notice that the array constructor can be nested;
for example array[1..10] of array [0..5] of int is a type. We often abbreviate
“array [l1..u1] of · · · of array [ln..un]” as “array [l1..ln, . . . , ln..un].”



Domains are used to associate a set of values with a parameter or decision
variable. A domain is either (1) bool, (2) int, (3) of the form int (IR) or (4)
of the form array [IR] of Dom, where Dom is a domain. A domain is finite if it
is constructed without using case (2) of the definition. The non-terminal FDom
is used for finite domains.

The syntax of the three statements is as follows (where n ≥ 0):
given NewId1:Dom1, . . . , NewIdn:Domn

where Domi can contain an occurrence of NewIdj only if i ≤ j.
find NewId1:FDom1, . . . , NewIdn:FDomn

such that exp1:bool, . . . , expn:bool
Finally, let’s consider the syntax of expressions, starting with the atomic

expressions. The integer constants are written in the usual way and the constants
of type bool are T and F. Each identifier that has been declared as a parameter
or decision variable is an expression whose type is determined by the domain
given in the declaration. A quantified variables can appear within the scope of
its quantifier. As will be seen, quantified variables are always of type int.

The following are non-atomic expressions of type int:
– exp1:int intop exp2:int, where intop is one of +, −, ∗, or /,
– −exp1:int,
– boolToInt(exp:bool), and
–

∑
NewId :IR. exp:int

The symbol “/” is for integer division. An example of an integer expression using
these constructs is

∑
i:0..n−1. boolToInt(a[i] = 0), which counts up the number

of 0 entries in a .
The following are non-atomic expressions of type bool:

– exp1:bool boolop exp2:bool, where boolop is one of ∧, ∨, → or ↔.
– ¬exp:bool.
– exp1:int compop exp2:int, where compop is one of =, +=, ≤ or <.
– QNewId :IR. exp:bool, where Q is a logical quantifier, ∃ or ∀.

Finally, the following expression is of type τ :
– AR[exp:int], where AR is of type “array [IR] of τ”, for some τ . Notice

that exp:int may contain free variables.
We often abbreviate “AR[i1] · · · [in]” as “AR[i1, . . . , in]”.

For simplicity we assume that each identifier NewId occurring in
∀NewId:IR. exp, ∃NewId:IR. exp or

∑
NewId:IR. exp is a new identifier that

appears nowhere else in the model except in exp.

3 The Semantics of E
This section presents three alternative semantic accounts of E . In each undefined-
ness arises in only two ways: dividing by zero and indexing into an array with a
value that is out of bounds. The three accounts differ only in how they determine
whether an expression is undefined if it contains an undefined subexpression. For
models that are safe—those in which division by zero and out-of-bounds indices
do not arise—the three semantics agree with each other and, we believe, with
the intuitions of constraint modellers and the behaviour of constraint solvers.
For safe models, solvers do not exhibit a haphazard pattern of behaviour.



This section first presents the part of the semantics that the three have
in common. Then three subsections describe the distinctive parts of the three
semantics.

The purpose of these semantics is to identify the solutions of an instance
of an E model—that is, what assignments to decision variables satisfy what
instances. To be clear, our focus is defining the truth conditions of the language,
not on defining the behaviour of a decision procedure for satisfiability or any
other program.

As the semantics defines solutions of instances, we start by defining the in-
stances of a model: a pair 〈M, I〉 is a problem instance if M is an E model and I
is an instantiation for M . An instantiation for M maps each parameter of M to
a value that is appropriate as determined by the given statement of the model.
If the given statement of M is “given NewId1:Dom1, . . . , NewIdn:Domn”,
then an instantiation I of M maps each parameter NewIdi to a member of
the set denoted by Domi. The denotation of Domi, written [[Domi]]

I , must be
taken relative to I since Domi may itself contain parameters; for example in
“array[a ∗ b..c ∗ b] of int” the symbols a, b and c may be parameters. The
following rules define the semantics of domains.
• [[expl..expu]]I= ⊥ if [[expl]]

I = ⊥ or [[expu]]I = ⊥
= {i ∈ Z | [[expl]]

I ≤ i ≤ [[expu]]I} otherwise
(1)

• [[int(IR)]]I= ∅ if [[IR]]I = ⊥
= [[IR]]I otherwise

• [[bool]]I = {T, F}
• [[int]]I = Z (That is, the set of all integers.)

• [[array [IR] of DOM ]]I= ∅ if [[IR]]I = ⊥ or [[IR]]I = ∅
= [[IR]]I −→ [[DOM ]]I otherwise.

Notice that an array denotes a total function over the set of index values that
are within bounds. This set may be empty. Also notice that some models have
no instantiations because a parameter may have a domain denoting the empty
set.

The semantics must dictate whether an instance 〈M, I〉 of a model is satisfied
by an assignment A to the decision variables of M . An assignment must map
each decision variable to an appropriate value. If the find statement of M is
“find NewId1:FDom1, . . . , NewIdn:FDomn”, then an assignment A for 〈M, I〉
maps each decision variable NewIdi to a member of [[FDomi]]

I . Notice that
[[FDomi]]

I may be the empty set, in which case the instance has no assignments
and hence no solutions.

Finally, quantified variables are handled in the same way as in first-order
logic—that is, denotations are taken relative to an assignment g that maps each
quantified variable to an appropriate value.

We write [[M ]]I,A,g to mean the denotation of instance 〈M, I〉 with respect to
A and g. As the denotation function is defined compositionally, we extend the
notation and write [[exp]]I,A,g where exp is any expression of E .

Our primary intuition regarding undefinedness is that an assignment A is a
solution to an instance if the constraints of the instance all denote T with respect



to the assignment, and this is the case even if the same constraints denote unde-
fined with respect to other assignments. Thus we say that an instance I of model
M is satisfied by assignment A if [[c]]I,A = T for every constraint c in M . This
intuition would be violated by a solver that aborts if one assignment generates
an error condition such as division by zero even though other assignments are
solutions.

It remains to define the semantics of the expressions of E . This section defines
the semantics for expressions where they agree for all three semantics.

Let us start with the atomic expressions. In all assignments, “T ”, “F”, “1”,
“2”, “3”, etc. denote T, F , 1, 2, 3, etc. For other atomic expressions we have:
• [[α]]I,A,g= I(α) if α is a parameter

= A(α) if α is a decision variable
= g(α) if α is a quantified variable.

Now consider the operators that are used to build up integer expressions. For
every binary integer operator intop we have
• [[exp1 intop exp2]]I,A,g= ⊥ if [[exp1]]I,A,g = ⊥ or [[exp2]]I,A,g = ⊥

= [[exp1]]I,A,g [[intop]]I,A,g [[exp2]]I,A,g otherwise

where [[intop]]I,A,g is the obvious operation. For division [[exp1/exp2]]
I,A,g =⊥ if

[[exp2]]
I,A,g =0. Unary operators are handled in a similar manner.

Now consider summation expressions. If g is a variable assignment, then
σ[x /→ d] is the assignment that is identical to σ with the possible exception
that it maps x to d.
• [[

P
x:IR. exp]]I,A,g = if [[IR]]I,A,g = ∅ then 0

else if [[IR]]I,A,g = ⊥ then ⊥
else if [[exp]]I,A,g[x"→d] = ⊥ for some d∈ [[IR]]I,A,g then ⊥
else the sum of [[exp]]I,A,g[x"→d] for all d∈ [[IR]]I,A,g

Notice that
∑

x:1.. − 1. x/0 denotes 0 with respect to any assignments since
1..− 1 denotes the empty set.

The integer range associated with the summation quantifier and, indeed, all
quantifiers, may contain free occurrences of quantified variables. So semantic
rule (1) must be generalised to take assignments to quantified variables.
• [[expl..expu]]I,A,g= ⊥ if [[expl]]

I,A,g = ⊥ or [[expu]]I,A,g = ⊥
= {i ∈ Z | [[expl]]

I,A,g ≤ i ≤ [[expu]]I,A,g} otherwise

3.1 Semantics 1: A Three-Valued Kleene Semantics
This semantics follows the approach used by Frisch et. al. [8] in giving a semantics
to Essence. Three truth values are used — T, F and ⊥ — where the intuition is
that ⊥ indicates a lack of information. Thus, T∨⊥ is T because it is T regardless
of whether the “unknown” value ⊥ is T or F. Similarly, T ∧ ⊥ is ⊥ because it
could be T or F depending on the “unknown” value of the second argument.
This results in the Boolean connectives of the three-valued propositional logic
of Kleene [9, §64].

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

→ T F ⊥
T T F ⊥
F T T T
⊥ T ⊥ ⊥

↔ T F ⊥
T T F ⊥
F F T ⊥
⊥ ⊥ ⊥ ⊥

¬
T F
F T
⊥ ⊥

boolToInt

T 1
F 0
⊥ ⊥



Existential quantification should behave like disjunction, which yields:
• [[∃x:IR. exp:bool]]I,A,g

= T if [[IR]]I,A,g (= ⊥ and [[exp:bool]]I,A,g[x"→d] = T for some d∈ [[IR]]I,A,g

= F if [[IR]]I,A,g (= ⊥ and [[exp:bool]]I,A,g[x"→d] = F for all d∈ [[IR]]I,A,g

= ⊥ otherwise

The rule for universal quantification is obtained from this by interchanging “T”
and “F.” Notice that ∃x:1..−1. 1/0 = 7 denotes F with respect to any assignments
since 1..− 1 denotes the empty set.

For integer comparison and array lookup we have:
• [[exp1:int compop exp2:int]]I,A,g= ⊥ if [[exp1]]I,A,g = ⊥ or [[exp2]]I,A,g = ⊥

= [[exp1]]I,A,g [[compop]]I,A,g [[exp2]]I,A,g otherwise

• [[AR[exp:int]]]I,A,g = if [[AR]]I,A,g = ⊥ or [[exp:int]]I,A,g = ⊥ then ⊥
else if the function [[AR]]I,A,g is not defined on[[exp:int]]I,A,g then ⊥
else [[AR]]I,A,g([[exp:int]]I,A,g)

Again [[compop]]I,A,g is the obvious operation.

3.2 Semantics 2: A Three-Valued Strict Semantics

The second semantic account of E is strict in that any compound expression is
undefined whenever one of its sub-expressions is undefined. It is straightforward
to specify the semantics based on this principle.

Here is the rule for the existential quantification, the remainder are similar:
• [[∃x:IR. exp]]I,A,g = if [[IR]]I,A,g = ⊥ or [[exp]]I,A,g[x"→d] = ⊥ for some d∈ [[IR]]I,A,g then ⊥

else if [[exp]]I,A,g[x"→d] = T for some d∈ [[IR]]I,A,g then T
else F

As in the Kleene semantics, a consequence of the rule for existential quantifica-
tion is that ∃x:1..− 1. 1/0 = 7 denotes F with respect to any assignment. Finally,
the semantic rules for the comparison operators, the boolToInt operator and
for indexing into arrays are the same as for the Kleene semantics.

3.3 Semantics 3: A Two-Valued Relational Semantics

The third semantic account for E is based on the observation that undefinedness
results from the application of partial functions and the view that functional
notation is a shorthand for relational notation. So, instead of thinking of division
as a function, one could think of it as a relation, div(x, y, z), which holds if and
only if the result of dividing x by y is z (equivalently y × z = x ∧ y += 0). Hence
div(5, 0, 3) denotes F not ⊥.

In this semantics there can be undefined integer expressions, but all Boolean
expressions are either T or F. Thus the Boolean operators ¬, ∧, ∨, → and ↔
as well as boolToInt have their usual classical interpretation. The rules for the
logical quantifiers are:
• [[∃x:IR. exp:bool]]I,A,g

= T if [[IR]]I,A,g (= ⊥ and [[exp:bool]]I,A,g[x"→d] = T for some d∈ [[IR]]I,A,g

= F otherwise

The rule for indexing into an array AR of type “array[IR] of bool” is:



• [[AR[exp:int]]]I,A,g = if [[AR]]I,A,g = ⊥ or [[exp:int]]I,A,g = ⊥ then F

else if the function [[AR]]I,A,g is not defined on[[exp:int]]I,A,g then F

else [[AR]]I,A,g([[exp:int]]I,A,g)

If AR is an array of any other type, then the rule is the same as for the other
two semantics.

3.4 Comparison of the Semantics
Here we briefly state some of the properties of and relationships among the three
semantics. Space limitations preclude the presentation of examples or proofs. We
invite the reader to revisit Fig. 1 and confirm that the three semantics produce
the results shown in the last three columns.

Theorem 1. Let e be any expression, I be any instantiation, A be any assign-
ment and g be any variable assignment. Let s, k and r be the value of [[e]]I,A,g

in the strict, Kleene and relational semantics, respectively. If s += ⊥ then s = k.
If k += ⊥ then k = r. 12

Theorem 2. Let M be any E model. If in the strict semantics I is an instance
of M and A is a solution to 〈M, I〉 then in the Kleene semantics I is an instance
of M and A is a solution to 〈M, I〉. If in the Kleene semantics I is an instance of
M and A is a solution to 〈M, I〉 then in the relational semantics I is an instance
of M and A is a solution to 〈M, I〉. 12

In both the Kleene and relational semantics, a decision variable is the same
as a prenexed existential quantifier. This is not the case in the strict semantics.

If e1 and e2 are integer expressions, then in both the Kleene and strict se-
mantics e1 += e2 and ¬(e1 = e2) are logically equivalent. Similarly, e1 < e2 and
¬(e2 ≤ e1) are logically equivalent in these two semantics. However, neither
logical equivalence holds in general in the relational semantics.

In the Kleene and relational semantics, for every Boolean expression e, F and
F ∧ e are logically equivalent and T and T∨ e are logically equivalent. Neither of
these equivalences holds in general in the strict semantics.

In the Kleene and strict semantics, for every integer range IR and every
Boolean expression φ, ¬∀x:IR. φ and ∃x:IR. ¬φ are logically equivalent and
∀x:IR. ¬φ and ¬∃x:IR. φ are logically equivalent. Neither equivalence generally
holds in the relational semantics. For example, ∀x:1/0..1/0. ¬(1 = 1) denotes F
in all assignments but ¬∃x:1/0..1/0. 1 = 1 denotes T in all assignments.

4 Transforming Constraints in E
This section shows how, for each of the three semantics, a model can be trans-
formed into one that has the same instances and solutions but whose constraints
are safe. Space limitations require us to make the simplifying assumption that
all expressions in given and find statements and in integer ranges associated
with quantifiers are safe. More rigorously we say that an occurrence of an expres-
sion e is unsafe if [[e]]I,A,g =⊥ for some I, A and g. Furthermore an occurrence
of an expression is unsafe if it contains any unsafe occurrence. Otherwise, an
occurrence is said to be safe.



Let us first introduce the idea behind the transformations. Here we write φ[e]
to denote an expression containing an occurrence of e. A subsequent reference
to φ[e′] denotes the same expression but with e replaced by e′. As an example
to illustrate the transformations, consider transforming an atomic Boolean ex-
pression A[e′/e] that is unsafe because e could denote 0. The expression A[e′/e]
may occur within a complex constraint.

In the relational semantics the basic idea is to transform A[e′/e] to
∃a′:nz. a′ = e ∧ A[e′/a′]. Here nz is the domain of all non-zero integers, so
the resulting expression is safe. Notice that the resulting expression is false if e
denotes 0.

In the strict semantics the basic idea is to transform A[e′/e] in the same
way as the relational semantics but also to add to the such that statement the
constraint e += 0. This is a simplification because e may contain free variables.

The transformation for the Kleene semantics depends on the polarity of the
occurrence of A[e′/e]. If it occurs in a positive context, then it is transformed
in the same way as the relational semantics. However, if A[e′/e] occurs in a
negative context then it is transformed to (∃a′:nz. a′ = e ∧ A[e′/a′]) ∨ e = 0.
This expression is true if e denotes 0, which has the same effect as making the
expression false in a positive context.

These basic transformations are logically correct except for the case
boolToInt in the Kleene semantics, which is difficult to handle and requires
special treatment. Unfortunately, these basic transformations add existential
variables to the interior of a constraint and do not propagate efficiently. The
actual transformations avoid these problems but, consequently, are much more
complicated.

Now let’s proceed to consider the actual transformations. In performing
transformations to render a model safe, we need to pass through a language
called E+, which is the same as E but with four additional features, each of
which has the same denotation in each of the three semantics.

– A new kind of IR, called nz, which denotes the set of all non-zero integers.
– An additional boolop, ⇔, where x ⇔ y denotes T if x and y take the same

value (including ⊥) and F otherwise.
– The operator boolToInt0, which denotes the function that maps T to 1, F

to 0, and ⊥ to 0.
– A domain can contain “array [l..u]” where l and u can contain integer

expressions of the form MINx:IR.exp and Qmax x:IR.exp, respectively. If
the IR associated with either form of expression denotes ∅ then the “array
[l..u]” in which it occurs denotes an array with an empty set of indices.
Otherwise, [[MINx:IR.exp]]I,A,g and [[MINx:IR.exp]]I,A,g ) are the minimum
and maximum values of {[[exp]]I,A,g[x"→d]|d∈ [[IR]]I,A,g}.

Theorem 3. The set of safe E+ models are the same in all three semantics. If
M is a safe model, then its instantiations are the same in all three semantics
and every instance of M has the same solutions in all three semantics. 12



TransformExtract(M)

While there is an occurrence A of a possibly unsafe Boolean expression in a constraint of
M such that every occurrence of a Boolean expression within A is provably safe and the
constraint does not contain an occurrence of “⇔” do:

Let b be an identifier that does not occur in M .
If no free quantified variables occur in A then
(a) Replace occurrence A in M with b.
(b) Add b:bool to the decision variables of M .
(c) Add to M the constraint b ⇔ A.

Otherwise
(d) Let y1, . . . , ym be, in order, the variables attached to the quantifiers whose scope

includes A.
Let yi1 , . . . , yin be, in order, those variables in y1, . . . , ym that occur in A.
Let li..ui be the integer range expression over which each yi is quantified.
Let MINj be the expression MIN y1:l1..u1. · · · MIN yj−1:lj−1..uj−1. lj .
Let MAXj be the expression MAX y1:l1..u1. · · · MAX yj−1:lj−1..uj−1. uj .

(e) Replace occurrence A in M with b[yi1 , . . . , yin ].
(f) Add “b:array[MINi1 ..MAXi1 , . . . , MINin ..MAXin ]of bool” to the decision

variables of M .
(g) Add to M the constraint ∀ y1:l1..u1. · · · ∀yn:ln..un. b[yi1 , . . . , yin ] ⇔ A

Fig. 2. TransformExtract.

By reductions from Diophantine problems it is straightforward to show that
neither the safe nor the unsafe expressions of E are recursively enumerable.
Therefore, for the transformations we assume the existence of a procedure that
can determine that some expressions are safe, though it can not detect all safe
expressions. We place three requirements on such a procedure: (1) if the proce-
dure says that an expression is safe, then it is safe; (2) the procedure identifies
as safe every expression of the form exp/i, where i is an integer variable with
domain nz; and (3) the procedure identifies as safe every expression of the form
and AR[i], where i is an integer variable and the domain of i and the index
range of AR are defined with syntactically identical expressions. If this proce-
dure identifies an expression as safe, then we say that the expression is provably
safe, otherwise we say that it is possibly unsafe.

Our transforms work by eliminating all possibly unsafe expressions and are
correct even when the eliminated expression happens to be safe. However, a
more accurate estimate of safeness results in the transformations making fewer
changes to the model, thus producing a simpler model.

Example 1. Consider the model in E of the form:

given m : array[1..10] of int(1..5)
find x:int(1..20), y:int(−3..3)
such that (∀j:1..4.

P
i:j..9. boolToInt(m[i] ≥ m[x]) ≤ j/(y2 − 5))

then the expression m[i] is provably safe, and we may assume expressions m[x]
and j/(y2− 5) are possibly unsafe, although a more sophisticated analysis could
determine that y2 − 5 cannot take the value 0. 12

The transforms for all three semantics use the common sub-procedure Trans-
formExtract, given in Fig. 2, to transform a model M .



Example 2. Consider applying TransformExtract to the following model:
find x:int−1..10
such that 1 ≤ 1/boolToInt(7/x ≤ 1)

First A must be chosen to be 7/x ≤ 1. (The transform cannot choose A to be the
entire constraint as this contains a possibly unsafe Boolean expression.) Steps
(a), (b) and (c) are executed, resulting in

find x:int−1..10, b1:bool
such that 1 ≤ 1/boolToInt(b1),

b1 ⇔ 7/x ≤ 1

Next A is chosen to be 1 ≤ 1/boolToInt(b1) and steps (a), (b) and (c) are
executed, resulting in

find x:int−1..10, b1:bool, b2:bool
such that b2,

b2 ⇔ 1 ≤ 1/boolToInt(b1),
b1 ⇔ 7/x ≤ 1 12

Let us consider the relationship between a model M and the model M ′ that
results from applying TransformExtract to M . We say that an assignment α′ is
an extension of an assignment α if every variable assigned by α is also assigned
by α′ and the two assign the same values to the variables of α.

Theorem 4. Let M be a model and M ′ be the result of applying TransformEx-
tract to M . Let I be any instantiation for M (and hence for M ′). Then in any
of the three semantics, assignment α is a solution to 〈M, I〉 if and only if some
extension of α is a solution to 〈M ′, I〉. 12

After performing TransformExtract a model consists of two disjoint sets of
constraints: M ′, the original constraints modified by steps (a) and (e) of Trans-
formExtract, and B, the set of constraints added by steps (c) and (g) of Trans-
formExtract. Notice that every constraint in M ′ is provably safe and every con-
straint in B is possibly unsafe. The transformation needed to make B provably
safe is different for each of the three semantics. We consider each in turn.

4.1 Transformations for the Relational Semantics
To obtain a safe model for the relational semantics, Transform2Rel, as shown
in Fig. 3 is performed. The transformations introduce a new variable a′ to take
the place of exp, and a new Boolean b′ to capture whether a′ = exp. a′ has a
domain that forces the resulting expression to be provably safe. The complexity
arises in capturing the cases where a′ and exp differ in value. If a′ += exp then
the Boolean b is forced to be F. The third conjunct is required since otherwise
we could choose a′ += exp and make b F when indeed the expression will not
lead to undefined. The third conjunct forces a′ = exp if this will not result in an
undefined expression.

Theorem 5. Let M be a model resulting from the application of TransformEx-
tract and let M ′ be the result of applying Transform2Rel to M . Let I be any
instantiation for M (and hence for M ′). Then M ′ is safe and in the relational
semantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. 12



Transform2Rel(M)

(a) Perform TransformExtract(M).
(b) While M contains a possibly unsafe occurrence of b ⇔ C perform

Transform2Pos(M, b ⇔ C).

Transform2Pos(M, b ⇔ C)

(c) If C contains an possibly unsafe expression of the form exp′/exp where exp is a
provably safe expression then replace b ⇔ C with

∃ a′:nz. ∃ b′:bool. b′ ⇔ (a′ = exp) ∧
b ⇔ (b′ ∧ C{exp "→ a′}) ∧
exp (= 0 → b′

(d) If C contains a possibly unsafe expression of the form AR[exp], where AR is an
expression of type array [l..u] of τ , and exp is a provably safe expression then replace
b ⇔ C with ∃ a′:l..u. ∃ b′:bool. b′ ⇔ (a′ = exp) ∧

b ⇔ (b′ ∧ C{exp "→ a′}) ∧
(l ≤ exp ∧ exp ≤ u) → b′

Fig. 3. Transform2Rel.

4.2 Transformations for the Strict Semantics
The strict semantics is the simplest to implement. The full transformation is
given in Fig. 4.

Theorem 6. Let M be a model resulting from the application of TransformEx-
tract and let M ′ be the result of applying Transform2Strict to M . Let I be any
instantiation for M (and hence for M ′). Then M ′ is safe and in the strict se-
mantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. 12

4.3 Transformations for the Kleene Semantics
The Kleene semantics is the most difficult to make safe. This is the only se-
mantics where Boolean expressions can really take the value ⊥ (in the strict
semantics if this occurs then there can be no solution). In order to transform
this correctly to an effectively two valued semantics that is supported by the
underlying constraint solvers we need to take into account whether a Boolean
expression occurs in a positive context, where undefined will be equivalent to F
for satisfiability, or a negative context where undefined will be equivalent to T
for satisfiability.

Transform2Strict(M)

(a) Perform TransformExtract(M).
(b) While M contains a possibly unsafe occurrence of b ⇔ C do:

(c) If C contains a possibly unsafe expression of the form exp′/exp, where exp is
provably safe then replace b ⇔ C with

∃ a′:nz. a′ = exp ∧ (b ⇔ C{exp "→ a′})

(d) If C contains a possibly unsafe expression of the form AR[exp], where AR is an
expression of type array [l..u] of τ , then replace b ⇔ C with

∃ a′:l..u . a′=exp ∧ (b ⇔ C{exp "→ a′})

Fig. 4. Transform2Strict.



Transform2Kleene(M)

(a) Replace every occurrence in M of an expression of the form exp1 ↔ exp2 with
(exp1 → exp2) ∧ (exp2 → exp1).

(b) Replace every occurrence in M of an expression of the form boolToInt(exp) with
boolToInt0(exp)/(boolToInt0(exp) + boolToInt0(¬exp)).

(c) Perform TransformExtract(M)
(d) While M contains a possibly unsafe occurrence of b ⇔ C do:

(e) if b occurs positively in M then perform Transform2Pos(M, b ⇔ C)
(f) otherwise perform Transform2Neg(M, b ⇔ C).

Transform2Neg(M, b ⇔ C)

(g) If C contains a possibly unsafe expression of the form exp′/exp where exp is provably
safe then replace b ⇔ C with

∃a′:nz. ∃ b′:bool. ∃ b′′:bool. b′ ⇔ (a′ = exp) ∧
b′′ ⇔ (exp (= 0) ∧
b ⇔ (¬b′′ ∨ (b′ ∧ C{exp "→ a′})) ∧
b′′ → b′

(h) If C contains a possibly unsafe expression of the form AR[exp], where AR is an
expression of type array [l..u] of τ and exp is provably safe, then replace b ⇔ C with

∃ a′:l..u. ∃ b′:bool. ∃ b′′:bool. b′ ⇔ (a′ = exp) ∧
b′′ ⇔ (l ≤ exp ∧ exp ≤ u)
b ⇔ (¬b′′ ∨ (b′ ∧ C{exp "→ a′})) ∧
b′′ → b′

Fig. 5. Transform2Kleene

The Transform2Kleene transformation, shown in Fig. 5, converts an E model
into a safe E+ model. Step (a) replaces each occurrence of ↔ with two im-
plications. The effect, as will be seen, is that every expression appears in ei-
ther a positive or negative context, but not both. Step (b) replaces each occur-
rence of boolToInt with an equivalent expression containing two occurrences of
boolToInt0. This is done because the remainder of the transformation correctly
deals with boolToInto without any special provisions. Though each of these first
two steps can make the model exponentially larger, a more sophisticated version
of these steps could avoid this by introducing new Boolean variables. Step (c)
performs TransformExtract, just as in the other two transforms. Finally Step
(d) replaces all possibly unsafe expressions with ones that are provably safe.
Positive occurrences are handled as in the relational transformation; negative
occurrences employ a new transformation, Transform2Neg, also shown in Fig. 5.

Given an E+ expression which does not include or boolToInt or ↔ we can
define the context of each Boolean expression appearing in a model as follows.

– For such that exp1, . . . , expn each of expi, 1 ≤ i ≤ n appear positively.
– For boolToInt0(exp) then exp appears positively.
– If ¬exp appears positively then exp appears negatively, and if ¬exp appears

negatively then exp appears positively.
– If exp ∨ exp′ or exp ∧ exp′ appear in manner H (positively or negatively)

then exp and exp′ appear in manner H.
– If b appears in manner H (positively or negatively) and b ⇔ exp occurs in

M then exp appears in manner H.



Note that since the model results from TransformExtract the rules for expres-
sions of the form b ⇔ C are unambiguous since there is exactly one such expres-
sion for each introduced b.

Theorem 7. Let M be a model resulting from the application of TransformEx-
tract. Let M ′ be the result of applying Transform2Kleene to M . Then Let I be
any instantiation for M (and hence for M ′). Then M ′ is safe and in the Kleene
semantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. 12

5 Solving the Transformed Models

The transformations defined in the previous section create models that are safe;
undefinedness cannot occur. we can now replace ⇔ by ↔ and boolToInt0 by
boolToInt since these operators are identical in two-valued logic. The models
are still not directly executable in a constraint solver which takes a set of finite-
domain variables and conjunction of constraints on these variables. In order
to create such a final form we need to map the resulting model in E further,
principally unrolling loops and flattening. Since the models are safe the existing
mappings should respect the semantics of the model.

The reader may be concerned that the transforms introduce new variables
with the infinite domain nz. This is unproblematic since it can be shown that if
a search assigns values to all the finite-domain variables, then the value of each
infinite-domain variable either becomes irrelevant to determining satisfiability or
is fixed by propagation (even using simple propagators). As an example, consider
the variable a′ introduced by line (c) of Transform2Pos. If search fixes the value of
exp to 0 and then propagation on b′ ⇔ a′ = exp fixes b′ to F and propagation on
b′ ⇔ a′ = exp can fix b to F without knowing the value of a′. On the other hand,
if search fixes exp to a value other than 0, then propagation on exp += 0 → b′

fixes b′ to T and propagation on b ⇔ (a′ = exp) forces a′ to be fixed to the same
value as exp.

It can be shown that with only weak assumptions about propagators, none
of the transformations weaken propagation. As an example, consider the model:

find x:int(1..6)
such that ¬(12/x ≥ 4)

Assuming this model is implemented by the constraint div(12, x, t) ∧ (b ↔ t ≥
4)∧¬b, then enforcing domain consistency results in the domains: t : 2..3, x : 4..6.

The model is safe so there is no need to transform it. However if we did trans-
form it for the relational semantics then the result, after converting existential
variables to decision variables, would be

find x:int(1..6), a′:nz, b:bool, b′:bool
such that b′ ⇔ (a′ = x) ∧ b ⇔ (b′ ∧ (12/a′ ≥ 4)) ∧ (x (= 0 → b′) ∧ ¬b

Assuming this model is implemented by the constraint (b ↔ b′∧ b2)∧ (b′ ↔ a′ =
x) ∧ (b2 ↔ t ≥ 4) ∧ div(12, a′, t) ∧ (b3 → b′) ∧ (b3 ↔ x += 0) ∧ ¬b then enforcing
domain consistency results in the domains: b = F, b3 = T, b′ = T, b2 = F, t : 2..3,
a′ : 4..6, and x : 4..6.



6 Conclusion

As modelling languages become more expressive, it becomes more likely that a
modeller creates models where undefinedness occurs. A clear understanding of
how undefinedness is treated by a modelling language is vital to both the mod-
eller and the system’s implementer. For the modeller misunderstanding may
result in modelling errors giving the wrong results (including incorrect opti-
mal values) when undefinedness is silently translated to failure. For the systems
builder a great deal of care must be taken to ensure that transformations and
optimizations of the systems do not change the meaning of the model.

Fig. 1 shows that without a clear understanding of undefinedness imple-
menters have struggled to implement a proper treatment of undefinedness. Our
work shows how undefinedness can be properly treated in a simple constraint
language and we believe that this approach can be extended easily to handle
richer languages. Already our work has informed the development of MiniZinc
and generated a bug report for ECLiPSe. We expect our work to result in bug
reports in additional languages and to alter and inform the development of other
languages such as Essence′. Finally, other subtle issues are likely to arise in the
development of highly-expressive modelling languages; our work suggests that
the use of semantics could be valuable in resolving those issues.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming Using ECLiPSe. Cambridge
University Press (2006)

2. SWI Prolog: http://www.swi-prolog.org/ (2009)
3. Intelligent Systems Laboratory: SICStus Prolog. Swedish Institute of Computer

Science. (2009) http://www.sics.se/isl/sicstuswww/site/index.html.
4. Van Hentenrcyk, P.: The OPL Optimization Programming Language. MIT Press

(1999)
5. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:

Towards a standard CP modelling language. In: Proc. of the 13th Int. Conf. on
Principles and Practice of Constraint Programming, Springer (2007) 529–543

6. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints 13 (2008)
229–267

7. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence : A
constraint language for specifying combinatorial problems. Constraints 13 (2008)
268–306

8. Frisch, A.M., Grum, M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The
essence of Essence: A language for specifying combinatorial problems. In: Proc.
of the 4th Int. Workshop on Modelling and Reformulating Constraint Satisfaction
Problems. (2005) 73–88

9. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1952)


