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Abstract. The global cumulative constraint was proposed for mod-
elling cumulative resources in scheduling problems for finite domain (FD)
propagation. Since that time a great deal of research has investigated new
stronger and faster filtering techniques for cumulative, but still most of
these techniques only pay off in limited cases or are not scalable. Re-
cently, the “lazy clause generation” hybrid solving approach has been
devised which allows a finite domain propagation engine possible to take
advantage of advanced SAT technology, by “lazily” creating a SAT model
of an FD problem as computation progresses. This allows the solver to
make use of SAT nogood learning and autonomous search capabilities.
In this paper we show that using lazy clause generation where we model
cumulative constraint by decomposition gives a very competitive im-
plementation of cumulative resource problems. We are able to close a
number of open problems from the well-established PSPlib benchmark
library of resource-constrained project scheduling problems.

1 Introduction

Cumulative resources are part of many real-world scheduling problems. A re-
source can represent not only a machine which is able to run multiple tasks in
parallel but also entities such as: electricity, water, consumables or even human
skills. Those resources arises for example in the resource-constrained project
scheduling problem Rcpsp, their variants, their extensions and their specialisa-
tions. A Rcpsp consists of tasks (also called activities) consuming one or more
resources, precedences between some tasks, and resources. In this paper we re-
strict ourselves to case of non-preemptive tasks and renewable resources with a
constant resource capacity over the planning horizon. A solution is a schedule of
all tasks so that all precedences and resource constraints are satisfied. Rcpsp is
an NP-hard problem.

Example 1. Consider a simple resource scheduling problem. There are 5 tasks a,
b, c, d and e to be scheduled to end before time 10. The tasks have respective
durations 1, 2, 3, 3 and 4, each respective task requiring 1, 1, 2, 2 and 2 units of
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Fig. 1. (a) A small cumulative resource problem, with 5 tasks to place in the 5x10 box,
with task a before d before b, (b) a possible schedule, and (c) a profile under some
further conditions.

resource, with a resource capacity of 5. Assume further that there are precedence
constraints: task a must complete before task d begins, written a  d, and
similarly d b. Figure 1(a) shows the 5 tasks and precedences, while (b) shows
a possible schedule, where the respective start times are: 0, 4, 0, 1, 3.

In 1993 Aggoun and Beldiceanu [2] introduced the global cumulative con-
straint in order to efficiently solve complex scheduling problems in a constraint
programming framework. The cumulative constraint cannot compete with spe-
cific OR methods for restricted forms of scheduling, but since it is applicable
whatever the side constraints are it is very valuable. Many improvements have
been proposed to the cumulative constraint: see e.g. Caseau and Laburthe [5],
Carlier and Pinson [4], Nuijten [16] and Baptiste and Le Pape [3].

The best known exact algorithm for solving Rcpsp is from Demeulemeester
and Herroelen [6]. Their specific method is a branch-and-bound approach relying
heavily on dominance rules and cut sets, a kind of problem specific nogoods. They
implicitly show the importance of nogoods to fathom the huge search space of
Rcpsp problems. Unfortunately, the number of cut sets grows exponentially in
the number of tasks, so that this method is considered to be efficient only for
small problems.

In comparison to Demeulemeester and Herroelen’s specific nogoods SAT
solvers records general nogoods. Since the introduction of cumulative SAT solv-
ing has improved drastically. Nowadays, modern SAT solvers can often handle
problems with millions of constraints and hundreds of thousands of variables.
But problems like Rcpsp are difficult to encode into SAT without breaking these
implicit limits. Recently, Ohrimenko et al. [17] showed how to build a powerful
hybrid of SAT solving and FD solving that maintains the advantages of both: the
high level modelling and small models of FD solvers, and the efficient nogood
recording and conflict driven search of SAT. The key idea in this lazy clause
generation approach is that finite domain propagators lazily generate a clausal
representation of their behaviour. They show that this combination outperforms
the best available constraint solvers on Open-Shop-Job problems which is a spe-
cial case of Rcpsp.

Since 1993 little attention has been paid to decompositions of cumulative
because decomposition cannot compete with the global propagator. But once



we consider explanation we have to revisit this. Decomposition of globals means
that explanation of behaviour is more fine grained and hence more reusable. Also
it avoids the need for complex explanation algorithms to be developed for the
global. Note that there is some preliminary work on explanation generation for
cumulative, in PaLM [9] where (in 2000) it is described as current work, and [18]
which restricts attention to the disjunctive constraint (resource capacity 1).

In this paper we show how a decomposition based approach for solving com-
plex scheduling problems can be competitive with state-of-the-art specialised
methods from the CP and OR community. The G12 Constraint Programming
Platform is used for implementation of decomposed cumulative constraint as
a lazy clause generator. We evaluate our approach on Rcpsp from the well-
established and challenging benchmark library PSPLib [1].

2 Lazy Clause Generation

Lazy clause generation is a powerful hybrid of SAT and finite domain solving that
inherits advantages of both: high level modelling, and specialised propagation
algorithms from FD; nogood recording, and conflict driven search from SAT.

2.1 Finite Domain Propagation

We consider a set of integer variables V. A domain D is a complete mapping
from V to finite sets of integers. Let D1 and D2 be domains and V ⊆ V. We say
that D1 is tighter than D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v ∈ V.
We use range notation: [ l .. u ] denotes the set of integers {d | l ≤ d ≤ u, d ∈ Z}.
We assume an initial domain Dinit such that all domains D that occur will be
stronger i.e. D v Dinit.

A valuation θ is a mapping of variables to values, written {x1 7→ d1, . . . , xn 7→
dn}. We extend the valuation θ to map expressions or constraints involving the
variables in the natural way. Let vars be the function that returns the set of
variables appearing in an expression, constraint or valuation. In an abuse of
notation, we define a valuation θ to be an element of a domain D, written
θ ∈ D, if θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint c is a set of valuations over vars(c) which give the allowable
values for a set of variables. In finite domain propagation constraints are im-
plemented by propagators. A propagator f for c is a monotonically decreasing
function on domains such that for all domains D v Dinit: f(D) v D and
{θ ∈ D | θ ∈ c} = {θ ∈ f(D) | θ ∈ c}. A propagation solver for a set of propaga-
tors F and current domain D, solv(F,D), repeatedly applies all the propagators
in F starting from domain D until there is no further change in resulting domain.
solv(F,D) is the weakest domain D′ v D which is a fixpoint for all f ∈ F .

2.2 SAT Solving

DPLL SAT solvers can be understood as a form of propagation solver where
variables are Boolean, and the only constraints are clauses C: ∨l∈C l. The differ-



ence with an FD solver is that propagation engines are highly specialised and
more importantly the reason for propagation is recorded, and on failure used to
generate a nogood which explains the failure. This clause is added to the propa-
gators to shortcircuit later search. It also helps direct backtracking to go above
the cause of the failure.

2.3 Lazy Clause Generation

The lazy clause generation [17] works as follows. Propagators are considered
as clause generators for the SAT solver. Instead of applying propagator f to
domain D to obtain f(D), whenever f(D) 6= D we build a clause that encodes
the change in domains. In order to do so we must link the integer variables of
the finite domain problem to a Boolean representation.

We represent an integer variable x with domain Dinit(x) = [ l .. u ] using the
Boolean variables Jx = lK, . . . , Jx = uK and Jx ≤ lK, . . . , Jx ≤ u − 1K where the
former is generated on demand. The variable Jx = dK is true if x takes the value
d, and false for a value different from d. Similarly the variable Jx ≤ dK is true if
x takes a value less than or equal to d and false for a value greater than d.

Not every assignment of Boolean variables is consistent with the integer vari-
able x, for example {Jx = 3K, Jx ≤ 2K} requires that x is both 3 and ≤ 2. In
order to ensure that assignments represent a consistent set of possibilities for
the integer variable x we add to the SAT solver clauses DOM (x) that encode
Jx ≤ dK → Jx ≤ d + 1K and Jx = dK ↔ (Jx ≤ dK ∧ ¬Jx ≤ d − 1K). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any assignment A on these Boolean variables can be converted to a domain:
domain(A)(x) = {d ∈ Dinit(x) | ∀JcK ∈ A, vars(JcK) = {x} : x = d |= c} that
is the domain includes all values for x that are consistent with all the Boolean
variables related to x. Note that the domain may assign no values to some
variable.

Example 2. The assignment A = {Jx1 ≤ 10K, ¬Jx1 ≤ 5K, ¬Jx1 = 7K, ¬Jx1 = 8K,
Jx2 ≤ 11K, ¬Jx2 ≤ 5K, Jx3 ≤ 10K, ¬Jx3 ≤ −2K} is consistent with x1 = 6, x1 = 9
and x1 = 10. Hence domain(A)(x1) = {6, 9, 10}. For the remaining variables
domain(A)(x2) = [ 6 .. 11 ] and domain(A)(x3) = [−1 .. 10 ]. 2

In lazy clause generation a propagator changes from a mapping from domains
to domains to a generator of clauses describing propagation. When f(D) 6= D
we assume the propagator f can determine a set of clauses C which explain the
domain changes.

Example 3. Consider the propagator f for x1 ≤ x2 +1. When applied to domain
D(x1) = [ 0 .. 9 ], D(x2) = [−3 .. 5 ] it obtains f(D)(x1) = [ 0 .. 6 ], f(D)(x2) =
[−1 .. 5 ]. The clausal explanation of the change in domain of x1 is Jx2 ≤ 5K →
Jx1 ≤ 6K, similarly the change in domain of x2 is ¬Jx1 ≤ −1K → ¬Jx2 ≤ −2K
(x1 ≥ 0 → x2 ≥ −1). These become the clauses ¬Jx2 ≤ 5K ∨ Jx1 ≤ 6K and
Jx1 ≤ −1K ∨ ¬Jx2 ≤ −2K.



Assuming domain(A) v D, then when clauses C that explain the propagation
of f are added to the SAT database and unit propagation is performed, then the
resulting assignment A′ will be such that domain(A′) v f(D).

Using the lazy clause generation we can show that the SAT solver maintains
an assignment which is at least as tight as that determined by finite domain
propagation [17]. The advantages over a normal FD solver are that we auto-
matically have the nogood recording and backjumping ability of the SAT solver
applied to our FD problem. We can also use activity counts from the SAT solver
to direct the FD search.

3 Modelling the Cumulative Resource Constraint

In this section we define the cumulative constraint and discuss two possible
decompositions of it.

The cumulative constraint introduced by Aggoun and Beldiceanu [2] in 1993
is a constraint with Zinc [14] type

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c);

Each of the first three arguments are lists of the same length n and indicate
information about a set of tasks. s[i] is the start time of the ith task, d[i] is the
duration of the ith task, and r[i] is the resource usage (per time unit) of the ith

task. The last argument c is the resource capacity.
The cumulative constraints represent cumulative resources with a constant

capacity over the considered planning horizon applied to non-preemptive tasks,
i.e. if they are started they cannot be interrupted. W.l.o.g. we assume that all
values are integral and non-negative and there is a planning horizon tmax which
is the latest time any task can finish.

We also assume for simplicity that each of d, r and c are fixed integers,
although this is not important for much of the discussion. This is certainly the
most common case of cumulative.

The cumulative constraint enforces that at all times the sum of resources
used by active tasks is no more than the resource capacity.

∀t ∈ [ 0 .. tmax − 1 ] :
∑

i∈[ 1 .. n ]:s[i]≤t<s[i]+d[i]

r[i] ≤ c (1)

Example 4. Consider the cumulative resource problem defined in Example 1.
This can be modelled by the cumulative constraint

cumulative ([sa, sb, sc, sd, se], [1, 2, 3, 3, 4], [1, 1, 2, 2, 2], 5)
with precedence constraints a d, d b, modelled by sa + 1 ≤ sd and sd + 3 ≤
sb. The propagator for the precedence constraints determines a domain D where
D(sa) = [ 0 .. 3 ], D(sb) = [ 4 .. 8 ], D(sc) = [ 0 .. 7 ], D(sd) = [ 1 .. 5 ], D(se) =
[ 0 .. 6 ]. The cumulative constraint does not determine any new information. If
we add the constraints se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, then precedence determines



the domains D(sa) = [ 1 .. 3 ], D(sb) = [ 4 .. 6 ], D(sc) = [ 0 .. 7 ], D(sd) = [ 2 .. 4 ],
D(se) = [ 2 .. 4 ]. We can determine that task d must use two resources between
times 4 and 5, and task e must use two resources between times 4 and 6 (see
Figure 1(c)). Hence task c cannot overlap these between times 4 and 5, and we
can determine that sc 6= 2, sc 6= 3, sc 6= 4. If we restrict ourselves to bounds
propagation then the cumulative constraint learns nothing. If we then add the
constraint that sc ≥ 2, then the bounds propagation on the cumulative constraint
determines that sc ≥ 5 and D(sc) becomes [ 5 .. 7 ].

Usually the cumulative constraint is implemented as a global propagator,
since it can then take more information into account during propagation. In the
remainder of this section we give two decompositions.

3.1 Time-Resource Decomposition

The time-resource decomposition (Time-RD) [2] arises from the Formula (1). For
every time t the sum of all resource requirements must be less than or equal to
the resource capacity. The Zinc encoding of the decomposition is shown below
where: index set(a) returns the index set of an array a (here [ 1 .. n ]), lb(x)
(ub(x)) returns the declared lower (resp. upper) bound of a integer variable x,
and bool2int(b) is 0 if the Boolean b is false, and 1 if it is true.

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c) =

let {set of int: tasks = index set(s),

set of int: times = min([lb(s[i]) | i in tasks]) ..

max([ub(s[i]) + ub(d[i]) - 1 | i in tasks])

} in forall( t in times ) (

c >= sum( i in tasks ) (

bool2int( s[i] <= t /\ t < s[i] + d[i] ) * r[i]));

This decomposition implicitly introduces new Boolean variables Bit repre-
sents that task i is active at time t:

∀t ∈ [ 0 .. tmax − 1 ] ,∀i ∈ [ 1 .. n ] : Bit ↔ Js[i] ≤ tK ∧ ¬Js[i] ≤ t− d[i]K

∀t ∈ [ 0 .. tmax − 1 ] :
∑

i∈[ 1 .. n ]

r[i] ·Bit ≤ c

Note that since we are using lazy clause generation, the Booleans for the expres-
sions Js[i] ≤ tK and Js[i] ≤ t − d[i]K already exist and that for a task i we only
need to construct variables Bit where lb(s[i]) ≤ t < ub(s[i]) + ub(d[i]).

At most ntmax new Boolean variables are created, ntmax conjunction con-
straints, and tmax sum constraints (of size n). This decomposition implicitly
profiles the resource histograms for all times for the resource.

Note that if we have another cumulative constraint for a different resource
on the same tasks then we can reuse the Boolean variables, and we just need to
create tmax new sum constraints.



Example 5. Consider the problem of Example 4 after the addition of se ≥ 2,
se ≤ 4, sb ≤ 7, sa ≥ 1, the decomposition determines that Bd4 is true since sd ≤ 4
and ¬(sd ≤ 4 − 4 = 0), similarly for Be4 and Be5. Using the sum constraint it
determines that Bc4 is false, and hence ¬(sc ≤ 4)∨ sc ≤ 1. This does not change
any bounds. When we add that sc ≥ 2 we determine that ¬(sc ≤ 4) or sc ≥ 5.

We can expand the model to represent holes in the domains of start times.
The literal Js[i] = tK is a Boolean representing the start time of the ith task is t.
We add the constraint

Js[i] = tK→
∧

t≤t′<t+d[i]

Bit′

which ensures that if Bit′ becomes false then the values {t′ − d[i] + 1, t′ − d[i] +
2, . . . , t′} are removed from the domain of s[i]. We do not use this constraint for
our experiments since it was inferior in solving time to the model without it.

Example 6. Consider again the problem of Example 4, with the extended de-
composition we also determine that sc 6= 2, sc 6= 3, sc 6= 4, so the resulting
domain is D(sc) = {0, 1, 5, 6, 7}.

3.2 Task-Resource Decomposition

The Task-resource decomposition (Task-RD) is a relaxation of the Time-RD.
It ensures a non-overload of resources only at the start (or end) times which
is sufficient to ensure non-overload at every time for the non-preemptive case.
Therefore, the number of variables and linear inequality constraints is indepen-
dent of the size of the planning horizon tmax. It was used by El-Kholy [7] for
temporal and resource reasoning in planning. The Zinc code for the decomposi-
tion at the start times is below.

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c) =

let { set of int: tasks = index set(s) }
in forall( j in tasks ) (

c >= r[j] + sum( i in tasks where i != j ) (

bool2int( s[i] <= s[j] /\ s[j] < s[i] + d[i] ) * r[i]));

The decomposition implicitly introduces new Boolean variables: B1
ij ≡ task

j starts at or after task i starts, B2
ij ≡ task j starts before task i ends, and Bij

≡ task j starts when task i is running.

∀j ∈ [ 1 .. n ] ,∀i ∈ [ 1 .. n ] \ {j} : Bij ↔ B1
ij ∧B2

ij

B1
ij ↔ s[i] ≤ s[j]

B2
ij ↔ s[j] < s[i] + d[i]

∀j ∈ [ 1 .. n ] :
∑

i∈[ 1 .. n ]\{j}

r[i] ·Bij ≤ c− r[j]



Note not all tasks i must be considered for a task j, only those i which can
overlap at the start times s[j] wrt. precedence constraints, resource constraints
and the initial domain Dinit.

Since the SAT solver does not know about the relationship among the B1
∗∗

and B2
∗∗ the following redundant constraints can be posted for all i, j ∈ [ 1 .. n ]

where i < j in order to improve the propagation and the learning.

B1
ij ∨B2

ij B1
ji ∨B2

ji B1
ij ∨B1

ji B1
ij → B2

ji B1
ji → B2

ij

The size of this decomposition only depends on n whereas Time-RD depends
on n and the number of points in the planning horizon tmax. At most 3n(n− 1)
Boolean variables, 3n(n− 1) equivalence relations, n or relations, 3n redundant
constraints and n sum constraints are generated. Again adding another cumu-
lative resource constraints can reuse the Boolean variables and requires only
adding n new sum constraints.

Example 7. Consider the problem of Example 4 after the addition of se ≥ 2, se ≤
4, sb ≤ 7, sa ≥ 1, after the precedence constraints are applied the decomposition
learns ¬B2

ad, ¬B2
db direct from precedence constraints and hence ¬Bad, ¬Bdb.

From the start times it determines that B1
ab, B

1
db, B

1
eb, ¬B2

ba, ¬B2
bd, ¬B2

be, ¬Bba,
¬Bbd, ¬Bbe. But nothing is determined from the sum constraints and no bounds
changes are made by the cumulative. Adding sc ≥ 2 does not change this. This
illustrates the weaker propagation of the Task-RD.

If we use end time variables e[i] = s[i] + d[i], we can generate a symmetric
model to that defined above.

In comparison, to the Time-RD decomposition the Task-RD decomposition
is stronger in its ability to relate to task information, but generates a weaker
profile of resource usage, since no implicit profile is recorded.

3.3 Explanations

To see the advantage of decomposition in terms of explanations let us revisit
Example 4. After the addition of se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, together
with sc ≥ 2 a global (bounds consistent) cumulative constraint propagates that
sc ≥ 5. A minimal explanation of this is that se ≥ 2 ∧ se ≤ 4 ∧ sd ≥ 2 ∧ sd ≤
4 ∧ sc ≥ 2→ sc ≥ 5. This is recorded as the clause Jse ≤ 1K ∨ ¬Jse ≤ 4K ∨ Jsd ≤
1K ∨ Jsd ≤ 4K ∨ Jsc ≤ 1K ∨ ¬Jsc ≤ 4K.

Consider what happens in the Time-RD decomposition. After the addition
of se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, we learn sd ≤ 4 ∧ sd ≥ 2→ Bd4, se ≤ 4 ∧ se ≥
1 → Be4, se ≤ 5 ∧ se ≥ 2 → Be5, and Bd4 ∧ Bd5 → ¬Bc4 With the addition of
sc ≥ 2 we learn that sc ≥ 2 ∧ ¬Bc4 → sc ≥ 5. Each of the clauses is smaller
and more reuseable. For example if we replace the constraint se ≥ 2 by se ≥ 1
then the same reasoning will apply. The crucial benefit of this is that nogoods
are more reusable.



4 Resource-Constrained Project Scheduling Problems

Resource-constrained project scheduling problems (Rcpsp) appear as variants,
extensions and restrictions in many real-world scheduling problems. Therefore we
test our decomposition on the well-known Rcpsp benchmark library PSPLib [1].

An Rcpsp is denoted by a triple (T,A,R) where T is a set of tasks, A a
set of precedences between tasks and R is a set of resources. Each task i has a
duration d[i] and a resource usage r[k, i] for each resource k ∈ R. Each resource
has a resource capacity c[r].

The goal is to find either a schedule or an optimal schedule with respect to
an objective function where a schedule s is an assignment which meets following
conditions

∀i j ∈ A : s[i] + d[i] ≤ s[j]

∀t ∈ [ 0 .. tmax − 1 ] ,∀k ∈ R :
∑

i∈T :s[i]≤t<s[i]+d[i]

r[k, i] ≤ c[r] ,

where tmax is the planning horizon. For our experiments we search for a schedule
which minimises the makespan (i.e. latest end time). A basic Zinc model is given
at http://www.cs.mu.oz.au/~pjs/rcpsp.

In practice we share the Boolean variables generated inside the cumulative
constraints as described in Section 3.1 (by common sub-expression elimination)
and add redundant constraints as described in Section 3.2 when using the Task-
RD decomposition. We also add redundant non-overlap constraints for each pair
of tasks whose resource usages make them unable to overlap. Moreover, the
planning horizon tmax was determined as the makespan of first solution found
by labelling the smallest value of the start time variables in order. The initial
domain of each variable s[i] was determined as Dinit(s[i]) = [ p[i] .. tmax − q[i] ]
where p[i] is the duration of the longest chain of predecessor tasks, and q[i] is
the duration of the longest chain of successor tasks.

In the remainder of this section we discuss alternate search strategies.

4.1 Search using Serial Scheduling Generation

The serial scheduling generation scheme (serial Sgs) is one of basic deterministic
algorithms to assign stepwise a start time to an unscheduled task. It incremen-
tally extends a partial schedule by choosing an eligible task—i.e. all of whose
predecessors are fixed in the partial schedule—and assigns it to its earliest start
time with respect to the precedence and resource constraints. For more details
about SGS, different methods based on it, and computational results in Opera-
tions Research see [10, 8, 11].

Baptiste and Le Pape [3] adapt serial Sgs for a constraint programming
framework. For our experiments we use a form where we do not apply their
dominance rules, and where we impose a lower bound on the start time instead
of posting the delaying constraint “task i executes after at least one task in S”.



1. Select an eligible unscheduled task i with the earliest start time t = lb(s[i]).
If there is a tie between some tasks then select that one with the minimal
latest start time ub(s[i]). Create a choice point.

2. Left branch: Extend the partial schedule by setting s[i] = t. If this branch
fails then go to the right branch; Otherwise go to step 1.

3. Right branch: Delay task i by setting s[i] ≥ t′ where t′ = min{lb(s[j]) +
d[j] | j ∈ T : lb(s[j]) + d[j] > lb(s[i])}, that is, the earliest end time of the
concurrent tasks. If this branch fails then backtrack to the previous choice
point; Otherwise go to step 1.

The right branch uses the dominance rule that amongst all optimal schedules
there exists one where every task starts either at the first possible time or imme-
diately after the end of another task. Therefore, the imposing of the new lower
bound is sound. If we add side constraints then this assumption could be invalid.

Note that we use this search strategy with branch and bound, where whenever
a new solution is found, a constraint requiring a better solution is dynamically
(globally) added during the search.

4.2 Search using Variable State Independent Decaying Sum

The SAT decision heuristic Variable State Independent Decaying Sum (Vsids) [15]
is a generic search approach that is currently almost universally used in DPLL
SAT solvers. Each variable is associated with a dynamic activity counter that is
increased when the variable is involved in a failure. Periodically, all counters are
reduced, thus decaying. The unfixed variable with the highest activity is selected
to branch on at each stage. Benchmark results by Moskewicz [15] shows that
Vsids performs better on average on hard problems than other heuristics.

To use Vsids in a lazy clause generation solver, we ask the SAT solver what its
preferred literal for branching on is. This corresponds to an atomic constraint x ≤
d or x = d and we branch on x ≤ d∨x > d or x = d∨x 6= d. Note that the search
is still controlled by the FD search engine, so that we use its standard approach
to implementing branch-and-bound to implement the optimisation search.

Normally SAT solvers use dichotomic restart search for optimisation as the
SAT solver itself does not have optimisation search built in, although in some
cases it is possible to maintain the nogoods from the previous search. The combi-
nation of Vsids and branch and bound is much stronger since in the continuation
of the search with a better bound, the activity counts at the time of finding a
new better solution are used in the same part of the search tree.

Restarting is shown to be beneficial in SAT solving (and CSP solving) in
speeding up solution finding, and being more robust on hard problems. We also
use Vsids search with restarting, which we denote Restart.3

3 Note that restarting Sgs search while possible is not attractive since the nogoods
do not modify the search in most cases.



4.3 Hybrid Search Strategies

One drawback of Vsids is that at the beginning of the search the activity coun-
ters are only related to the clauses occurring in the original model, and not to
any conflict. This is exacerbated in lazy clause generation where many of the
constraints of the problem may not appear at all in the clause database initially.
This can lead to poor decisions in the early stages of the search. Our experiments
support this, there are a number of “easy” instances which Sgs can solve within
a small number of choice points, where Vsids requires substantially more.

In order to avoid these poor decisions we consider a hybrid search strategy.
We use Sgs for the first 500 choice points and then restart the search with Vsids.
The Sgs search may solve the whole problem if it is easy enough, but otherwise it
sets the activity counters to meaningful values so that Vsids starts concentrating
on meaningful decisions. We denote this search as Hot Start, and the version
where the secondary Vsids search also restarts as Hot Restart.

5 Experiments

We carried out extensive experiments on Rcpsp instances comparing our ap-
proach to decomposition without explanation, global cumulative propagators
from sicstus and eclipse, as well as a state-of-the-art exact solving algorithm [12].
Detailed results are available at http://www.cs.mu.oz.au/~pjs/rcpsp.

We use two suites of benchmarks. The library PSPLib [1] contains the four
classes J30, J60, J90, and J120 consisting of 480 instances of 30, 60, 90 task and
600 instances of 120 tasks respectively. We also use a suite (BL) of 40 highly
cumulative instances with either 20 or 25 tasks constructed by Baptiste and Le
Pape [3].

The experiments were run on a X86-64 architecture running GNU/Linux
and a 3.4 GHz processor. The code was written in G12 Constraint Programming
Platform and compiled with the Mercury Compiler and grade hlc.gc.trseg. Each
run was given a 10 minute limit.

5.1 Results on J30 and BL instances

The first experiment compares different decompositions and search on the small-
est instances J30 and BL. We compare Sgs, Vsids, Restart and the hybrid
search approaches using three decompositions Time-RD (t), Task-RD (s), and
an equivalent version to Task-RD on end times (e). The results are shown in
Table 1. For J30 we show the number of problems solved (#svd), (cmpr(477))
the average solving time in seconds and number of choice points (#cp) on the
477 problems that all approaches solved, and (all(480)) average solving time in
seconds and number of choice points on all 480 problems to find the best solu-
tion found.4 Note that we shall use similar comparisons and notation in future
4 This means that for problems that time out this may be significantly smaller than

the number of choice points explored before timeout.



Table 1. Results on J30 and BL instances

J30 BL
search dec #svd cmpr(477) all(480) #svd all(40) #svd cp(4000)

time #cp time #cp time #cp time #cp

Sgs
s 477 3.25 3069 6.97 4114 40 4.18 9628 24 0.22 1261
e 477 3.31 3054 7.04 4101 40 4.41 9443 24 0.19 1144
t 480 1.36 2339 4.09 4230 40 1.40 5892 29 0.05 781

Vsids
s 480 1.82 2128 2.62 2984 40 1.24 4436 31 0.20 1115
e 480 0.85 1504 1.45 2220 40 1.27 4104 30 0.20 1025
t 480 0.43 1002 0.54 1271 40 0.30 2540 34 0.05 661

Restart
s 480 0.93 1504 1.73 2339 40 1.46 4597 31 0.23 1207
e 480 0.82 1392 1.52 2153 40 2.61 5848 32 0.23 1177
t 480 0.39 892 0.54 1212 40 0.17 1670 35 0.06 639

Hot Start t 480 0.34 782 0.56 1223 40 0.13 1456 36 0.05 688
Hot Restart t 480 0.42 892 0.59 1241 40 0.20 1850 35 0.07 733

tables. For BL we show the number of solved problems, (all(40)) average solving
time and number of choice points with 10 minute limit (on all 40 instances), as
well as cp(4000) with a 4000 choice point limit.

Clearly the Time-RD decomposition is superior regardless of search, and the
best search strategies are Restart and the hybrid ones.

The results on the BL instances show that approaches using Time-RD and
Vsids could solve between 6 and 8 instances more than the base approach (FE) of
Baptiste and Le Pape [3] within 4000 backtracking steps.5 Their “left-shift/right-
shift” approach could solve 40 instances in 30 minutes, with an average of 3634
steps and 39.4 seconds on a 200 MHz machine. All our approaches with Time-
RD and Vsids find the optimal solution faster and in fewer backtracking steps
(between a factor of 1.39 and 2.4).

Next we compare the Time-RD decomposition (Sgs+t) against implemen-
tations of cumulative in sicstus v4.0 (default, and with the flag global) and
eclipse v6.0 (using its 3 cumulative versions from the libraries cumulative,
edge finder and edge finder3). We also compare against (FD+t) a decom-
position without explanation (a normal FD solver) executed in the G12 system.
All approaches use the Sgs search strategy.

The results are shown in the Table 2. We can see that none of the other
approaches compare to the lazy clause generation approach. The best is the
sicstus cumulative with global flag. Clearly nogoods are very important to
fathom search space.

While the Time-RD decomposition clearly outperforms Task-RD on these
small examples, as the planning horizon grows at some point Task-RD should be
better, since its model size is independent of the planning horizon. To investigate
this we took 20 examples from J30 and multiplied the durations and planning
horizon by 10 and 100. We compare the Time-RD decomposition versus the (e)
5 We count the number of choice points which is not smaller than the number of

backtracking steps.



Table 2. Results of the FD solvers on the J30 and BL instances

J30 BL
solver #svd cmpr(361) all(480) #svd cmpr(6) all(40)

si
c
st

u
s default 417 0.24 268 89.00 13986 30 2.86 20865 213.59 489218

global 411 0.43 263 96.85 6661 39 0.32 1265 19.19 10262

e
c
l
ip

se cumu 365 11.60 19529 158.30 42698 6 149.90 252462 532.31 123839
ef 361 15.15 15438 161.32 22907 36 8.79 11265 117.21 89034
ef3 362 13.37 12391 159.41 19186 37 7.17 7717 90.82 49114

G
1
2 FD+t 403 1.93 5665 104.72 156598 30 2.23 34677 217.12 918287

Sgs+t 480 0.02 75 4.09 4230 40 0.02 293 1.40 5892

Table 3. Results on 20 modified instance from J30 instances

Sgs Vsids
duration dec #svd cmpr(12) all(20) #svd cmpr(12) all(20)

1× e 17 0.74 2383 152.49 67257 20 0.25 735 26.89 34563
t 20 0.44 1817 87.19 72888 20 0.11 404 6.59 14405

10× e 13 4.25 7493 212.75 47394 20 1.98 3971 117.27 68097
t 14 4.74 2516 201.27 41081 20 1.66 1622 94.09 28250

100× e 13 22.03 17620 225.71 35349 14 10.52 6379 192.90 24959
t 13 55.78 3017 259.98 7175 14 22.42 9836 233.60 12618

end-time Task-RD decomposition (which is slightly better than start-time s).
The results are shown in Table 3. First we should note that simply increasing
the durations makes the problems significantly more difficult for a decomposed
cumulative. While the Time-RD decomposition is still just better than the Task-
RD decomposition for the 10× extended examples, it is inferior for scheduling
problems with very long durations.

5.2 Results on J60, J90 and J120

We now examine the larger instances J60, J90 and J120 from PSPLib. For J60 we
compare the most competitive approaches from the previous subsection: Vsids
+ t, Restart + t, Hot Start + t and Hot Restart + t. For this suite
our solvers cannot solve all 480 instances within 10 minutes. The results are
presented in the Table 4. For these examples we show the average distance of
our best solution found from the best known solution from PSPLib (most of
which are generated by specialised heuristic methods), as well as the usual time
and number of choice points comparisons. Many of these are currently open
problems. Our best approaches close 21 open instances (considering results from
PSPlib [1], Laborie [12] and Liess and Michelon [13]). Clearly the hybrid search
strategies are superior, although all of these approaches are quite competitive.

For the largest instances J90 and J120 we ran only Hot Restart + t, since
it is the most robust strategy. For J90 we can solve 396 of 480 instances, with
an average solution distance of 7.6. The average for solved instances is 6.56s



Table 4. Results on J60 instances for Time-RD

solver #svd avg. dist. cmpr(424) all(480)

Vsids + t 424 4.5 5.77 6351 75.07 19781
Restart + t 428 4.8 5.07 5010 69.70 24333
Hot Start + t 429 9.3 3.83 4111 68.27 12072
Hot Restart + t 429 4.2 4.66 4617 68.25 25810

Table 5. Comparison between Laborie’s method and Hot Restart + t

J60 J90 J120
1.4 GHz 45s 300s 1800s 45s 300s 1800s 45s 300s 1800s

Laborie - 84.2 85.0 - 78.5 79.4 - 41.3 41.7
Hot Restart + t 85.2 88.1 89.4 79.8 81.3 82.5 42.5 44.8 45.3

3.4 GHz 18s 120s 600s∗ 18s 120s 600s∗ 18s 120s 600s∗

with 5077 #cp. We close 13 open instances in J90. For J120 we can solve 272 of
600 instances, with an average solution distance of 9.7, with average (on solved
instances) times of 7.52s and 6136 #cp. We close 20 open instances in J120.

We compare our best method Hot Restart + t to the method by La-
borie [12], the best published method on the J60, J90, and J120 instances.

Table 5 shows the percentage of solved instances within a maximal solve time.
We give an equivalent time to our solver taking into account the speeds of the
processors: 3.4GHz vs. 1.4GHz. At the top of the table is the time cutoff for a
1.4GHz processor, and at the bottom the approximately equivalent cutoff times
for a 3.4GHz machine. Note, that all ∗ marked 3.4GHz times are much lower
than the equivalent time for the 1.4GHz processor. Clearly this comparison can
only be seen as indicative.

Our method clearly outperforms Laborie’s method: for every class our method
was able to solve more problems within 18s than they could solve in half an
hour respectively on their machine. Interestingly, our solver could not solve six
instances which were solved by others.

Finally we used Hot Start + t to try to improve lower bounds of the
remaining open problems, by searching for a solution to the problem with the
makespan varying from the best known lower bound to the best known upper
bound from PSPLib. In this way we closed 9 more problems and improved 76
lower bounds.

6 Conclusion

We present a new approach solving Rcpsp problems by modelling cumulative
constraints by decomposition and using lazy clause generation. Benchmarks from
the PSPLib show the strong power of nogoods and Vsids style search to fathom
a large part of the search space. Without building complex specific global propa-
gators or highly specialised search algorithms we are able to compete with highly
specialised Rcpsp solving approaches and close 63 open problems.
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