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Abstract. The Maximum Density Sill-Life Problem is to fill an n × n
board of cells with the maximum number of live cells so that the board
is stable under the rules of Conway’s Game of Life. We reformulate the
problem into one of minimising “wastage” rather than maximising the
number of live cells. This reformulation allows us to compute strong up-
per bounds on the number of live cells. By combining this reformulation
with several relaxation techniques, as well as exploiting symmetries via
caching, we are able to find close to optimal solutions up to size n = 100,
and optimal solutions for instances as large as n = 69. The best previous
method could only find optimal solutions up to n = 20.

1 Introduction

The Game of Life was invented by John Horton Conway and is played on an
infinite board. Each cell c in the board is either alive or dead at time t. The
live/dead state at time t + 1 of cell c, denoted as state(c, t + 1), can be obtained
from the number l of live neighbours of c at time t and from state(c, t) as follows:

state(c, t + 1) =


l < 2 dead [Death by isolation]
l = 2 state(c, t) [Stable condition]
l = 3 alive [Birth condition]
l > 3 dead [Death by overcrowding]

The board is said to be a still-life at time t if it is unchanged by these rules,
i.e., it is the same at t + 1. For example, an empty board is a still-life. Given a
finite n×n region where all other cells are dead, the Maximum Density Still-life
Problem aims at computing the highest number of live cells that can appear in a
still life for the region. The density is thus expressed as the number of live cells
over the n× n region.

The raw search space of the Maximum Density Still-life Problem has size
2n2

. Thus, it is extremely difficult even for “small” values of n. Previous search
methods using IP [1] and CP [2] could only solve up to n = 9, while a CP/IP
hybrid method with symmetry breaking [2] could solve up to n = 15. An attempt
using bucket elimination [6] reduced the time complexity to O(n223n) but in-
creased the space complexity to O(n22n). This method could solve up to n = 14



before it ran out of memory. A subsequent improvement that combined bucket
elimination with search [7], used less memory and was able to solve up to n =
20. In this paper we combine various techniques to allow us to solve instances
up to n = 50 completely or almost completely, i.e. we prove upper bounds and
find solutions that either achieve that upper bound or only have 1 less live cell.
We also obtain solutions that are no more than 4 live cells away from our proven
upper bound all the way to n = 100. The largest completely solved instance is
n = 69.

The contributions of this paper are as follows:

– We give a new insightful proof that the maximum density of live cells in
an infinite still life is 1

2 . This proof allows us to reformulate the maximum
density still-life problem in terms of minimising “wastage” rather than max-
imising the number of live cells.

– We derive tight lower bounds on wastage (which translate into upper bounds
on the number of live cells) that can be used for pruning.

– We define a static relaxation of the original problem that allows us to cal-
culate closed form equations for an upper bound on live cells for all n. And
we do this in constant time by using CP with caching. We conjecture that
this upper bound is either equal to the optimum, or only 1 higher for all n.

– We identify a subset of cases for which we can improve the upper bound by 1
by performing a complete search on center perfect solutions. This completes
the proof of optimality for the instances where our heuristic search was able
to find a solution with 1 cell less than the initial upper bound.

– We define a heuristic incomplete search using dynamic relaxation as a looka-
head method that can find optimal or near optimal solutions all the way up
to n = 100.

– We find optimal solutions for n as large as 69, more than 3 times larger than
any previous methods, and with a raw search space of 24761.

2 Wastage reformulation

The maximum density of live cells in an infinite still life is known to be 1
2 [5, 4].

However, that proof is quite complex and only applies to the infinite plane. In
this section we provide a much simpler proof that can easily be extended to the
bounded case and gives much better insight into the possible sub-patterns that
can occur in an optimal solution. The proof is as follows.

First we assign an area of 2 to each cell (assume the side length is
√

2). We
will partition the area of each dead cell into two 1 area pieces and distribute
them among its live neighbours according to the local pattern found around the
dead cell. It is clear that if we can prove that all live cells on the board end up
with an area ≥ 4, then it follows that the density of live cells is ≤ 1

2 .
The area of a dead cell is assigned only to orthogonal neighbouring live cells,

i.e., those that share an edge with the dead cell. We describe as “wastage” the
area from a dead cell that does not need to be assigned to any live cell for the
proof to work (i.e., it is not needed to reach our 4 target for live cells). Table 1
shows all possible patterns of orthogonal neighbours (up to symmetries) around



Pattern:

? ?

? ?

? ?

??

? ?

??

? ?

??

? ?

??

? ?

??

Beneficiaries {} { S } {S, W} {E, W} {E, W} {}
Wastage 2 1 0 0 0 2

Table 1. Possible patterns around dead cells, showing where they donate their area
and any wastage of area.

Pattern:

? ?
??

? ? ?
??

? ? ?
??

?

Area received 1 1 0

Table 2. Contributions to the area of a live cell from its South neighbour.

a dead cell. Live cells are marked with a black dot, dead cells are unmarked, and
cells whose state is irrelevant for our purposes are marked with a “?”.

Each pattern indicates the beneficiaries, i.e., the North, East, South or West
neighbours that receive 1 area from the center dead cell, and the resulting amount
of wastage. As it can be seen from the table, a dead cell gives 1 area to each of
its live orthogonal neighbours if it has ≤ 2 live orthogonal neighbours, 1 area to
the two opposing live orthogonal neighbours if it has 3, and no area if it has 4.
Note that, in the table, wastage occurs whenever the dead cell has ≤ 1 or 4 live
orthogonal neighbours. As a result, we only need to examine the 3 bordering
cells on each side of a live cell, to determine how much area is obtained from
the orthogonal neighbour on that side. For example, the area obtained by the
central live cell from its South neighbour is illustrated in Table 2.

The area obtained by a live cell can therefore be computed by simply adding
up the area obtained from its four orthogonal neighbours. Since each live cell
starts off with an area of 2, it must receive at least 2 extra area to end up
with an area that is ≥ 4. Let us then look at all possible patterns around a
live cell and see where the cell will receive area from. Table 3 shows all possible
neighbourhoods of a live cell (up to symmetries). For each pattern, it shows the
benefactors, i.e., the North, East, South or West neighbours that give 1 area to
the live cell, and the resulting amount of wastage, which occurs whenever a live
cell receives more than 2.

Note that the last pattern does not receive sufficient extra area, just 1 from
the South neighbour. However, the last two patterns always occur together in
unique pairs due to the still-life constraints (each of the central live cells has 3
neighbours so the row above the last pattern, and the row below the second last
pattern must only consist of dead cells). Hence, we can transfer the extra 1 area
from the second last pattern to the last.



Pattern:

Benefactors: {N,S} {N,E,S} {N,E,S,W} {S,W} {N,S,W}
Wastage: 0 1 2 0 1

Pattern:

Benefactors: {S,W} {N,S} {E,S,W} {E,S} {E,W}
Wastage: 0 0 1 0 0

Pattern:

Benefactors: {S,W} {S,W} {S,W} {N,E,W} {S}
Wastage: 0 0 0 1 −1

Table 3. Possible patterns around a live cell showing area benefactors and any wastage.

Clearly, all live cells end up with an area ≥ 4, and this completes our proof
that the maximum density on an infinite board is 1

2 .
The above proof is not only much simpler than that of [5, 4], it also provides

us with good insight into how to compute useful bounds for the case in which the
board is finite. In particular, it allows us to know exactly how much we have lost
from the theoretical maximum density by looking at the amount of “wastage”
produced by the patterns in the currently labeled cells.

To achieve this, we reformulate the objective function in the Bounded Maxi-
mum Density Still Life Problem as follows. For each cell c, let P (c) be the 3× 3
pattern around that cell. Note that if c is on the edge of the n × n region, the
dead cells beyond the edge are also included in this pattern. Let w(P ) be the
wastage for each 3× 3 pattern as listed in Tables 1 and 3. Define w(c) for each
cell c as follows. If c is within the n × n region, then w(c) = w(P (c)). If c is in
the row immediately beyond the n× n region and shares an edge with it (there
are 4n such cells), then w(c) = 1 if the cell in the n × n region with which it
shares an edge is dead, and w(c) = 0 otherwise. For all other c, let w(c) = 0. Let
W =

∑
w(c) over all cells.

Theorem 1. Wastage and live cells are related by

live cells =
n2

2
+ n− W

4
(1)

Proof. We adapt the proof for the infinite board to the n × n region. Let us
assign 2 area to each cell within the n× n region, and 1 area to each of the 4n



cell in the row immediately beyond the edge of the n× n region. Now, for each
dead cell within the n × n region, partition the area among its live orthogonal
neighbours as before. For each dead cell in the row immediately beyond the n×n
region, give its 1 area to the cell in the n × n region with which it shares an
edge. Again, since the last two 3 × 3 patterns listed above must occur in pairs,
we transfer an extra 1 area from one to the other. Note also that the second
last pattern of Table 3 cannot appear on the South border (which would mean
that the last pattern appeared outside the shape) since it is not stable in this
position. Clearly, after the transfers, all live cells once again have ≥ 4 area, and
wastage for the 3 × 3 patterns centered around cells within the n × n region
remain the same. However, since we are in the finite case, we also have wastage
for the cells which are in the row immediately beyond the edge of the n × n
region. These dead cells always give 1 area to the neighbouring cell which is in
the n×n region. If that cell is live, the area is received. If that cell is dead, that
1 area is wasted. The reformulation above counts all these wastage as follows.
The total amount of area that was used was 2n2 from the cells within the n× n
region and 4n from the 4n cells in the row immediately beyond the edge, for a
total of 2n2 + 4n. Now, 4 times live cells will be equal to the total area minus
all the area wasted, and hence we end up with Equation (1). �

We can trivially derive some upper bounds on the number of live cells using
this equation. Clearly W ≥ 0 and, thus, we have live cells ≤ bn2

2 + nc. Also, by
the still life constraints, there cannot be three consecutive live cells along the
edge of the n × n region. Hence, there is always at least 1 wastage per 3 cells
along the edge and we can improve the bound to live cells ≤ bn2

2 + n − b 13ncc.
While this bound is very close to the optimal value for a small n, it differs from
the true optimum by O(n) and will diverge from the optimum for a large n. We
provide a better bound in the next section.

3 Closed form upper bound

Although in the infinite case there are many patterns that can achieve exactly
1
2 density, it turns out that in the bounded case, the boundary constraints force
significant extra wastage. As explained in the previous section, the still life con-
straints on the edge of the n × n region trivially force at least 1 wastage per 3
edge cells, however, it can be shown by exhaustive search that even this theoret-
ical minimal wastage of 1/3 per edge cell is unattainable for an infinitely long
edge due to the still life constraints on the inside of the n× n region.

There is also no way to label the corner without producing some extra
wastage. For example, for a 6×6 corner, naively we expect to have (6+6)/3 = 4
wastage forced by the still life constraints on the boundary. However, due to the
still life constraints within the corner, there is actually no way to label a 6 × 6
corner without at least 6 wastage.

Examination of the optimal solutions found by other authors show that, in
all instances, all or almost all wastage is found either in the corners or within 3
rows from the edge. This leads to the following conjecture:
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Fig. 1. The relaxed version of the problem, only filling in the 8×8 corners and the 3
rows around the edge.

Conjecture 1. All wastage forced by the boundary constraints of an n×n region
must appear either in the 8× 8 corners, or within 3 rows from the edge.

If this conjecture is true, then it should be possible to find a good lower
bound on the amount of forced wastage simply by examining the corners and
the first few rows from the edge.

We thus perform the following relaxation of the bounded still life problem.
We keep only the variables representing the four 8 × 8 corners of the board, as
well as the variables representing cells within 3 rows of the edge (see Figure 1).
All variables in the middle are removed. The still life constraints for fully sur-
rounded cells, including cells on the edge of the n× n region, remain the same.
The still life constraints for cells neighbouring on removed cells are relaxed as
follows: dead cells are always considered to be consistent with the problem con-
straints, and live cells are considered to be consistent as long as they do not
have more than 3 live neighbours (otherwise any extension to the removed cells
would violate the original constraints). The objective function is modified as fol-
lows: fully surrounded cells have their wastage counted as before, live cells with
neighbouring removed cells have no wastage counted, and dead cells with neigh-
bouring removed cells have 1 wastage counted if and only if it is surrounded by
≥ 3 dead unremoved cells (since any extension to the removed cells will result
in a pattern with ≥ 1 wastage). Clearly, since we have relaxed the constraints,
and also potentially ignored some wastage in our count, any lower bound we get
on wastage in this relaxed problem is a valid lower bound on the wastage in the
original problem.

Since the constraint graph of this relaxed problem has bounded, very low
path-width, it can easily be solved using CP with caching in O(n) time (see [3]
Theorem 13.2). In practice, solving the 8 × 8 corners is the hardest and takes
8s. An example corner solution is shown in Figure 2(a). Solving the width 3
edge takes milliseconds. The results of calculating the bound from the relaxed
problem for small n is shown in Table 4.

Because of the high symmetry of the edge subproblem (full translational
symmetry), the edge bounds starts to take on a periodic pattern for n sufficiently



(a) (b)

Fig. 2. An optimal 8×8 North West corner pattern with 7 wastage highlighted, and
(b) the periodic pattern for an optimal North edge with 4 wastage per period 11
highlighted.

large, at which point we can derive a closed form equation for their values for
all n. The periodicity comes from the fact that it can be shown that the optimal
periodic edge pattern (see Figure 2(b)) has period 11, and any sufficiently long
optimal edge pattern will have a series of these in the middle.

Since the set of optimal solutions for the 8× 8 corners remain the same for
any n > 16, and we can derive a closed form equation for the edge bounds for
large n, we can calculate a closed form equation for the lower bound on wastage
for the whole relaxed problem for any n sufficiently large. For n ≥ 50 it is:

min wastage =



8 + 16× bn/11c, n ≡ 0, 1, 2 mod 11
12 + 16× bn/11c, n ≡ 3, 4 mod 11
14 + 16× bn/11c, n ≡ 5 mod 11
16 + 16× bn/11c, n ≡ 6, 7 mod 11
18 + 16× bn/11c, n ≡ 8 mod 11
20 + 16× bn/11c, n ≡ 9, 10 mod 11

(2)

A lower bound on wastage can be converted into an upper bound on live cells
using Equation (1):

live cells ≤
⌊

2n2 + 4n−min wastage

4

⌋
(3)

We will call the live cell upper bound calculated from our closed form wastage
lower bounds the “closed form upper bound”. If Conjecture 1 is true and all
forced wastage must appear within a few rows of the edge, then this closed form
upper bound should be extremely close to the real optimal value.

Conjecture 2. The maximum number of live cells in an n× n region is⌊
2n2 + 4n−min wastage

4

⌋
or one less than this, where min wastage is the optimal solution to the relaxed
problem of Figure 1 (given by Equation (2) for n ≥ 50). �



n optimal upper bound
8 36 36
9 43 44
10 54 55
11 64 65
12 76 77
13 90 91
14 104 104
15 119 120
16 136 136
17 152 152
18 171 172
19 190 190
20 210 210

Table 4. Upper bound by relaxation for small n, shown in bold if it is equal to the
optimal solution.

Conjecture 2 is true for previously solved n. As it can be seen from Table 4,
for n ≤ 20, our upper bound is never off the true optimum by more than 1, and
is often equal to it.

As our new results in Table 5 show, our conjecture is also true for at least
up to n = 50. The bound is also achievable exactly for n as high as 69. For
larger n our solver is too weak to guarantee finding the optimal solution and
thus we cannot verify the conjecture. We believe the conjecture is true because
although not all 3×3 patterns are perfect (waste free), there are a large number
of perfect ones and there easily appears to be enough different combinations of
them to label the center of an n × n region perfectly. Indeed, since we already
know that there are many ways to label an infinite board perfectly, the boundary
constraints are the only constraints that can force wastage.

4 Finding optimal solutions

In the previous section, we found a relaxation that allows us to find very good
upper bounds in constant time. However, in order to find an optimal solution it is
still necessary to tackle the size 2n2

search space. The previous best search based
methods could only find optimal solutions up to n = 15, with a search space
of 2225. Here, we attempt to find solutions up to n = 100, which has a search
space of 210000, a matter of 3000 orders of magnitude difference. Furthermore,
optimal solutions are extremely rare: 1682 out of 2169 for n = 13, 11 out of 2196

for n = 14, and so on [7]. Clearly, we are going to need some extremely powerful
pruning techniques.

For some values of n, the closed form upper bound calculated in the previous
section is already the true upper bound. For such instances we simply need to
find a solution that achieves the upper bound and, therefore, we can use an
incomplete search. We take advantage of this by looking only for solutions of a
particular form: those where all wastage lies in the 8×8 corners or within 3 rows
of the edge, and the “center” is labeled perfectly with no wastage whatsoever.
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Fig. 3. Dynamic relaxation lookahead for still-life search: (a) shows darkened the area
of lookahead, (b) shows the change in lookahead on labelling an additional column
when super-row width is 4 and lookahead width is 8.

We call such solutions “center perfect”. Our choice is motivated by the fact
that, while there are many ways to label the center perfectly, there are very few
ways to label the edge with the minimum amount of wastage. Since we are only
allowed a very limited number of wastage on the entire board, they should not
be used to deal with the center cells. Searching only for center perfect solutions,
allows us to implement our solver more simply and to considerably reduce the
search space.

4.1 Dynamic relaxation as lookahead

The main technique whereby we make solution finding feasible is through the use
of dynamic relaxation as a lookahead technique. We label the board k rows at a
time (call each set of k rows a “super-row”), and column by column within each
super-row. Our implementation can set the width of the super row anywhere
between 4 and 8, although our experimental evaluation has not shown any ob-
vious difference in performance. At each node in our search tree, we perform a
relaxation of the current subproblem, which we solve exactly as a lookahead. If
we cannot find a (good enough) solution to the lookahead problem we fail and
try another labelling.

The relaxation consists of all the unlabeled variables within k rows from the
currently labeled variables, a 16 × 8 “thick edge” chunk of variables on each
side, a width 3 edge down each side, the bottom two 8 × 8 corners, and the
bottom width 3 edge (see Figure 3(a)). It also includes the 2 rows of already
labeled variables immediately bordering on the unlabeled region. The values of
these labeled variables form boundary conditions for the relaxed problem at this
particular node. We will discuss the choice of this shape later on. We relax the
still life constraints and objective function as before.

The relaxed subproblem is an optimisation problem. If by solving the relaxed
subproblem, we find that the minimum amount of wastage among the unlabeled



variables, plus the amount of wastage already found in the labeled variables,
exceeds the wastage upper bound for the original problem, then clearly there
are no solutions in the current branch and the node can be pruned. Since the
constraint graph of the relaxed problem has low path-width, it can be solved in
linear time using CP with caching. In practice though, we exploit symmetries
and caching to solve it incrementally in constant time (see below). Lower bounds
calculated for particular groups of variables (such as corners, edges, and super-
rows) are cached. These can be reused for other subproblems. We also use these
cached results as a table propagator, as they can immediately tell us which
particular value choices will lead to wastage lower bounds that violate the current
upper bound.

The relaxed problem can be solved incrementally in constant time as follows.
When we travel to a child node, the new relaxed problem at that node is not that
different from the one at the previous node (see Figure 3(a) and (b), respectively).
A column of k variables from the previous relaxation has now been removed from
the relaxation and labeled (new top dark column in Figure 3(b)), and a new
column of k variables is added to the relaxation (new bottom dark column in
Figure 3(b)). By caching previous results appropriately, it is possible to lookup
all the solutions to the common part of the two relaxed problems (cached when
solving the previous relaxation). Now we simply need to extend those solutions
to the new column of k variables, which takes O(2k) time but is constant for a
fixed k. There is sufficient time/memory to choose a k of up to 12. The larger k
is, the greater the pruning achieved but the more expensive the lookahead is. In
practice, k = 8 seems to work well. With k = 8, we are able to search around
1000 nodes per second and obtain a complete depth 400+ lookahead in constant
time.

The choice of the shape of the lookahead is important, and is based on our
conjectures as well as on extensive experimentation. The most important vari-
ables to perform lookahead on are the variables where wastage is most likely
to be forced by the current boundary constraints. Conjecture 1 can be applied
to our relaxed subproblems as well. It is very likely that the wastage forced by
the boundary constraints can be found within a fixed number of rows from the
current boundary. Thus, the variables near the boundary are the ones we should
perform lookahead on. The reason for the 16 × 8 thick edge chunk of variables
comes from our experimentation. It was found that the lookahead is by far the
weakest around the “corners” of the subproblem, where we have boundary con-
straints on two sides. A lookahead using a thinner edge (initially width 3) often
failed to see the forced wastage further in and, thus, allowed the solver to get
permanently stuck around those “corners”. By using a thicker edge, we increase
the ability of the lookahead to predict forced wastage and thus we get stuck
less often. A 16 × 8 thick edge is still not sufficiently large to catch all forced
wastage, but we are unable to make it any larger due to memory constraints, as
the memory requirement is exponential in the width of the lookahead.

Interestingly, if Conjecture 1 is indeed true for the subproblems, and we can
get around the memory problems and perform a lookahead with a sufficient width
to catch all forced wastage, then the lookahead should approach the strength of
an oracle, and it may be possible to find optimal solutions in roughly polynomial



time! Indeed, from our results (see Table 5), the run time required to find optimal
solutions does not appear to be growing anywhere near exponentially in n2.

4.2 Search strategy

The search strategy is also very important. A traditional depth first branch
and bound strategy is doomed to failure, as it will tend to greedily use up the
wastage allowance to get around any problem it encounters. If it maxes out on
the wastage bound early on, then it is extremely unlikely that it will be able to
label the rest of the board without breaking the bound. However, we may not
be able to tell this until much later on, since the center can often be labeled
perfectly. Therefore, the search will reach extremely deep parts of the search
tree, even though there is no chance of success and we will essentially be stuck
forever. Instead, we need a smarter search strategy that has more foresight.

Intuitively, although labeling the top parts of the board optimally is difficult,
it is much easier than labeling the final part of the board, since the final part
of the board will have boundary constraints on every side, making it extremely
difficult to get a perfect labeling with minimal wastage. Thus, we would like to
save all our wastage allowance until the end. We accomplish this by splitting the
search into two phases. The first phase consists of labeling all parts of the board
other than the last 8 rows, and the second phase consists of the last 8 rows. In
the first phase, we use a variation of limited discrepancy search (LDS), designed
to preserve our wastage allowance as much as possible. We describe this in the
next paragraph. If we manage to get to the last 8 rows, then we switch to a
normal depth first search where the wastage allowance is used as necessary to
finish off labeling the last few rows.

Our LDS-like algorithm is as follows. We define the discrepancy as the amount
by which a value choice causes our wastage lower bound to increase. Note that
this is totally different from defining it as the amount of wastage caused by a
value choice. For example, if our lookahead tells us that a wastage of 10 is un-
avoidable among the unlabeled variables, and we choose a value with 1 wastage,
after which our lower bound for the rest of the unlabeled variables is 9, then
there is no discrepancy. This is because even though we chose a value that
caused wastage, the wastage was forced. We are thus still labeling optimally
(as far as our lookahead can tell). On the other hand, if the lookahead tells us
that 10 wastage is unavoidable, and we choose a value with 0 wastage, after
which our lower bound becomes 11, then there is a discrepancy. This is because,
even though we did not cause immediate wastage, we have in fact labeled sub-
optimally as this greedy choice causes more wastage later on. Discrepancy based
on increases in wastage lower bounds is far better than one based on immediate
wastage, as greedily avoiding wastage often leads to substantially more wastage
later on! Note that by definition, there can be multiple values at each node with
the same discrepancy, all of which should be searched at that discrepancy level.

Our search also differs from traditional LDS in the way that discrepancies
are searched. Traditional LDS assumes that the branching heuristic is weak
at the top of the tree, and therefore tries discrepancies at the top of the tree
first. This involves a lot of backtracking to the top of the tree and is extremely
inefficient for our case, since the branching heuristic for still life is not weak at



the top of the tree and our trees are very deep. Hence, we order the search to try
discrepancies at the leaves first, which makes the search much closer to depth-first
search. This is substantially more efficient and is in fact crucial for solving our
relaxations incrementally. We also modify LDS by adding local restarts. This is
based on the fact that, for problems with as large a search space as this, complete
search methods are doomed to failure, as mistakes require an exponential time
to fix. Instead, we do incomplete LDS by performing local restarts at random
intervals dependant on problem size, during which we backtrack by a randomised
amount which averages to two super-rows. Value choices with the same number
of discrepancies are randomly reordered each time a node is generated, so when
a node is re-examined, the solver can take another path. Given the size of the
search space, we do not wait until all nodes with the current discrepancy are
searched before we try a higher discrepancy. Instead, after a reasonable amount
of time (around 20 min) we give up and increase the discrepancy. Essentially,
what we are doing is to try to use as little of our wastage at the top as possible
and save more for the end. But if it feels improbable that we can label the top
with so little wastage, then we use more of our allowance for the top.

5 Improving the upper bound

The incomplete search described in the previous section does not always find
a solution equal to the closed form upper bound in the allocated time. For
some of the cases in which this happens, we can perform a different kind of
simplified search that also allows us to prove optimality. This simplified search
is based on Equation (3) and, in particular, on the fact that wastage lower
bounds are converted into live cell upper bounds by being rounded down. For
instance, if our wastage lower bound gives us live cells ≤ b100.75c, then we
actually have live cells ≤ 100. This means that the live cell upper bound we get
is actually slightly stronger whenever the numerator is not divisible by 4. Since
the upper bound is strengthened, it means that we do not always have to achieve
the minimum amount of forced wastage in order to achieve the live cell upper
bound. Let us define spare = (2n2 + 4n −min wastage) mod 4. The spare
value (0, 1, 2 or 3) tells you how many “unforced” (by the boundary constraints)
wastage we can afford to have and still achieve the closed form upper bound.
In other words, although the boundary constraints force a certain number of
wastage, we can afford to have spare wastage anywhere in the n×n region and
still achieve the closed form upper bound.

It is interesting to consider the instances of n for which spare = 0. We believe
that these are the instances where our closed form upper bound is most likely
to be off by one. This is because when spare = 0, the closed form upper bound
can only be achieved if there are no “unforced” wastage, and this can make the
problem unsolvable. In other words, when spare = 0, any optimal solution that
achieves the closed form upper bound must also be center perfect, since the edge
and corner variables alone are sufficient to force all the wastage allowed. Thus, a
complete search on center perfect solutions is sufficient to prove unsatisfiability of
this value and improve the upper bound by 1. If we have already found a solution
with 1 less live cell than the closed form upper bound, this will constitute a full



proof of optimality. A complete search on center perfect solutions with minimum
wastage is in fact quite feasible. This is because the corner, edges and center all
have to be labeled absolutely perfectly with no unforced wastage, and there are
very few ways to do this. For spare > 0 however, none of this is possible, as the
spare “unforced” wastage can occur in an arbitrary position in the board, and
proving that no such solution exists requires staggeringly more search.

6 Results

Our solver is written in C++ and compiled in g++ with O3 optimisation. It
is run on a Xeon Pro 2.4GHz processor with 2Gb of memory. We run it for all
n between 20 and 100. Smaller values of n have already been solved and are
trivial for our solver. In Table 5, we list for each instance n, the lower bound
(best solution found), the upper bound (marked with an asterisk if improved by
1 through complete search), the time in seconds taken to find the best solution,
and the time in seconds taken to prove the upper bound. Each instance was run
for at most 12 hours.

There are two precomputed tables which are used for all instances and are
read from disk. These include tables for the 8 × 8 corner which takes 8s to
compute and 16k memory to store, and a “thick edge” table consisting of a
width 8 edge which takes 17 minutes to compute and ∼400Mb of memory. Since
these are calculated only once and used for all instances the time used is not
reflected in the table.

As can be seen, “small” instances like 20 ≤ n ≤ 30 which previously took days
or were unsolvable can now be solved in a matter of seconds (after paying the
above fixed costs). The problem gets substantially harder for larger n. Beyond
n ∼ 40, we can no longer reliably find the optimal solution. However, we are still
able to find solutions which are no more than 3-4 cells off the true optimum all
the way up to n = 100. The run times for the harder instances have extremely
high variance due to the large search space and the scarcity of the solutions. If
the solver gets lucky, it can find a solution in mere seconds. Otherwise, it can
take hours. Thus, the run time numbers are more useful as an indication of what
is feasible, rather than as a precise measure of how long it takes.

Our memory requirements are also quite modest compared to previous meth-
ods. The previous best method used an amount of memory exponential in n and
could not be run for n > 22. Our solver, on the other hand, uses a polyno-
mial amount of memory. For n = 100 for example, we use ∼ 400 Mb for the
precomputed tables and ∼ 120 Mb for the actual search.

7 Conclusion

We reformulate the Maximum Density Still Life problem into one of minimising
wastage. This allows us to calculate very tight upper bounds on the number
of live cells and also gives insight into the patterns that can yield optimal so-
lutions. Using a boundary based relaxation, we are able to prove in constant
time an upper bound on the number of live cells for all n which is never off the
true optimum by more than one for all n ≤ 50. We further conjecture that this



n lower upper lb. time ub. time n lower upper lb. time ub. time
20 210 210 0.1 0.1 60 1834 1836 4.3 0.1
21 232 232 0.4 0.1 61 1897 1897 15648 0.1
22 253 253 3.4 0.1 62 1957 1959* 62 0.1
23 276 276 0.1 0.1 63 2021 2023 7594 0.1
24 301 301* 0.5 0.1 64 2085 2087 389 0.1
25 326 326 0.6 0.1 65 2150 2152 137 0.1
26 352 352* 2.1 6.2 66 2217 2218 2296 0.1
27 379 379 51 0.1 67 2284 2285 26137 0.1
28 406 407 1.4 0.1 68 2351 2354 3149 0.1
29 437 437 2.5 0.1 69 2422 2422 14755 0.1
30 466 466* 45 0.3 70 2490 2493 641 0.1
31 497 497 0.6 0.1 71 2562 2564 3077 0.1
32 530 530* 1815 0.1 72 2634 2636 866 0.1
33 563 563 60 0.1 73 2706 2709 433 0.1
34 598 598 207 0.1 74 2781 2783 3575 0.1
35 632 632* 1459 1.9 75 2856 2858 5440 0.1
36 668 668 0.1 0.1 76 2932 2934* 5879 3.4
37 706 706 1.1 0.1 77 3009 3011 5298 0.1
38 743 744 43 0.1 78 3088 3090 20865 0.1
39 782 782* 3.4 3.3 79 3166 3169 2768 0.1
40 823 823* 3.3 10.0 80 3247 3249 8328 0.1
41 864 864* 553 2.1 81 3327 3330 113 0.1
42 906 907 1.6 0.1 82 3410 3412 2 0.1
43 949 950 2176 0.1 83 3492 3495 10849 0.1
44 993 993* 285 3.4 84 3576 3579* 1083 3.6
45 1039 1039 3807 0.1 85 3661 3664* 3666 0.6
46 1084 1085* 101 3.4 86 3748 3751 7628 0.1
47 1131 1132 244 0.1 87 3835 3838 957 0.1
48 1180 1181 265 0.1 88 3923 3926 5047 0.1
49 1229 1229* 563 10 89 4012 4015 1837 0.1
50 1279 1280 9.2 0.1 90 4102 4105* 7047 3.2
51 1330 1331 105 0.1 91 4193 4196 605 0.1
52 1381 1383 354 0.1 92 4286 4289 8843 0.1
53 1436 1436 4326 0.1 93 4379 4382 2254 0.1
54 1489 1490* 25219 3.3 94 4473 4476 3669 0.1
55 1543 1545 296 0.1 95 4568 4571 10871 0.1
56 1601 1602 484 0.1 96 4664 4667 16801 0.1
57 1657 1659 816 0.1 97 4761 4764 36205 0.1
58 1716 1717 1950 0.1 98 4859 4862* 3462 3.4
59 1774 1776 992 0.1 99 4958 4961 7660 0.1

100 5058 5062 15458 0.1
Table 5. Results on large max-density still life problems. Optimal answers are shown in
bold. Upper bounds which are improved by complete search are shown starred. Times
in seconds to one decimal place (in reality 0.1 usually represents a few milliseconds)

holds true for all n and thus we may have found the optimum value for all n
up to a margin of error of 1. By using dynamic relaxation as a lookahead learn-
ing/pruning technique, we are able to produce a complete depth 400+ lookahead
that can be calculated in constant time. This prunes the search so powerfully



Fig. 4. An optimal solution to 69×69.

that we can find optimal (or near optimal) solutions for a problem where the
search space grows as 2n2

. The largest n for which the problem is completely
solved is n = 69 (shown in Figure 4). Further, we have proved upper and lower
bounds that differ by no more than 4 for all n up to 100. All of our solutions
can be found at www.csse.unimelb.edu.au/~pjs/still-life/.
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