
Lazy clause generation reengineered

Thibaut Feydy and Peter J. Stuckey

National ICT Australia, Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{tfeydy,pjs}@csse.unimelb.edu.au

Abstract. Lazy clause generation is a powerful hybrid approach to com-
binatorial optimization that combines features from SAT solving and fi-
nite domain (FD) propagation. In lazy clause generation finite domain
propagators are considered as clause generators that create a SAT de-
scription of their behaviour for a SAT solver. The ability of the SAT
solver to explain and record failure and perform conflict directed back-
jumping are then applicable to FD problems. The original implemen-
tation of lazy clause generation was constructed as a cut down finite
domain propagation engine inside a SAT solver. In this paper we show
how to engineer a lazy clause generation solver by embedding a SAT
solver inside an FD solver. The resulting solver is flexible, efficient and
easy to use. We give experiments illustrating the effect of different design
choices in engineering the solver.

1 Introduction

Lazy clause generation [1] is a hybrid of finite domain (FD) propagation solving
and SAT solving that combines some of the strengths of both. Essentially in lazy
clause generation, a FD propagator is treated as a clause generator, that feeds a
SAT solver with a growing clausal description of the problem. The advantages of
the hybrid are: it retains the concise modelling of the problem of an FD system,
but it gains the SAT abilities to record nogoods and backjump, as well as use
activities to drive search. The result is a powerful hybrid that is able to solve
some problems much faster than either SAT or FD solvers.

The original lazy clause generation solver was implemented as a summer stu-
dent project, where a limited finite domain propagation engine was constructed
inside a SAT solver.

In this paper we discuss how we built a robust generic lazy clause generation
solver in the G12 system. The crucial difference of the reengineered solver is that
the SAT solver is treated as a propagator in an FD solver (hence reversing the
treatment of which solver is master). This approach is far more flexible than the
original design, more efficient, and available as a backend to the Zinc compiler.

We discuss the design decisions that go into building a robust lazy clause
generation solver, and present experiments showing the effect of these decisions.
The new lazy clause generation solver is a powerful solver with the following
features:

– Powerful modelling: any Zinc (or MiniZinc) model executable by the G12
FD solver can be run using the lazy clause generation solver.

– Excellent default search: if no search strategy is specified then the default
VSIDS search is usually very good.

– Programmed search with nogoods: on examples with substantial search the
solver usually requires orders of magnitude less search than the FD solver
using the same search strategy.

– Flexible global constraints: since decomposed globals are highly effective we
can easily experiment with different decompositions.

The resulting system is a powerful combination of easy modelling and highly
efficient search. It competes against the best FD solutions, often on much simpler
models, and against translation to SAT. In many cases using the lazy clause
generation solver with default settings to solve a simple FD statement of the
problem gives very good results

2 Background

2.1 Propagation-based constraint solvers

Propagation-based constraint solving models constraints c as propagators, that
map the set of possible values of variables (a domain) to a smaller domain by
removing values that cannot take part in any solution. The key advantage of this
approach is that propagation is “composable”, propagators for each constraint
can be constructed independently, and used in conjunction.

More formally. A domain D is a mapping from a fixed (finite) set of variables
V to finite sets of integers. A false domain D is a domain with D(x) = ∅ for
some x ∈ V. A domain D1 is stronger than a domain D2, written D1 v D2, if
D1(x) ⊆ D2(x) for all x ∈ V. A range is a contiguous set of integers, we use
range notation [l .. u] to denote the range {d ∈ Z | l 6 d 6 u} when l and u
are integers. We shall be interested in the notion of a starting domain, which
we denote Dinit . The starting domain gives the initial values possible for each
variable. It allows us to restrict attention to domains D such that D v Dinit .

An integer valuation θ is a mapping of variables to integer values, written
{x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation θ to map expressions and
constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a
valuation. We define a valuation θ to be an element of a domain D, written
θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

A constraint c over variables x1, . . . , xn is a set of valuations θ such that
vars(θ) = {x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}. We will imple-
ment a constraint c by a set of propagators that map domains to domains. A
propagator f is a monotonically decreasing function from domains to domains:
f(D) v D, and f(D1) v f(D2) whenever D1 v D2. A propagator f is correct
for a constraint c iff for all domains D

{θ | θ ∈ D} ∩ c = {θ | θ ∈ f(D)} ∩ c

This is a very weak restriction, for example the identity propagator is correct
for all constraints c.

Example 1. For the constraint c ≡ x0 ⇔ x1 6 x2 the function f defined by

f(D)(x0) = D(x0) ∩ ({0 | maxD(x1) > minD(x2)} ∪ {1 | minD(x1) 6 maxD(x2)})

f(D)(x1) =

D(x1), {0, 1} ⊆ D(x0)
{d ∈ D(x1) | d 6 maxD(x2)}, D(x0) = {1}
{d ∈ D(x1) | d > minD(x2)}, D(x0) = {0}

f(D)(x2) =

D(x2), {0, 1} ⊆ D(x0)
{d ∈ D(x2) | d > minD(x1)}, D(x0) = {1}
{d ∈ D(x1) | d < maxD(x2)}, D(x0) = {0}

is a correct propagator for c. Let D(x0) = [0 .. 1], D(x1) = [7 .. 9], D(x2) =
[−3 .. 5] then f(D)(x0) = {0}.

A propagation solver solv(F,D) for a set of propagators F and a domain D
finds the greatest mutual fixpoint of all the propagators f ∈ F .

In practice the propagation solver solv(F,D) is carefully engineered to take
into account which propagators must be at fixed point and do not need to be
reconsidered. It also will include priorities on propagators so that cheap propa-
gators are executed before expensive ones. See [2] for more details.

2.2 SAT solvers

Propagation based SAT solvers [3] are specialized propagation solvers with only
Booleans variables, a built-in conflict based search and clausal constraints of the
form l1 ∨ l2 ∨ · · · ∨ ln where li is a literal (a Boolean variable or its negation).

Unit propagation consists of detecting a conflict or fixing a literal once all
other literals in a clause have been fixed to false. SAT solvers can perform unit
propagation very efficiently using watch literals.

Conflict analysis is triggered each time a conflict is detected. By traversing
a reverse implication graph (ie. remembering which clause fixed a literal), SAT
solvers build a nogood, or conflict clause, which is added to the constraint store.

Conflict analysis allows SAT solvers to find the last satisfiable decision level,
to which they can backjump, i.e. backtrack to a point before the last choicepoint.

SAT solvers maintain activities of the variables seen during conflict analysis.
The heuristic used prioritizes variables that are the most involved in recent
conflicts. This allow them to use a conflict driven or activity based search [3].

2.3 Original lazy clause generation

The original lazy clause generation hybrid solver [1] works as follows. Propaga-
tors are considered as clause generators for the SAT solver. Instead of applying
propagator f to domain D to obtain f(D), whenever f(D) 6= D we build a
clause that encodes the change in domains. In order to do so we must link the
integer variables of the finite domain problem to a Boolean representation.

We represent an integer variable x with domain Dinit(x) = [l .. u] using the
Boolean variables [[x = l]], . . . , [[x = u]] and [[x 6 l]], . . . , [[x 6 u− 1]]. The variable
[[x = d]] is true if x takes the value d, and false if x takes a value different from d.
Similarly the variable [[x 6 d]] is true if x takes a value less than or equal to d and
false if x takes a value greater than d. For integer variables withDinit(x) = [0 .. 1]
we simply treat x as a Boolean variable.

Not every assignment of Boolean variables is consistent with the integer
variable x, for example {[[x = 5]], [[x 6 1]]} requires that x is both 5 and 6 1.
In order to ensure that assignments represent a consistent set of possibilities
for the integer variable x we add to the SAT solver clauses DOM (x) that en-
code [[x 6 d]] → [[x 6 d+ 1]] and [[x = d]] ↔ ([[x 6 d]] ∧ ¬[[x 6 d− 1]]). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any set of literals A on these Boolean variables can be converted to a domain:
domain(A)(x) = {d ∈ Dinit(x) | ∀[[c]] ∈ A.vars(l) = {x} ⇒ x = d |= c}, that is
the domain of all values for x that are consistent with all the Boolean variables
related to x. Note that it may be a false domain.

Example 2. For example the assignment A = {[[x1 6 8]], ¬[[x1 6 2]], ¬[[x1 = 4]],
¬[[x1 = 5]], ¬[[x1 = 7]], [[x2 6 6]], ¬[[x2 6 −1]], [[x3 6 4]], ¬[[x3 6 −2]]} is consistent
with x1 = 3, x1 = 6 and x1 = 8. hence domain(A)(x1) = {3, 6, 8}. For the
remaining variables domain(A)(x2) = [0 .. 6] and domain(A)(x3) = [−1 .. 4]. 2

In the lazy clause generation solver, search is controlled by the SAT engine.
After making a decision, unit propagation is performed to reach a unit propa-
gation fixpoint with assignment A. Every fixed literal is then translated into a
domain change, creating a new domain D = domain(A), and the appropriate
propagators are woken up. When we find a propagator f where f(D) 6= D the
propagator does not directly modify the domain D but instead generates a set
of clauses C which explain the domain changes. Each clause is added to the SAT
solver, starting a new round of unit propagation. This continues until fixpoint
when the next SAT decision is made. See Figure 1(a). Adding an explanation
of failure will force the SAT solver to fail and begin its process of nogood con-
struction. It then backjumps to where the nogood would first propagate, and on
untrailing the domain D must be reset back to its previous state.

Example 3. Suppose the SAT solver decides to set [[y 6 1]] and unit propaga-
tion determines that ¬[[x1 6 6]]. Assuming the current domain D(x0) = [0 .. 1],
D(x1) = [1 .. 9], D(x2) = [−3 .. 5] then the domain changes to D′(x1) = [7 .. 9]
and propagators dependent on the lower bound of x1 are scheduled, including
for example the propagator f for x0 ⇔ x1 6 x2 from Example 1. When ap-
plied to domain D′ it obtains f(D′)(x0) = {0}. The clausal explanation of the
change in domain of x1 is ¬[[x1 6 6]]∧ [[x2 6 5]]→ ¬x0. This becomes the clause
[[x1 6 6]] ∨ ¬[[x2 6 5]] ∨ ¬x0. This is added to the SAT solver. Unit propaga-
tion sets the literal ¬x0. This creates domain D′′(x0) = {0} which causes the
propagator f to be re-examined but no further propagation occurs.

Assuming domain(A) v D, then when clauses C that explain the propagation
of f are added to the SAT database containing DOM and unit propagation is

SAT Engine

Clause Database

FD engine

Propagators

DomainsTrail

Search

FD engine

Propagators

Domains

Search

SAT Engine

Clause Database

Trail

(a) (b)

Fig. 1. (a) The original architecture for lazy clause generation, and (b) the new archi-
tecture.

performed, then the resulting assignment A′ will be such that domain(A′) v
f(D). Using lazy clause generation we can show that the SAT solver maintains
an assignment which is at least as strong the domains of an FD solver [1].

The advantages over a normal FD solver are that we automatically have the
nogood recording and backjumping ability of the SAT solver applied to our FD
problem, as well as its activity based search.

3 Lazy Clause Generation as a Finite Domain solver

The original lazy clause generation solver used a SAT solver as a master solver
and had a cut down finite domain propagation engine inside. This approach
meant that the search was not programmable, but built into the SAT solver and
minimization was available only as dichotomic search, on top of SAT search.

3.1 The new solver architecture

The new lazy clause generation solver is designed as an extension of the existing
G12 finite domain solver. It is a backend for the Zinc compiler which can be
used wherever the finite domain solver is used. The new solver architecture is
illustrated in Figure 1(b).

Search is controlled by the finite domain solver. When a variables domain
changes propagators are woken as usual, and placed in priority queue. The SAT
solver unit propagation engine, acts as a global propagator. Whenever a literal
is set or clauses are posted to the SAT solver, then this propagator is scheduled
for execution at the highest priority.

When a propagator f is executed that updates a variable domain (f(D) 6= D)
or causes failure (f(D) is a false domain) it posts an explanation clause to the
SAT solver that explains the domain reduction or failure. This will schedule the
SAT propagator for execution.

The SAT propagator when executed computes a unit fixpoint. Then each of
the literals fixed by unit propagation causes the corresponding domain changes
to be made in the domain, which may wake up other propagators. The cycle of
propagation continues until a fixpoint is reached. Note that other work (e.g. [4])
has suggested using a SAT solver to implement a global propagator inside a CP
solver.

3.2 Encoding of finite domain variables

In the new architecture integer variables are implemented as usual with a rep-
resentation of bounds, and domains with holes, and queues of events for bounds
changes, fixing a variable and removing an interior value. Concrete variables are
restricted to be zero based, that is have initial domains that range over values
[0 .. n], views [5] are used to encode non-zero based integer variables.

The lazy clause generation solver associates each integer variable with a set
of Boolean variables. Changes in these Boolean variables will be reflected in the
domains of the integer variables. There are two possible ways of doing this:

The array encoding The array encoding of integer variables is an encoding
with two arrays :

– An array of inequality literals [[x 6 d]], d ∈ [0 .. n− 1]
– An array of equality literals [[x = d]], d ∈ [0 .. n]

inequality literals are generated eagerly whereas equality literals are generated
lazily. When a literal [[x = d]] has to be generated we post the domain clauses:
[[x = d]] → [[x 6 d]], [[x = d]] → ¬[[x 6 d− 1]], and ¬[[x 6 d− 1]] ∧ [[x 6 d]] →
[[x = d]]. The array encoding is linear in the size of the initial integer domain,
while bound updates are linear in the size of the domain reduction.

The list encoding The list encoding generates inequality and equality literals
lazily when they are required for propagation or explanation. As such the size of
the encoding is linear in the number of generated literals, and a bound update
is linear in the number of generated literals that will be fixed by the update.

When a literal [[x 6 d]] has to be generated :

– we determine the closest existing bounds: l = max{d′ | [[x 6 d′]] exists, d′ < d},
u = min{d′ | [[x 6 d′]] exists, d < d′}

– we post the new domain clauses : [[x 6 l]]→ [[x 6 d]], [[x 6 d]]→ [[x 6 u]]

When a literal [[x = d]] has to be generated we first generate the literals [[x 6 d]]
and [[x 6 d− 1]] if required, then proceed as for the array encoding.

Caching the positions of the largest [[x 6 d]] which is false (lower bound d+1)
and smallest [[x 6 d]] which is true (upper bound d) allows access performances
similar to the array encoding for the following reasons. An inequality literal is
required either to explain another variable update or to reduce the domain of
the current variable. In the first case, the inequality literal is most likely the
one corresponding to the current bound, in which case it is cached. In the latter

case, where we reduce a variable bound by an amount δ, a sequence of δ clauses
will have to be propagated in the array encoding.

When a new literal is generated, previous sequence literals becomes redun-
dant. When a literal [[x 6 d]] is inserted where l < d < u then the binary clause
[[x 6 l]] → [[x 6 u]] becomes redundant. At most n redundant constraints exists
after n literals have been generated. However these redundant constraints alter
the propagation order and can have a negative impact on the nogoods generated
during conflict analysis.

By default the solver uses array encoding for variables with “small” (< 10000)
initial domains and list encoding for larger domains.

Use of views We use views [5] to avoid creating additional variables. A view
is a monotonic, injective function from a variable to a domain. In practice, we
use affine views, and each variable is an affine view over a zero-based variable.

Given a variable x where Dinit(x) = [l .. u] where l 6= 0 we represent x as
a view x = xc + l where Dinit(xc) = [0 .. u− l]. Given a variable x and a new
variable y defined as y = ax+ b, let xc be the concrete variable of x, ie. ∃a′,∃b′
such that x = a′xc + b′ then y is defined as y = a′axc + (a′b+ b′).

Using views rather than creating fresh variables has the following advantages
over creating new concrete variables :

– space savings. This is especially true with the array encoding which is always
linear in the domain size.

– literal reuse. Reusing literals means stronger and shorter nogoods.

3.3 Propagator implementation

For use in a lazy clause generation each propagator should be extended to explain
its propagations and failures. Note that the new lazy clause generation system
can handle propagators that do not explain themselves by treating their prop-
agations as decisions, but this significantly weakens the benefits of lazy clause
generation.

When a propagator is run, then all its propagations are reflected by changing
the domains of integer variables, as well as adding explanation clauses to the
SAT solver that explains the propagation made. Note that it must also explain
failure.

Once we are using lazy clause generation we need to reassess the best possible
way to implement each constraint.

Linear constraints Linear constraints
∑

i∈1...n aixi 6 a0 and
∑

i∈1...n aixi =
a0 are among the most common constraints. But long linear constraints do not
generate very reusable explanations, since they may involve many variables. It
is worth considering breaking up a long linear constraint into smaller units. So
e.g.

∑
i∈1...n aixi = a0 becomes s1 = a1x1 + a2x2, ... si+1 = si + ai+1xi+1, ...,

sn = sn−1 + anxn, a0 = sn. Note that for finite domain propagation alone this
is guaranteed to result in the same domains (on the original variables) [6]. The
decomposition adds many new variables and slows propagation considerably, but

means explanations are more likely to be reused. We shall see that the size of the
intermediate sums si will be crucial in determining the worth of this translation.

Reified constraints The lazy clause generation solver does not have regular
reified constraints but only implications constraints of the form l ⇒ c where l
is a literal and c is a constraint. This has the advantage that the events of this
implication constraint are the events of the non reified version plus an event on
l being asserted. Similarly the explanations for l⇒ c are the same as for c with
¬l disjoined. The main advantage is that often we do not need both directions.

Example 4. Consider the constraint x1 + 2 6 x2 ∨ x2 + 5 6 x1. The usual
decomposition is b1 ⇔ x1 + 2 6 x2, b2 ⇔ x2 + 5 6 x1, (b1 ∨ b2). A better
decomposition is b1 ⇒ x1 + 2 6 x2, b2 ⇒ x2 + 5 6 x1, (b1 ∨ b2) since the only
propagation possible if the falsity of one of the inequalities forcing a Boolean to be
false, which forces the other Boolean to be true and the other inequality to hold.
Note that e.g. x0 ⇔ x1 6 x2 is implemented as x0 ⇒ x1 6 x2, ¬x0 ⇒ x1 > x2

illustrating the need for the lhs to be a literal rather than a variable.

3.4 Global propagators

Rather than create complex explanations for global constraints it is usually easier
to build decompositions. Learning for decomposed globals is stronger, and can
regain the benefits of the global view that are lost by decomposition. If we are
using decomposition to define global propagators then we can easily experiment
with different definitions. It is certainly worth reconsidering which decomposition
to use in particular for lazy clause generation.

Element constraints An element constraint element(x, a, y) which enforces
that y = a[x] where a is a fixed array of integers indexed on the range [0 .. n] can
be implemented simply as the binary clauses ∧n

k=0[[x = k]] → [[y = a[k]]] which
enforces domain consistency.

GCC We propose a new decomposition of the global cardinality constraint
(and by specialisation also the alldifferent constraint) which exploits the property
of our solver that maintaining the state of the literals [[x = k]] and [[x 6 k]] is
cheap as it is part of the integer variable encoding. gcc([x1, . . . , xn], [c1, . . . , cm])
enforces that the value i occurs ci times in x1, . . . , xn. We introduce m+ 1 sum
variables s0, . . . , sm defined by si =

∑
j∈1...n [[xj 6 i]] and post the following

constraints sm − s0 =
∑

i∈1..m ci and ∀i ∈ 1 . . .m, si − si−1 = ci. To generate
holes in the domains we add the constraints ∀i ∈ 1 . . .m, ci =

∑
j∈1...n [[xj = i]].

3.5 Extending the SAT solver

SAT solvers need to be slightly extended to be usable with lazy clause gener-
ation.1 The first extension is to communicate domain information back to the
1 Although we manage this by building code outside the SAT solver code, leaving it

untouched, but accessing its data structures.

propagation solver, e.g. when [[x 6 d]] is set true we remove from D(x) the val-
ues greater than d, when is set false we remove values less than or equal to d,
similarly for [[x = d]].

Lazy clause generation adds new clauses as search progresses of three kinds:
domain clauses, explanation clauses, and nogood clauses. Usually a SAT solver
only posts nogood clauses. On posting a nogood it immediately backjumps to
the first place the nogood clause could unit propagate. We don’t have such a
luxury in lazy clause generation, since the SAT solver is not in charge of search,
and indeed it may be unaware of choices that did not affect any of its variables.

When the SAT solver can backjump a great distance because a failure is
found to not depend on the last choice, we have to mimic this. This is managed
by checking the SAT solver first in each propagation loop, before applying any
search decision. If unit propagation in SAT still detects failure, then we can im-
mediately fail, and continue backtracking upward to the first satisfiable ancestor
state.

A feature of the dual modelling inherent in lazy clause generation is that
explanation clauses are redundant information, since they can be regenerated
by the propagators whenever they could unit propagate.2 Hence we can choose
to delete these clauses from the SAT solver on backtracking. This reduces the
number of clauses in the database, but means that more expensive propagators
need to be called more often. We can select whether to delete explanations or
not, by default they are deleted.

3.6 Search

Search is controlled by the FD solver, but we can make use of information from
the SAT solver. We can perform:

VSIDS search The SAT solver search heuristic VSIDS [3], based on activity,
can be used to drive the search. At each choice point we retrieve the highest
activity literal from the SAT solver and try setting it true or false. This is
the default search for the lazy solver. Because of lazy encodings, it may be
necessary to interleave search with the generation of new literals for unfixed
variables, as not all literals encoding the variable domain exist initially, and
in the end we need to fix all the finite domain variables. As in SAT solvers,
we restart the search from time to time.

Finite Domain Search One of the main advantages of the solver presented
here compared to the solver presented in [1] is the ability to use programmed
specialized finite domain searches if they are specified in the model.

Branch and bound Search We use incremental branch and bound rather
than dichotomic branch and bounds with restart due to the incremental-
ity of our SAT solver. This differs with other SAT solver based approach
such as [7] and [1].

2 Except in cases where that the clause is stronger than the propagator. (See [1]).

Hybrid Search We can of course build new hybrids of finite domain pro-
grammed search that make use of the activity values from the SAT solver as
part of the search. We give an example in Section 4.3

4 Experiments

The experiments were run on Core 2 T8300 (2.40 GHz), except the experiments
from 4.4 and 4.6 which were run respectively on a Pentium D 3.0 GHz and a
Xeon 3.0 GHz for comparison with cited experiments. All experiments were run
on one core. We use the following scheme for expressing variants of our approach:
l = G12 lazy clause generation solver, f = G12 normal finite domain solver; v =
VSIDS search, s = problem specific programmed search, h = hybrid search (see
Section 4.3). When we turn off optimizations we place them after a minus: d =
no deletion, a = list encoding (no arrays), r = normal reified constraints rather
than single implication ones from Section 3.3, and w = no views.

4.1 Arithmetic Puzzles

The Grocery Puzzle [8] is a tiny problem but its intermediate variables have
bounds up to 238. It cannot be solved using the array encoding. SEND-MORE-
MONEY is another trivial problem, but here if we break the linear constraint
(which has coefficients up to 9000) into ternary constraints the array encoding
requires a second to solve because of the size of intermediate sum variables.
Applying the list encoding on the decomposed problem, and either encoding
on the original form require only a few milliseconds. These simple examples
illustrate why the lazy list encoding is necessary for a lazy clause generation
solver.

4.2 Constrained path covering problem

The constrained path covering problem is a problem which arises in transporta-
tion planning and consists of finding a covering of minimum cardinality of a
directed network. Each node n ∈ Nodes except the start and end nodes have a
positive cost cost[n], and the total cost of a path cannot exceed a fixed bound. A
CP model for this problem associates predecessor (prev[n])/successor(next[n])
variables to each node, as well as a cumulative cost cumul[n], related by the
following constraints :

∀n ∈ Nodes.cumul[n]− cost[n] = cumul[prev[n]]
∀n ∈ Nodes.∀p ∈ Nodes.prev[n] = p⇔ next[p] = n

In Table 1, we compare the lazy clause generation solver with default search
(lv) and a specialized finite domain search (ls), as well as the G12 FD solver
(fs) with the same search. We also compare creating fresh variables (lv-w,ls-w)
for the result of the element constraints generated above (cumul[prev[n]]), as
opposed to using views. The benchmark CPCP-n-m has n nodes and m edges.

Times(sec) Choicepoints

lv ls lv-w lv-w fs lv ls lv-w lv-w fs
CPCP-17-89 0.40 0.17 0.76 0.27 0.08 572 63 563 63 1905
CPCP-23-181 9.02 0.25 36.74 0.38 0.28 31521 449 44423 1198 9149
CPCP-30-321 >600 0.53 >600 0.80 0.64 ? 804 ? 1595 9666
CPCP-37-261 >600 1.59 >600 2.70 >600 ? 1689 ? 2067 ?
CPCP-37-495 >600 0.99 >600 1.44 >600 ? 1745 ? 3348 ?

Average >361.89 0.71 367.5 1.12 >240.2 ? 950 1654 1231 ?

Table 1. Constrained Path Covering Problem

The specialized finite domain search clearly outperforms VSIDS on these
problems. Avoiding creating variables by using views improves search as well.
This is especially true with VSIDS which can be explained by the addition
of useless literals, which just confuse its discovery of the “hard parts” of the
problem.

The lazy clause generation solver, while slower than the finite domain solver,
scales a lot better due to huge search reductions and wins for all but the easiest
instance.

4.3 Radiation

Radiation scheduling [9] builds a plan for delivering a specific pattern of ra-
diation by multiple exposures. The best search for this problem first fixes the
variables shared by subproblems then fixes the subproblem variables, for each
subproblem independently. Then if any subproblem is unsatisfiable we can use
cuts to backtrack directly to search again the shared variables. For these exper-
iments since we are restricted to Zinc search which does not support cuts, we
simply search first on the shared variables and then on the subproblem variables
in turn.

We use square matrices of size 6 to 8 with maximum intensity ranging from
8 to 10 constructed as in [9]. We ran these instances using VSIDS (lv), as well
as the specialized finite domain search (without cuts) (ls), as well as a hybrid
search (lh) where we use the specialized search on the shared variables, and
then VSIDS on the remaining variables. We also run the FD solver (fs) with
specialized search.

Each instance was run with the original linear inequalities, as well as with
a decomposition into ternary inequalities, introducing intermediate sums. These
linear sums are short (6−8 Boolean variables) and have small coefficients (1−10).

In this case, introducing intermediate sums definitely improved nogood gen-
eration as the choice point count is systematically reduced. On average, the
specialized search outperforms VSIDS search, although the difference is reduced
by the constraint decomposition, which strengthens the reusability of the expla-
nations and nogoods generated. The hybrid search outperforms both the finite
domain search and VSIDS on most instances. The FD solver is not competitive
on any but the smallest instances because of the lack of explanation.

Time(sec) Choicepoints(x1000)
Long linear Ternary Long linear Ternary

fs lv ls lh lv ls lh fs lv ls lh lv ls lh
6-08-1 2.25 0.40 0.61 0.40 0.60 0.78 0.58 72.8 1.46 1.40 1.27 1.29 1.33 1.31
6-08-2 0.16 0.37 0.53 0.41 0.54 0.72 0.53 0.90 1.40 1.07 2.00 1.35 1.06 1.03
6-08-3 1.12 0.36 0.80 0.48 0.61 1.06 0.65 48.9 1.60 2.25 1.59 1.44 2.09 1.56
6-09-1 2.11 0.35 0.39 0.26 0.52 0.46 0.36 39.2 1.19 0.61 0.46 1.43 0.52 0.45
6-09-2 6.68 0.70 1.46 0.74 0.86 1.66 1.00 271.7 3.02 4.56 2.99 2.32 3.98 2.78
6-09-3 432.4 0.84 1.62 0.77 0.96 1.86 1.06 10497 2.96 5.01 2.98 2.66 4.68 2.79
7-08-1 >1800 0.69 1.18 0.56 0.82 1.42 0.88 ? 2.19 2.47 1.11 1.32 2.48 1.12
7-08-2 1378 0.42 0.89 0.54 0.76 1.09 0.78 60310 0.78 1.49 0.90 1.31 1.46 0.89
7-08-3 299.2 1.00 1.67 0.82 1.44 1.89 1.18 13767 4.49 3.95 2.26 3.49 3.57 2.19
7-09-1 >1800 1.17 1.63 0.79 1.49 2.05 1.20 ? 3.48 3.59 1.71 3.02 3.53 1.79
7-09-2 >1800 4.05 8.62 3.10 3.82 9.14 4.08 ? 12.4 27.9 10.7 7.88 23.5 9.30
7-09-3 5.60 1.11 2.04 1.00 1.44 2.30 1.40 199.2 4.27 4.69 2.90 3.47 4.22 2.58
8-09-1 950.3 3.42 4.36 1.99 2.94 5.11 3.14 27814 8.29 7.52 3.99 4.39 7.31 3.92
8-09-2 14.8 2.01 2.58 1.50 1.86 3.21 2.26 424.4 5.24 3.72 3.10 2.72 3.49 3.21
8-09-3 31.70 5.94 7.39 3.02 7.02 7.56 4.30 1345 14.9 18.3 10.9 10.7 15.3 8.23
8-10-1 1033 45.72 34.50 18.76 35.28 30.07 24.78 39494 51.7 64.0 41.5 36.1 40.1 38.1
8-10-2 >1800 26.16 21.47 8.49 11.41 20.74 12.47 ? 39.4 47.1 18.9 15.7 33.0 18.6
8-10-3 >1800 93.68 37.11 17.80 54.41 31.11 20.62 ? 88.1 96.8 52.8 55.8 63.5 41.3
Av. >706 10.47 7.16 3.41 7.04 6.79 4.51 ? 13.7 16.5 9.0 8.7 12.0 7.8

Fig. 2. Radiation problem : time and choice points

4.4 Open shop scheduling problem

An open shop scheduling problem n-m-k is defined by n jobs and m machines,
where each job consist of m tasks each requiring a different machine. The ob-
jective is to find a minimal schedule such that each pair of tasks (i, j) from the
same job or machine are not overlapping, which is represented by the constraint
si + di 6 sj ∨ sj + dj 6 si, where si and sj are the start time of the tasks and
di and dj are the (fixed) durations of the tasks. An open-shop problem of size
n×m has nm variables and (nm)(nm+ 1)/2 non-overlapping constraints.

The benchmarks used are from [7]. In Table 2(a) we compare: our default
lazy clause generation solver (lv) and without deletion (lv-d); the solver pre-
sented in [1] (cutsat); and the static translation approach of [7] (csp2sat) using
MiniSAT version 2.0. All solvers use VSIDS search. We do not compare against
f for this and subsequent problems since they all use VSIDS search. The table
shows that our approach, using branch and bound rather than dichotomic search
and with a slightly different propagation, vastly outperforms cutsat which beats
cps2sat. Deleting previously generated explanations also substantially improves
the results.

In Table 2(b) we compare results on smaller instances for different variations
of lv. We can see that the overhead of the list representation is substantial, while
the use of one directional reification also has significant benefits, although this
is lessened by deletion.

4.5 Hoist scheduling

We tested our lazy clause generation solver on the hoist scheduling problem
presented in [10]. Example j-h-p has j jobs, h hoists and parallel tracks if p = y.
We compare a simple Zinc model, run with default settings (lv) and without

tai lv-d lv cutsat csp2sat

20-20-1 55.27 31.69 283.1 1380.3
20-20-2 341.6 47.54 497.8 1520.1
20-20-3 56.63 37.80 270.7 1367.6
20-20-4 93.47 38.14 269.9 1361.3
20-20-5 50.74 47.94 278.8 1397.0
20-20-6 57.62 35.26 324.2 1405.6
20-20-7 79.20 38.44 455.3 1439.9
20-20-8 130.40 41.42 424.8 1420.8
20-20-9 44.54 32.41 246.1 1377.8
20-20-10 49.27 38.84 242.2 1346.8

Average 95.88 39.96 329.8 1401.7

tai lv-d lv lv-ad lfd-a lv-dr lv-r

15-15-1 18.63 11.73 37.47 45.28 22.94 11.24
15-15-2 12.68 11.68 70.77 76.50 24.80 14.11
15-15-3 18.87 13.44 49.78 96.58 15.27 15.10
15-15-4 17.61 8.47 55.06 54.12 14.83 9.21
15-15-5 21.02 12.34 77.30 74.45 35.36 12.16
15-15-6 32.44 12.75 26.12 39.85 20.67 16.97
15-15-7 22.66 15.80 33.25 45.25 23.27 16.54
15-15-8 17.12 13.55 29.84 21.54 12.97 13.87
15-15-9 29.68 23.23 99.44 71.24 24.51 17.11
15-15-10 15.1 10.85 124.21 41.79 47.61 17.32

Average 20.58 13.38 60.32 56.66 24.22 14.36

(a) (b)
Table 2. Open shop scheduling: (a) comparing with previous approaches on hard
instances, and (b) comparing the two variable representations on easier instances.

Example fzntini lv-d lv ic iclin

4-1-n 1153.3 3.46 2.81 2.18 8.57
4-2-n 458.4 0.72 0.66 0.3 0.1
4-2-y 358.5 0.35 0.34 0.3 2.04
4-3-n 493.5 0.55 0.55 0.39 0.09
4-3-y 272.6 0.32 0.33 0.4 1.0

5-1-n >1800 3.98 3.68 10.8 52.9
5-2-n 1090.2 0.40 0.77 0.5 0.1
5-2-y 594.0 0.53 0.57 8.55 50.2
5-3-n 983.9 0.40 0.42 0.5 0.12
5-3-y 484.3 0.44 0.72 0.7 0.12

Example fzntini lv-d lv ic iclin

6-1-n >1800 1.23 1.18 4.09 13.9
6-2-n >1800 1.80 1.78 0.7 0.15
6-2-y 827.7 1.01 2.31 4.81 28.8
6-3-n 1524.8 0.63 0.68 0.6 0.14
6-3-y 780.0 0.86 0.72 0.56 4.43

7-1-n >1800 1.39 1.46 3.65 9.59
7-2-n >1800 6.02 4.82 0.70 0.18
7-2-y 927.9 19.5 18.0 17.2 100.1
7-3-n >1800 0.53 0.78 0.80 0.17
7-3-y 912.8 0.66 0.92 0.80 4.71

Average >1083 2.26 2.17 2.93 13.95

Table 3. Hoist scheduling results

deletion (lv-d) as well as by static translation to SAT using [11] (fzntini), all of
these using VSIDS search, against the carefully crafted Eclipse model [10] using
its specialized finite domain search, run either with the Eclipse finite domain
solver ic or with a finite domain and linear programing hybrid iclin using COIN-
OR [12] as the linear solver. The results in Table 3 shows that our approach using
a simple model is competitive with the specialized models with hand-written
search, especially on the hardest instances. We see that lazy clause generation is
competitive whereas static translation (fzntini) struggles because of the size of
the resulting SAT model (in results not shown). Clause deletion does not seem
as advantageous as in the open-shop benchmarks.

4.6 Quasi-Group Completion

A n × n latin square is a square of values xij , 1 6 i, j 6 n where each num-
ber [1 .. n] appears exactly once in each row and column. It is represented by

Time (seconds) Choicepoints
gcc bnd bnd+ diseq gcc bnd bnd+ diseq

qcp-25-264-0-ext 6.44 1164.34 166.19 31.48 1759 15171 1635 77110
qcp-25-264-1-ext 44.80 >1800 1577.96 >1800 13773 ? 17099 ?
qcp-25-264-2-ext 2.53 730.13 116.25 68.74 421 10016 971 153128
qcp-25-264-3-ext 157.58 >1800 >1800 1473.21 46063 ? ? 702897
qcp-25-264-4-ext 22.30 1334.34 712.71 >1800 6697 17322 7648 ?
qcp-25-264-5-ext 12.58 1449.90 459.54 537.30 3785 18254 4679 380392
qcp-25-264-6-ext 341.62 >1800 >1800 170.99 83871 ? ? 216433
qcp-25-264-7-ext 6.08 1265.34 159.93 178.15 1423 14289 1342 200123
qcp-25-264-8-ext 3.01 546.69 75.73 23.08 553 6051 586 76995
qcp-25-264-9-ext 12.66 >1800 638.59 36.18 3303 ? 5484 94814

qcp-25-264-10-ext 5.30 914.16 121.65 123.26 981 11128 979 200110
qcp-25-264-11-ext 0.81 15.76 14.46 0.35 0 0 0 399
qcp-25-264-12-ext 0.80 37.53 14.65 0.55 0 590 0 3960
qcp-25-264-13-ext 0.80 337.77 14.62 1.03 0 4259 0 11408
qcp-25-264-14-ext 4.77 1106.12 146.86 347.84 1183 13412 1251 323175

Average 41.47 >1047.35 >522.13 >439.48 10920.8 ? ? ?

Table 4. Comparison of all different decomposition on quasi group completion prob-
lems

constraints

alldifferent([xi1, . . . , xin]), 1 6 i 6 n
alldifferent([x1j , . . . , xnj]), 1 6 j 6 n

The quasigroup completion problem (QCP) is a latin square problem where some
of the xij are given. These are challenging problems which exhibit phase transi-
tion behaviour. We use instances from the 2008 CSP Solver Competition [13].

We compare several decompositions of the alldifferent constraint all using
our default solver lv. The diseq decomposition is the usual decomposition into
disequalities 6=. The gcc decomposition explained in Section 3.4, strengthens
propagation by doing some additional bounds propagation. The bnd decompo-
sition is a decomposition that maintains bounds-consistency [14], while bnd+ is
a modification of bnd where we replace each expression [[xi 6 d]]∧¬[[xi 6 d− 1]]
with [[xi = d]] to obtain a decomposition which combines the propagation of
bnd and diseq. The different variations only require changing the definition of
alldifferent included in the Zinc model.

The results are shown in Table 4. While the bnd+ decomposition is the
strongest its size is prohibitive. The gcc decomposition is comprehensively best
hitting the right tradeoff of strength of propagation versus size of decomposition.
Comparing with results from the CSP Solver competition 2008, only two solvers
could solve more than 2 of these problems (using the diseq model) in 1800s (on
a 3GHz Xeon): choco2 dwdeg, requiring an average > 608.8s (2 timeouts), and
choco2 impwdeg, requiring > 776.8s (3 timeouts)

5 Conclusion

The reengineered lazy clause generation solver is highly flexible hybrid constraint
programming solver that combines the modelling and search flexibility of finite
domain solving with the learning and adaptive search capabilities of SAT solvers.
It forces us to reconsider many design choices for finite domain propagation. The
resulting solver is highly competitive and able to tackle problems that are beyond
the scope of either finite domain or SAT solvers alone. It also illustrates that the
combination of specialized finite domain search with nogoods can be extremely
powerful.

Acknowledgments: NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council.

References

1. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Procs. of CP2007. (2007) 544–558

2. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst. 31(1) (2008)

3. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient sat solver. In: Procs. DAC 2001. (2001) 530–535

4. Bacchus, F.: GAC via unit propagation. In: Procs. of CP2007. (2007) 133–147
5. Schulte, C., Tack, G.: Views and iterators for generic constraint implementations.

In: Procs. of CP 2005. (2005) 817–821
6. Harvey, W., Stuckey, P.: Improving linear constraint propagation by changing

constraint representation. Constraints 8(2) (2003) 173–207
7. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP

into SAT. In: Proceedings CP2006. (2006) 590–603
8. Schulte, C., Smolka, G.: Finite Domain Constraint Programming in Oz. A Tutorial

http://www.mozart-oz.org/documentation/fdt/.
9. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix

decomposition into consecutive-ones matrices: CP and IP approaches. In: Procs.
of CPAIOR 2007. (2007) 1–15

10. Rodosek, R., Wallace, M.: A generic model and hybrid algorithm for hoist schedul-
ing problems. In: Proceedings CP1998. (1998) 385–399

11. Huang, J.: Universal booleanization of constraint models. In: Procs. of CP2008.
(2008) 144–158

12. Lougee-Heimer, R.: The Common Optimization INterface for operations research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47(1) (2003) 57–66

13. : International CSP Solver Competition http://www.cril.univ-artois.fr/CPAI08/.
14. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decom-

positions of all different, global cardianlity and related constraints. In: IJCAI.
(2009)

