
Minimizing the maximum number of open stacks
by customer search

Geoffrey Chu and Peter J. Stuckey

NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

Abstract. We describe a new exact solver for the minimization of open
stacks problem (MOSP). By combining nogood recording with a branch
and bound strategy based on choosing which customer stack to close
next, our solver is able to solve hard instances of MOSP some 5-6 orders
of magnitude faster than the previous state of the art. We also derive
several pruning schemes based on dominance relations which provide
another 1-2 orders of magnitude improvement. One of these pruning
schemes largely subsumes the effect of the nogood recording. This allows
us to reduce the memory usage from an potentially exponential amount
to a constant ∼2Mb for even the largest solvable instances. We also show
how relaxation techniques can be used to speed up the proof of optimality
by up to another 3-4 orders of magnitude on the hardest instances.

1 Introduction

The Minimization of Open Stacks Problem (MOSP) [10] can be described as
follows. A factory manufactures a number of different products in batches, i.e.,
all copies of a given product need to be finished before a different product is
manufactured, so there are never two batches of the same product. Each cus-
tomer of the factory places an order requiring one or more different products.
Once one product in a customer’s order starts being manufactured, a stack is
opened for that customer to store all products in the order. Once all the prod-
ucts for a particular customer have been manufactured, the order can be sent
and the stack is freed for use by another order. The aim is to determine the
sequence in which products should be manufactured to minimize the maximum
number of open stacks, i.e., the maximum number of customers whose orders are
simultaneously active. The importance of this problem comes from the variety of
real situations in which the problem (or an equivalent version of it) arises, such
as cutting, packing, and manufacturing environments, or VLSI design. Indeed
the problem appears in many different guises in the literature, including: graph
path-width and gate matrix layout (see [3] for a list of 12 equivalent problems).
The problem is known to be NP-hard [3].

We can formalize the problem as follows. Let P be a set of products, C a
set of customers, and c(p) a function that returns the set of customers who have
ordered product p ∈ P . Since the products ordered by each customer c ∈ C are
placed in a stack different from that of any other customer, we use c to denote

p1 p2 p3 p4 p5 p6 p7

c1 X . . . X . X
c2 X . . X . . .
c3 . X . X . X .
c4 . . X X . X X
c5 . . X . X . .

p7 p6 p5 p4 p3 p2 p1

c1 X – X – – – X
c2 . . . X – – X
c3 . X – X – X .
c4 X X – X X . .
c5 . . X – X . .

(a) (b)

Fig. 1. (a) An example c(p) function: ci ∈ c(pj) if the row for ci in column pj has an
X. (b) An example schedule: ci is active when product pj is scheduled if the row for ci
in column pj has an X or a –.

both a client and its associated stack. We say that customer c is active (or that
stack c is open) at time k in the manufacturing sequence if there is a product
required by c that is manufactured before or at time k, and also there is a product
manufactured at time k or afterwards. In other words, c is active from the time
the first product ordered by c is manufactured until the last product ordered by
c is manufactured. The MOSP aims at finding a schedule for manufacturing the
products in P (i.e., a permutation of the products) that minimizes the maximum
number of customers active (or of open stacks) at any time. We call a problem
with n customers and m products an n×m problem.

Example 1. Consider a 5×7 MOSP for the set of customers C = {c1, c2, c3, c4, c5},
and set of products P = {p1, p2, p3, p4, p5, p6, p7}, and a c(p) function determined
by the matrix M shown in Figure 1(a), where an X at position Mij indicates
that client ci has ordered product pj .

Consider the manufacturing schedule given by sequence [p7, p6, p5, p4, p3, p2, p1]
and illustrated by the matrix M shown in Figure 1(b), where client ci is active
at position Mij if the position contains either an X (pj is in the stack) or an – (ci
has an open stack waiting for some product scheduled after pj). Then, the active
customers at time 1 are {c1, c4}, at time 2 {c1, c3, c4}, at time 3 {c1, c3, c4, c5},
at time 4 {c1, c2, c3, c4, c5}, at time 5 {c1, c2, c3, c4, c5}, at time 6 {c1, c2, c3},
and at time 7 {c1, c2}. The maximum number of open stacks for this particular
schedule is thus 5.�

The MOSP was chosen as the subject of the first Constraint Modelling Chal-
lenge [6] posed in May 2005. Many different techniques were explored in the 13
entries to the challenge. The winning entry by Garcia de la Banda and Stuckey [2]
concentrated on two properties of the MOSP problem. First, the permutative
redundancy found in the MOSP problem leads naturally to a dynamic program-
ming approach [2]. This approach is also largely equivalent to the constraint pro-
gramming approach described in [5] where permutative redundancies are pruned
using a table of no-goods. Second, by using a branch and bound method, the
upper bound on the number of open stacks can be used to prune branches in
various ways. These two techniques are very powerful and led to a solver that
was an order of magnitude faster than any of the other entries in the 2005 MOSP
challenge. The Limited Open Stacks Problem, LOSP (k), is the decision version
of the problem, where we determine if for some fixed k there is an order of prod-
ucts that requires at most k stacks at any time. The best approach of [2] solves

the MOSP problem by repeatedly solving LOSP (k) and reducing k until this
problem has no solution.

The search strategy used in this winning entry (branching on which product
to produce next), is actually far from optimal. As was first discussed in [8] and
shown in [9], branching on which customer stack to close next is never worse
than branching on which product to produce next, and is usually much better,
even when the number of customers is far greater than the number of products.
This is the result of a simple dominance relation. In this paper we show that
combining this search strategy with nogood recording produces a solver that is
some 5-6 orders of magnitude faster than the winning entry to the Modelling
Challenge on hard instances. We also derive several other dominance rules that
provide a further 1-2 orders of magnitude improvement. One rule in particular
largely subsumes the effect of the nogood recording. This allows us to reduce
the memory usage from an potentially exponential amount to a constant ∼2Mb
for even the largest solvable instances. We also utilise relaxation techniques to
speed up the proof of optimality for the hardest instances by a further 3-4 orders
of magnitude. With all the improvements, our solver is able to solve all the open
instances from the Modelling Challenge within 10 seconds!

2 Searching on Customers

Our solver employs a branch and bound strategy for finding the exact number
of open stacks required for an MOSP instance. The MOSP instance is treated as
a series of satisfaction problems LOSP(k), where at each stage, we ask whether
there is a solution that uses no more than k stacks. If a solution is found, we
decrease k and look for a better solution.

We briefly define what a dominance relation is. A dominance relation . is a
binary relation defined on the set of partial problems generated during a search
algorithm. For a satisfaction problem, if Pi and Pj are partial problems corre-
sponding to two subtrees in the search tree, then Pi . Pj imply that if Pj has a
solution, then Pi must have a solution. This means that if we are only interested
in the satisfiability of the problem, and Pi dominates Pj , then as long as Pi is
searched, Pj can be pruned.

The customer based search strategy is derived from following idea. Given a
product order U = [p1, p2, . . . pn], define a customer close order T = [c1, c2, . . . cm]
as the order in which customer stacks can close given U . Construct U ′ such that
we first schedule all the products needed by c1, then any products required by
c2, then those required by c3, etc. It is easy to show that if U is a solution, then
so is U ′. Clearly this can be converted to a dominance relation. It is sufficient
to search only product orderings where every product is required by the next
stack to close. This can be achieved by branching on which customer stack to
close next, and then scheduling exactly those products which are needed. The
correctness of this search strategy is proved in [8] and [7]. In fact, it can be shown
that the customer based search strategy never examines more nodes than the
search strategy based on choosing which product to produce next (even when
the strongest look ahead pruning of [2] is used).

p3 p5 p4 p6 p7 p2 p1

c1 . X – – X – X|
c2 . . X – – – X|
c3 . . X X – X| .
c4 X – X X X| . .
c5 X X|

p3 p5 p1 p7 p4 p2 p6

c1 . X X X| . . .
c2 . . X – X| . .
c3 X X X|
c4 X – – X X – X|
c5 X X|

c1
p1

||
||

||
|| p5

BB
BB

BB
BB

p7

11
11

11
11

11
11

11

c2

p4
p4

PPPPPPPPPPPPPP c5

p3

c3
p4,p6

c4

(a) (b) (c)

Fig. 2. (a) A schedule corresponding to customer order [c5, c4, c3, c2, c1]. (b) A schedule
corresponding to customer order [c5, c1, c2, c3, c4]. (c) The customer graph (ignoring self
edges) with edges labelled by the products that generate them.

Example 2. Consider the schedule U shown in Figure 1(b), the customers are
closed in the order {c4, c5} when p3 is scheduled, then {c3} when p2 is scheduled,
then {c2, c1} when p1 is scheduled. Consider closing the customers in the order
T = [c5, c4, c3, c2, c1] compatible with U . This leads to a product ordering, for
example, of U ′ = [p3, p5, p4, p6, p7, p2, p1]. The resulting scheduling is shown in
Figure 2(a). It only requires 4 stacks (and all other schedules with this closing
order will use the same maximum number of open stacks).

Define the customer graph G = (V,E) for an open-stacks problem as: V = C
and E = {(c1, c2) | ∃p ∈ P, {c1, c2} ⊆ c(p)}, that is, a graph in which nodes
represent customers, and two nodes are adjacent if they order the same product.
Note that, by definition, each node is self-adjacent. Let N(c) be the set of nodes
adjacent to c in G. The customer graph for the problem of Example 1 is shown
in Figure 2(c).

Rather than thinking in terms of products then, it is simpler to think of the
MOSP problem entirely in terms of the customer graph. All functions c(p) that
produce the same customer graph have the same minimum number of stacks.
Thus the products are essentially irrelevant. Their sole purpose is to create edges
in the customer graph. Thus we can think of the MOSP this way. For each
customer c, we have an interval during which their stack is open. If there is an
edge between two nodes in the customer graph, then their intervals must overlap.
If a customer close order that satisfies these constraints are found, an equivalent
product ordering using the same number of stacks can always be found.

We define our terminology. At each node there is a set of customer stacks
S that have been closed. The stacks which have been opened (not necessarily
currently open) are O(S) = ∪c∈SN(c). The set of currently open stacks is given
by O(S) − {c ∈ O(S)|N(c) ⊆ O(S)}. For each c not in S, define o(c, S) =
N(c)−O(S), i.e. the new stacks which will open if c is the next stack to close.

Define open(c, S) = |o(c, S)| and close(c, S) = |{d|o(d, S) ⊆ o(c, S)}|, i.e.
the new stacks that will open and the number of new stacks that will close
respectively if we close c next.

Suppose that customers S are currently closed, then closing c requires open-
ing o(c, S), so the number of stacks required is |O(S) − S ∪ o(c, S)|. If we
are solving LOSP(k) and |O(S) − S ∪ o(c, S)| > k then it is not possible

to close customer c next, and we call the sequence S ++ [c] violating. Note
|O(S)− S ∪ o(c, S)| ≥ open(c, S).

We define the playable sequences as follows: the empty sequence ε is playable;
S ++ [c] is playable if S is playable and S ++ [c] is not violating.

A solution S of the LOSP(k) is a playable sequence of all the customers C.
This leads to an algorithm for MOSP by simply solving LOSP(k) for k varying
from |C| − 1 (there is definitely a solution with |C|) to 1, and returning the
smallest k that succeeds.

MOSP(C, N)
for (S ∈ 2C) prob[S] := false

for (k ∈ |C| − 1, . . . , 1)
if (¬ playable(∅,C,k,N) return k + 1

playable(S, R, k, N)
if (prob[S]) return false

if (R = ∅) return true
for (c ∈ R)

if (|O(S)− S ∪ o(c, S)| ≤ k)
if (playable(S ∪ {c}, R− {c}, k, N)) return true

prob[S] := true

return false

This simple algorithm tries to schedule the customers in all possible orders
using at most k stacks. The memoing of calls to playable just records which partial
sets of customers, S, have been examined already by setting prob[S] = true. If
a set has already been considered it either succeeded and we won’t look further,
or if it failed, we record the nogood and return false when we revisit it.

The algorithm can be improved by noting that if o(ci, S) ⊆ o(cj , S) and i < j,
then clearly, we can always play i before j rather than playing j immediately,
since closing j will close i in any case. Hence move j can be removed from the
candidates R considered for the next customer to close.

Example 3. Reexamining the problem of Example 1 using the closing customer
schedule of [c5, c1, c2, c3, c4] results in many possible schedules (all requiring the
same maximum number of open stacks). One is shown in Figure 2(b). This uses
3 open stacks and is optimal since e.g. product p4 always requires 3 open stacks.

3 Improving the search on customers

In this section we consider ways to improve the basic search approach by ex-
ploiting several other dominance relations.

3.1 Definite Moves

Suppose S ++ [q] is playable and close(q, S) ≥ open(q, S), then if there is any
solution extending S there is a solution extending S ++ [q]. This means that

we can prune all branches other than q. Intuitively speaking, q is such a good
move at this node that it is always optimal to play it immediately.

Theorem 1. Suppose S ++ [q] is playable and close(q, S) ≥ open(q, S), then
if U ′ = S ++ R is a solution, there exists a solution U = S ++ [q] ++ R′.

Proof. Suppose there was a solution U ′ = S ++ [c1, c2, . . . , cm, q, cm+1, . . . , cn].
We claim that U = S ++ [q, c1, . . . , cm, cm+1, . . . , cn] is also a solution. The two
sequences differ only in the placement of q. The number of stacks which are open
at any time before, or any time after the set of customers {c1, c2, . . . , cm, q} are
played is identical for U and U ′, since it only depending on the set of customers
closed and not the order. Thus if U ′ is a solution, then U has less than or equal
to k open stacks at those times. Since S ++ [q] is playable, the number of open
stacks when q is played in U is also less than or equal to k. Finally, the number
of open stacks when S ++ [q, c1, c2, . . . , ci] has been played in U is always less
than or equal to the number of open stacks when S ++ [c1, c2, . . . , ci] has been
played in U ′, because we have at most open(q, S) extra stacks open, but at least
close(q, S) extra stacks closed. Thus the number of open stacks at these times
are also less than or equal to k and U is a solution.

3.2 Better Moves

While definite moves are always worth playing we can find similarly that one
move is always better than another. If both S ++ [q] and S ++ [r, q] are
playable and close(q, S ∪ {r}) ≥ open(q, S ∪ {r}) then if there is a solution
extending S ++ [r], there exists a solution extending S ++ [q]. This means that
we do not need to consider move r at this node. Intuitively, q is so much better
than r that rather than playing r now, it is always better to play q first.

Theorem 2. Suppose S ++ [q] and S ++ [r, q] are playable and close(q, S ∪
{r}) ≥ open(q, S ∪ {r}) then if U ′ = S ++ [r] ++ R is a solution there exists
a solution U = S ++ [q] ++ R′.

Proof. Suppose there was a solution U ′ = S ++ [r, c1, c2, .., cm, q, cm+1, . . . , cn].
The conditions imply that if r is played now, q becomes a definite move. By the
same argument as above, U ′′ = S ++ [r, q, c1, . . . , cn] is also a solution. Now
if we swap q with r, the number of new stacks opened before r increases by
at most open(q, S), but the number of new stacks closed before r increases by
exactly close(q, S). Also, playing q after S does not break the upperbound by
our condition. Thus U = S ++ [q, r, c1, . . . , cn] is also a solution. �

Although “better move” seems weaker than “definite move” as it prunes
only one branch at a time rather than all branches but one, it is actually a
generalisation, as by definition any “definite move” is “better” than all other
moves. Our implementation of “better move” subsumes “definite move” so we
will simply consider them as one improvement.

3.3 Old Move

Let S = [s1, s2, . . . , sn]. Suppose U = [s1, s2, .., sm, q, sm+1, . . . , sn] is playable
and we have previously examined the subtree corresponding to state [s1, s2, .., sm, q].
Then we need not consider sequences starting with U ′ = S ++ [q] because we
will have already considered equivalent sequences earlier when searching from
state [s1, s2, .., sm, q].

Theorem 3. Let S = [s1, s2, . . . , sn]. Suppose that S′ = [s1, s2, .., sm, q, sm+1, . . . , sn]
is playable, then if U ′ = S ++ [q] ++ R is a solution then U = S′ ++ R is a
solution.

Proof. S′ is playable by assumption so the number of open stacks at any time
during S′ is less than or equal to k. At any point after S′, the number of open
stacks are identical for U and U ′ since it only depends on the set of closed
customers and not the order. Hence U is also a solution.

At any node, if it is found that at some ancestor node, the q branch has been
searched and U is playable, then q can immediately be pruned. This pruning
scheme was mentioned in [8], but it was incorrectly stated there. The author of [8]
failed to note that the condition that U is playable is in fact crucial, because if U
was not playable, then the set S ++ [q] would have been pruned via breaking the
upper bound and would not have in fact been previously explored, thus pruning
it now would be incorrect.

Naively, it would appear to take O(|C|3) time to check the “old move” condi-
tion at each node. However, it is possible to do so in O(|C|) time. At each node
we keep a set Q(S) of all the old moves. i.e. the set of moves q such that we can
find S′ = [s1, s2, .., sm, q, sm+1, . . . , sn] which is playable, and such that move q
has already been searched at the node S′′ = [s1, .., sm]. Note that by definition,
when a move r has been searched at the current node, r will be added to Q(S).
It is easy to calculate Q(S ++ [sn+1])) when we first reach that child node.
First, Q(S ++ [sn+1]) ⊆ Q(S), since if S′ = [s1, s2, .., sm, q, sm+1, . . . , sn, sn+1]
is playable then by definition so is S′ = [s1, s2, .., sm, q, sm+1, . . . , sn]. Second,
to check if each q ∈ Q(S) is also in Q(S ++ [sn+1]), we simply have to check
whether the last move in S′ = [s1, s2, .., sm, q, sm+1, . . . , sn, sn+1] is playable, as
all the previous moves are already known to be playable since q ∈ Q(S). Check-
ing the last move takes constant time so the total complexity is O(|C|). There
are some synergies between the “better move” improvement and the “old move”
improvement. If q ∈ Q(S) and q is better than move r, then we can add r to
Q(S) as well. This allows “old move” to prune sets that we have never even seen
before.

3.4 Upperbound heuristic

In this section, we describe an upperbound heuristic which was found to be very
effective on our instances. A good heuristic for finding an optimal solution is
useful from a practical point of view if no proof of optimality is required. It
is also a crucial component for the relaxation techniques described in the next

Table 1. Comparison of upperbound heuristic, versus complete search on some difficult
problems. Times in milliseconds

Instance Orig. time Heur. time Speedup
100-100-2 4136.3 39.8 104.0
100-100-4 4715.5 43.3 108.8
100-100-6 8.2 12.8 0.6
100-100-8 9.2 6.3 1.5
100-100-10 1.6 1.3 1.3
125-125-2 1159397.3 385.1 3010.3
125-125-4 2593105.1 398.9 6500.1
125-125-6 8975.9 424.9 21.1
125-125-8 187.8 146.1 1.3
125-125-10 22.2 8.3 2.7

subsection which can give several orders of magnitude speedup on the proof of
optimality for hard problems.

In [2] the authors tried multiple branching heuristics in order to compute and
upper bound, but only applied them in a greedy fashion, effectively searching
only 1 leaf node for each. We can do much better by performing an incomplete
search where we are willing to explore a larger number of nodes, but still much
fewer than a complete search. Simple ways of doing this using our complete
search engine include, sorting the choices according to some criteria, and only
trying the first m moves for some m. Or trying all the moves which are no worse
than the best by some amount e, etc.

One heuristic that is extremely effective is to only consider the moves where
we close a customer stack that is currently open, the intuition being that if a
stack is not even open yet, there is no point trying to close it now. Although this
seems intuitively reasonable, it is in fact not always optimal. In practice however,
an incomplete search using this criteria is very fast, and finds the optimal solution
almost all the time, and several orders of magnitude faster than the complete
search for some hard instances. The reason for its strength comes from its ability
to exploit a not quite perfect dominance relation. Almost all the time, subtrees
where we close a stack that is not yet open is dominated by one where we close
a currently open stack, and thus we can exploit this to prune branches similarly
to what we did in Section 3. The dominance is not always true however, so using
such a pruning rule makes it an incomplete, heuristic search. The procedure
ub MOSP is identical to that for MOSP except that the line for (c ∈ R) is
replaced by for (c ∈ R ∩O(S)).

See Table 1 for a brief comparison of the times required to find the optimal
solution.

3.5 Relaxation

Relaxation has been used in [4] in the context of a local search method. The
idea there was to try to relax the problem in such a way that solution density
is increased and thus better solutions can be found quicker. However, those
methods are of no help for proving optimality. In this section we show how
relaxation can be used to speed up the proof of optimality.

As was seen in the experimental results in [2], the sparser instances of MOSP
are substantially harder than denser instances of MOSP given the same number
of customers and products. This can be explained by the fact that in sparser
instances, each customer has far fewer neighbours in the customer graph, thus
many more moves would fall under the upper bound limit at each node and both
the depth and the branching factor of the search tree are dramatically increased
compared to a dense instance of the same size.

However, the sparsity of these instances also leads to a potential optimization.
Since the instance is sparse and the optimum is low (e.g. 20-50 for a 125×125
problem) it is possible that not all of the constraints are actually required to
force the lower bound. It is possible that there is some small “unsatisfiable
core” of customers which are producing the lower bound. If such an unsatisfiable
core exists and can be identified, we can potentially remove a large number of
customers from the problem and make the proof of optimality much quicker. It
turns out that this is often possible.

First, we will show how we can relax the MOSP instance. Naively, we can
simply delete an entire node in the customer graph and remove all edges contain-
ing that node. This represents the wholesale deletion of some constraints and of
course is a valid relaxation. However, we can do much better using the following
result from [1] (although only informal arguments are given for correctness)

Lemma 1. If G′ is some contraction of G, where G represents the customer
graph of an MOSP instance, then G′ is a relaxation of G.

So by using this lemma, we can get some compensation by retaining some
of the edges when we remove a node. Next we need to identify the nodes which
can be removed/merged without loosening the lower bound on the problem.

The main idea is that the longer a customer’s stack is open in the optimal
solutions, the more likely it is that that customer is contributing to the lower
bound, since removal of such a customer would mean that there is a high chance
that one of the optimal solutions can reduce to one needing one fewer stack.
Thus we want to avoid removing such customers. Instead we want to remove
or merge customers whose stacks are usually open for a very short time. One
näıve heuristic is to greedily remove nodes in the customer graph with the lowest
degree. Fewer edges coming out of a node presumably means that the stack is
open for a shorter period of time on average.

A much better heuristic comes from the following idea. Suppose there exist a
node c such that any neighbour of c is also connected to most of the neighbours
of c, then when c is forced open by the closure of one of those neighbours, that
neighbour would also have forced most of the neighbours of c to open, and thus c
will be able to close soon afterwards and will only be open for a short time. The
condition that most neighbours of c are connected to most other neighbours of
c is in fact quite common for sparse instances due to the way that the customer
graph is generated from the products (each product produces a clique in the
graph). To be more precise, in our implementation, the customers are ranked
according to:

F (c) =
∑

c′∈N(c)

|N(c)−N(c′)|/|N(c)| (1)

This is a weighted average of how many neighbours c′ of c are not connected
to each neighbour of c. The weights represents the fact that neighbours with
fewer neighbours are more likely to close early and be the one that forces c to
open. We merge the node c with the highest value of F (c) with the neighbouring
node c′ with the highest value of |N(c)−N(c′)|, as that node stands to gain the
highest number of edges.

Although we have a good heuristic for finding nodes to merge, it is quite
possible to relax too much to the point that the relaxed problem has a solution
lower than the true lower bound of the original problem, in which case it will
be impossible to prove the true lower bound using this relaxed problem. Thus
it is important that we have a quick way of finding out when we have relaxed
too much. This is where the very fast and strong upperbound heuristic of the
previous subsection is needed. The overall relaxation algorithm is as follows:

relax MOSP(C, N)
ub := ub MOSP(C, N) % ub is an upper bound
(C ′, N ′) := (C,N)
while (|C ′| > ub)

(C ′, N ′) := merge one pair(C ′, N ′) % relax problem
while ((C,N) 6= (C ′, N ′))

relax ub := ub MOSP(C ′, N ′)
if (relax ub < ub) % too relaxed to prove lb

(C ′, N ′) := unmerge one pair(C ′, N ′) % unrelax problem
else

lb := MOSP(C ′, N ′) % compute lowerbound
if (lb < ub) % too relaxed to prove lb

(C ′, N ′) := unmerge one pair(C ′, N ′) % unrelax problem
else return ub % lb = ub

return MOSP(C, N) % relaxation failed!

As can be seen, the upperbound heuristic is necessary to find a good (optimal)
solution quickly. It is also used to detect when we are too relaxed as quickly as
possible so that we can unrelax. If the upperbound heuristic is sufficiently good,
we will quickly be able to find a relaxation that removes as many customers as
possible without being too relaxed. If the upperbound heuristic is weak however,
we could waste a lot of time searching in a problem that is in fact too relaxed to
ever give us the true lowerbound. In practice, we have found that our upperbound
heuristic is quite sufficient for the instances we tested it on.

There are a few optimisations we can make to this basic algorithm. Firstly,
when an unmerge is performed, we can attempt to extend the last solution found
to a solution of this less relaxed problem. If the solution extends, then it is still
too relaxed and we need to unmerge again. This saves us having to actually look
for a solution to this problem. Secondly, naively, when we perform an unrelax,

Table 2. Results on the open problems from the Constraint Modelling Challenge 2005,
comparing versus the the winner of the challenge [2]. Times in milliseconds.

.
[2] This paper

Best Nodes Time Optimal Nodes Time
SP2 19 25785 1650 19 1236 7
SP3 36 949523 ∼3600000 34 84796 410
SP4 56 3447816 ∼14400000 53 1494860 9087

we can simply unmerge the last pair of nodes that were merged. However, we
can do better. One of the weaknesses of the current algorithm is that the nodes
to be merged are chosen greedily using equation (1). If this happens to choose a
bad relaxation that lowers the lowerbound early on, then we will not be able to
remove any more customers beyond that point. We can fix this to some extent
by choosing which pair of nodes to unmerge when we unrelax. We do this by
considering each of the problems that we get by unmerging each pair of the
current merges. If the last solution found does not extend to a solution for one
of these, then we choose that unmerge, as this unrelaxation gives us a chance
to prove the true lowerbound. If the last solution extends to a solution for all
of them, we unmerge the last pair as per usual. This helps to get rid of early
mistakes in merging and is useful on several of our instances.

4 Experimental evaluation

In this section we demonstrate the performance of our algorithm, and the effect
of the improvements. The experiments were performed on a Xeon Pro 2.4GHz
processor with 2Gb of memory. The code implementing the approaches were
compiled using g++ with -O3 optimisation.

4.1 Modelling Challenge instances

Very stringent correctness tests were performed in view of the large speedups
achieved. All versions of our solver were run on the 5000+ instances used in
the 2005 model challenge [6], as well as another 100,000 randomly generated in-
stances of size 10×10 to 30×30 and various densities. The answers were identical
with the solver of [2].

We compare our solver with the previous state of the art MOSP solver, on
which our solver is based. The results clearly show that our solver is orders of
magnitude faster than the original version. Getting an exact speedup is difficult
as almost all of the instances that the original version can solve are solved triv-
ially by our solver in a few milliseconds, whereas instances that our solver finds
somewhat challenging are completely unsolvable by the original version.

Our solver was able to solve all the open problems from the Modelling Chal-
lenge: SP2, SP3, and SP4. Table 2 compares these problems with the best results
from the Challenge by [2]. The nodes and times (in milliseconds) for [2] are for
finding the best solution they can. The times for our method are for the full
solve including proof of optimality (using all improvements).

4.2 Harder Random instances

Of the 5000+ instances used in the 2005 challenge, only SP2, SP3 and SP4 take
longer than a few milliseconds for our solver to solve. Thus we generate some
difficult random instances for this experiment. First we specify the number of
customers, number of products and the average number of customers per prod-
uct. We then calculate a density that will achieve the specified average number
of customers per product. The customer vs product table is then randomly gen-
erated using the calculated density to determine when to put 1’s and 0’s. As a
post condition, we throw away any instance where the customer graph can be
decomposed into separate components. This is done because we want to compare
on instances of a certain size, but if the customer graph decomposes, then the
instance degenerates into a number of smaller and relatively trivial instances.

We generate 5 instances for each of the sizes 30×30, 40×40, 50×50, 75×75,
100×100, 125×125, 100×50, 50×100, and average number of customer per prod-
uct values of 2, 4, 6, 8, 10, for a total of 200 instances.

Ideally, we want to measure speedup by comparing total solve time. However,
as mentioned before, the instances that our solver finds challenging are totally
unsolvable by the original. Table 4.2 is split into two parts. Above the horizontal
line are the instances where the original managed to prove optimality. Here,
nodes, time (in milliseconds) and speedup are for the total solve. Below the line
the original cannot prove optimality. Here, nodes, time and speedup are for the
finding a solution that is at least as good as the solver of [2] could find. The
column δOpt shows the average distance this solution is from the optimal. Note
that our approach finds and proves the optimal in all cases although the statistics
for this are not shown in the table. Time to find an equally good solution is not
necessarily a good indication of the speedup achievable for the full solve, as other
factors like branching heuristics come into play. However, the trend is quite clear.
The original solver is run with its best options. Our MOSP algorithm is run with
“better move”, “old move” and nogood recording turned on (but no relaxation).
Both solvers have a node limit of 225 iterations.

Note that because a single move can close multiple stacks, it is possible to
completely solve an instance using fewer nodes than there are customers. This
occurs frequently in the high density instances. Thus the extremely low node
counts shown here are not errors. The speedup is around 2-3 orders of magni-
tude for the smallest problems (30×30), and around 5-6 orders of magnitude for
the hardest problems that the original version can solve (40×40). The speedup
appears to grow exponentially with problem size. We cannot get any speedup
numbers for the harder instances since the original cannot solve them. However,
given the trend in the speedup, it would not be surprising if the speedup for a
full solve on the hardest instances solvable by our solver (100×100) was in the
realms of 1010 or more.

Next we examine the effect of each of our improvements individually by
disabling them one at a time. The three improvements we test here are “better
move”, “old move” and nogood recording. We use only the instances which are
solvable without the improvements and non-trivial, i.e. the 100× 100 instances
and the easier 125× 125 instances. For each improvement, we show the relative
slowdown compared to the version with all three optimisations on.

Table 3. Comparing customer search versus [2] on harder random instances. Search is
to find the best solution found by [2] with node limit 225.

[2] This paper
Instance δOpt Nodes Time(ms) Nodes Time(ms) Speedup
30-30-2 0 14318 480 408 4.4 109
30-30-4 0 48232 1981 158 2.0 979
30-30-6 0 89084 2750 56 0.9 3136
30-30-8 0 83558 2010 18 0.4 5322
30-30-10 0 18662 506 8 0.2 2335
40-40-2 0 669384 192917 1472 14.9 12942
40-40-4 0 3819542 227087 556 6.1 36959
40-40-6 0 11343235 625892 217 2.9 218062
40-40-8 0 8379706 334392 49 0.8 403272
40-40-10 0 3040040 98194 20 0.4 229305
50-50-2 0 12356205 1300311 6344 65.8 19758
50-50-4 0.2 5612259 446409 219 2.7 164728
50-50-6 0.2 7949026 510831 45 0.8 636409
50-50-8 0.2 525741 28337 15 0.4 75274
50-50-10 0 16809 784 7 0.2 3411
75-75-2 0.8 2485310 420935 7030 76.8 5484
75-75-4 2.6 3507703 666784 63 1.4 486669
75-75-6 1.2 4412286 756032 59 1.4 548132
75-75-8 1.2 4121046 519778 19 0.6 841336
75-75-10 0.6 1198282 120087 15 0.5 244128
100-100-2 2.2 3008009 765131 481 9.4 81653
100-100-4 4.8 6777140 2017286 145 3.3 619257
100-100-6 4 1269071 347970 39 1.4 241145
100-100-8 4.4 1686045 414456 31 1.1 363468
100-100-10 1.6 4195494 789039 15 0.7 1097494
125-125-2 1.8 7418402 3276210 36672 436.8 7500
125-125-4 3.8 3412379 1559691 916 20.4 76286
125-125-6 6 6076996 2643707 57 2.3 1144180
125-125-8 6.2 942290 321050 28 1.5 217007
125-125-10 3.4 170852 45798 24 1.3 35647
50-100-2 0.2 90076 9971 97 1.6 6290
50-100-4 1 1973322 139300 23 0.6 220776
50-100-6 0.6 1784 116 13 0.4 301
50-100-8 0 97 9 5 0.2 47
50-100-10 0 99 8 3 0.2 39
100-50-2 0 2393401 438220 11117 133.7 3279
100-50-4 0.4 14211006 3499389 183260 1592.3 2198
100-50-6 1.2 5326088 1395417 1569 21.4 65163
100-50-8 0.6 1522796 408908 3506 45.8 8932
100-50-10 1 3594743 906559 524 10.6 85710

As Table 4.2(a) shows, both “better move” and “old move” can produce up to
1 to 2 orders of magnitude speedup on the harder instances. The lower speedups
are from instances that are already fairly easy and solvable in seconds. The
results from disabling the nogood recording are very interesting. It is known
from previous work, e.g. the DP approach of [2] and the CP approach of [5]
that nogood recording or equivalent techniques produce several orders of magni-

Table 4. (a) Comparing the effects of each optimisation in turn, and (b) comparing
the effects of relaxation.

Instance Better Old Nogood No relax(ms) Relax(ms) Removed Speedup
100-100-2 25.2 63.7 1.21 603120 370 51.2 1630.6
100-100-4 8.94 5.95 1.01 266205 4798 20.8 55.5
100-100-6 1.90 1.71 0.91 10344 3909 8 2.6
100-100-8 1.54 1.30 0.66 551 712 2.4 0.8
100-100-10 2.96 2.75 1.00 46 94 0.6 0.5
125-125-2 — — — 59642993 3284 62.2 18161.8
125-125-4 — — — 29768563 251634 24.8 118.3
125-125-6 11.9 3.10 0.98 810678 167384 9 4.8
125-125-8 1.65 1.17 0.98 18781 11978 5 1.6
125-125-10 1.27 0.98 0.64 768 1041 3 0.7

(a) (b)

tude speedup. However, these approaches require (in the worst case) exponential
memory usage for the nogood table. It appears however that once we have the
“old move” improvement, we can actually turn off nogood recording without a
significant loss of performance. In fact, some instances run faster. Thus our “old
move” improvement largely subsumes the effect of the huge nogood tables used
in the DP [2] or CP [5] approaches and reduces the memory usage from an ex-
ponential to a linear amount. The solver of [2] uses up all 2Gb of main memory
in ∼5 min with nogood recording. However, our new solver using “old move”
pruning uses a constant amount of memory < 2Mb even for 125×125 problems.

4.3 Relaxation

In the following set of experiments, we demonstrate the effectiveness of our
relaxation technique. For each of our largest instances, we show in Table 4.2(b)
the total runtime (in milliseconds) without relaxation, with relaxation, and the
number of customers that was successfully removed without changing the lower
bound, as well as the speedup for relaxation. Both versions are run with the
customer search strategy, “better move” and “old move” improvements.

As can be seen from the results in Table 4.2(b), relaxation is most effective for
sparse instances where we can get up to 3-4 orders of magnitude improvement.
There is a slight slowdown for several dense instances but that is because they are
trivial to begin with (take < 1s). The sparser the instance, the more customers
can be removed without changing the lower bound and the greater the speedup
from the relaxation technique. For the hardest instances, 125-125-2, it is often
possible to remove some 60-70 of the 125 customers without changing the bound.
This reduces the proof of optimality that normally takes 10+ hours into mere
seconds. The 125-125-4 instances are now comparatively harder, since we are
only able to remove around 25 customers and get a speedup of ∼100. Relaxation
is largely ineffective for the denser instances like 125-125-8,10. However, dense
instances are naturally much easier to solve anyway, so we have speedup where
it is needed the most.

Our relaxation techniques are also useful if we only wish to prove a good
lower bound rather than the true lower bound. For example, if we only insist on
proving a lower bound that is 5 less than the true optimum, then ∼45 customers

can be removed from the 125-125-4 instances and the bound can be proved in
seconds. This is again several orders of magnitude speedup compared to using
a normal complete search to prove such a bound. In comparison, although the
HAC lower bound heuristic of [1] uses virtually no time, it gives extremely weak
lower bounds for the 125-125-4 instances, which are some 30 stacks below the
optimum and are of little use.

5 Conclusion

In this paper we show how combining nogood recording with the customer based
search strategy of [8] yields a solver that is 5-6 orders of magnitude faster than
the previous state of the art MOSP solver. We show how exploiting several dom-
inance relations leads to the the “definite move”, “better move” and “old move”
improvements. These produce a further 1-2 orders of magnitude improvement.
The “old move” improvement in particular is able to subsume the effect of prun-
ing using the extremely large nogood table. This allows us to reduce the memory
usage of our solver from an amount exponential in the size of the problem to
a constant ∼2Mb. Finally we show how relaxation techniques can be used to
speed up the proof of optimality of the hardest instances by another 3-4 orders
of magnitude.

Acknowledgments. NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council.

References

1. J.C. Becceneri, H.H. Yannasse, and N.Y. Soma. A method for solving the mini-
mization of the maximum number of open stacks problem within a cutting process.
Computers & Operations Research, 31:2315–2332, 2004.

2. M. Garcia de la Banda and P.J. Stuckey. Dynamic programming to minimize the
maximum number of open stacks. INFORMS JOC, 19(4):607–617, 2007.

3. A. Linhares and H.H. Yanasse. Connections between cutting-pattern sequencing,
VLSI design, and flexible machines. Computers & Operations Research, 29:1759–
1772, 2002.

4. S. Prestwich. Increasing solution density by dominated relaxation. Modelling and
Reformulating Constraint Satisfaction Problems, 4th Int. Workshop, 2005.

5. P. Shaw and P. Laborie. A constraint programming approach to the min-stack
problem. In Constraint Modelling Challenge 2005 [6].

6. B. Smith and I. Gent. Constraint modelling challenge report 2005.
http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf.

7. N. Wilson and K. Petrie. Using customer elimination orderings to minimise the
maximum number of open stacks. In Constraint Modelling Challenge 2005 [6].

8. H.H. Yannasse. On a pattern sequencing problem to minimize the maximum num-
ber of open stacks. EJOR, 100:454–463, 1997.

9. H.H. Yannasse. A note on generating solutions of a pattern sequencing problem
to minimize the maximum number of open orders. Technical Report LAC-002/98,
INPE, São José dos Campos, SP, Brazil, 1998.

10. B.J. Yuen and K.V. Richardson. Establishing the optimality of sequencing heuris-
tics for cutting stock problems. EJOR, 84:590–598, 1995.

