
Propagation = Lazy Clause Generation

Olga Ohrimenko1, Peter J. Stuckey1, and Michael Codish2

1 NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng.
University of Melbourne, Australia

2 Department of Computer Science, Ben-Gurion University, Israel

Abstract. Finite domain propagation solvers effectively represent the
possible values of variables by a set of choices which can be naturally
modelled as Boolean variables. In this paper we describe how we can
mimic a finite domain propagation engine, by mapping propagators into
clauses in a SAT solver. This immediately results in strong nogoods for
finite domain propagation. But a naive static translation is impractical
except in limited cases. We show how we can convert propagators to
lazy clause generators for a SAT solver. The resulting system can solve
scheduling problems significantly faster than generating the clauses from
scratch, or using Satisfiability Modulo Theories solvers with difference
logic.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the
possible values of variables (propagation). The propagators that make up the
core of a finite domain propagation engine represent tradeoffs between the speed
of inference of information versus the strength of the information inferred. Good
propagators represent a good tradeoff at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial probles arises
from these good tradeoffs, and programmable search.

Propositional satisfiability (SAT) solvers are becoming remarkably powerful
and there is an increasing number of papers which propose encoding hard com-
binatorial (finite domain) problems in SAT. The success of modern SAT solvers
is largely due to a combination of techniques including: watch literals, 1UIP
nogoods and the VSIDS variable ordering heuristic [13].

In this paper we propose modelling combinatorial problems in SAT, not by
modelling the constraints of the problem, but by modelling/mimicking the prop-
agators used in a finite domain model of the problem. Variables are modelled in
terms of the changes in domain that occur during the execution of propagation.
We can then model the domain changing behaviour of propagators as clauses.

Encoding finite domain propagation uncovers an Achilles’ heel of SAT solvers.
While modern SAT solvers can often handle problems with millions of constraints
and hundreds of thousands of variables, many problems are difficult to encode
into SAT without breaking these implicit limits. We propose a hybrid approach.

Instead of introducing clauses representing propagators a priori, we execute the
original (finite domain) propagators as lazy clause generators inside the SAT
solver. Propagators introduce their propagation clauses precisely when they are
able to trigger new unit propagation. The resulting hybrid combines the ad-
vantages of SAT solving, in particular powerful and efficient nogood learning
and backjumping, with the advantages of finite domain propagation, simple and
powerful modelling and specialized and efficient propagation of information.

This paper contributes a hybrid system for implementing propagation-based
finite domain solving with a SAT solver and demonstrates its successful appli-
cation to hard open-shop scheduling benchmarks. We compare the hybrid solver
with a static approach that introduces the propagation clauses a priori, and with
Satisfiability Modulo Theories (SMT) [14] solving using difference logic. Our pro-
totype implementation can significantly improve on the carefully engineered SAT
and SMT solvers.

In the remainder of the paper we first introduce terminology, and then prop-
agation rules, a method of understanding propagator behaviour. We show how
these can be expressed as CNF formulae, and introduce the lazy clause genera-
tion approach. After experiments we compare with related work and conclude.

2 Propagation-based Constraint Solving

We consider a typed set of variables V = VI ∪ VS made up of integer variables,
VI , and sets of integers variables, VS . We use lower case letters such as x and y
for integer variables and upper case letters such as S and T for sets of integers.
A domain D is a complete mapping from V to finite sets of integers (for the
variables in VI) and to finite sets of finite sets of integers (for the variables in
VS). We can understand a domain D as a formula ∧v∈V(v ∈ D(v)) stating for
each variable v that its value is in its domain.

Let D1 and D2 be domains and V ⊆ V. We say that D1 is stronger than
D2, written D1 v D2, if D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2

are equivalent modulo V , written D1 =V D2, if D1(v) = D2(v) for all v ∈ V .
The intersection of D1 and D2, denoted D1 u D2, is defined by the domain
D1(v) ∩D2(v) for all v ∈ V.

We use range notation: For integers l and u, [l .. u] denotes the set of integers
{d | l 6 d 6 u}, while for sets of integers L and U , [L .. U] denotes the set of
sets of integers {A | L ⊆ A ⊆ U}. A convex domain D is where D(T) is a
range for all T ∈ VS . We restrict attention to convex domains. We assume an
initial domain Dinit which is convex such that all domains D that occur will be
stronger i.e. D v Dinit.

A valuation θ is a mapping of integer and set variables to correspondingly
typed values, written {x1 7→ d1, . . . , xn 7→ dn, S1 7→ A1, . . . , Sm 7→ Am}. We
extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,

2

we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint is a restriction placed on the allowable values for a set of vari-
ables. We define the solutions of a constraint c to be the set of valuations θ that
make that constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate with every constraint c a set of propagators, prop(c). A propaga-
tor f ∈ prop(c) is a monotonically decreasing function on domains such that for
all domains D v Dinit: f(D) v D and {θ ∈ D | θ ∈ solns(c)} = {θ ∈ f(D) | θ ∈
solns(c)}. This is a weak restriction since, for example, the identity mapping is
a propagator for any constraint. In this paper we restrict ourselves to set bounds
propagators that map convex domains to convex domains.

The output variables output(f) ⊆ V of a propagator f are the variables
changed by the propagator: v ∈ output(f) if ∃D v Dinit such that f(D)(v) 6=
D(v). The input variables input(f) ⊆ V of a propagator f is the smallest subset
V ⊆ V such that for each D @ Dinit: D =V D′ implies that f(D)uD′ =output(f)

f(D′) uD. Only the input variables are useful in computing the application of
the propagator to the domain.

Example 1. For the constraint c ≡ x1 + 1 6 x2 the function f defined by
f(D)(x1) = {d ∈ D(x1) | d 6 max D(x2) − 1} and f(D)(v) = D(v), v 6= x1

is a propagator for c. Its output variables are {x1} and its input variables are
{x2}. Let D1(x1) = {3, 4, 6, 8} and D1(x2) = {1, 5}, then f(D1)(x1) = {3, 4}
and f(D1)(x2) = {1, 5}. �

A propagation solver for a set of propagators F and current domain D,
solv(F,D), repeatedly applies all the propagators in F starting from domain D
until there is no further change in resulting domain. solv(F,D) is the weakest
domain D′ v D which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F . In other
words, solv(F,D) returns a new domain defined by

solv(F,D) = gfp(λd.iter(F, d))(D) iter(F,D) =uf∈F f(D).

where gfp denotes the greatest fixpoint w.r.t v lifted to functions.

3 SAT and Unit Propagation

A proposition p is a Boolean variable from a universe of Boolean variables, P. A
literal l is either: a proposition p, its negation ¬p, the false literal ⊥, or the true
literal >. The complement of a literal l, ¬l is ¬p if l = p or p if l = ¬p, while
¬⊥ = > and ¬> = ⊥. A clause C is a disjunction of literals. An assignment is
either a set of literals A excluding ⊥ such that ∀p ∈ P.{p,¬p} 6⊆ A, or the failed
assignment ⊥. We define ⊥ ∪A = ⊥ for any assignment A.

An assignment A satisfies a clause C if one of the literals in C appears in
A. A theory T is a set of clauses. An assignment is a solution to theory T if it
satisfies each C ∈ T .

A SAT solver takes a theory T and determines if it has a solution. Complete
SAT solvers typically involve some form of the DPLL algorithm which combines

3

search and propagation by recursively fixing the value of a proposition to either
> (true) or ⊥ (false) and using unit propagation to determine the logical con-
sequences of each decision made so far. The unit propagation algorithm finds
all unit resolutions of an assignment A with the theory T . It can be defined as
follows where C denotes a clause:

up(A,C) =

⊥ ∀l ∈ C.¬l ∈ A
A ∪ {l} ∃l ∈ C, ,¬l 6∈ A,∀l′ ∈ (C \ {l}).¬l′ ∈ A
A otherwise

UP(A, T) = lfp.(λa.
⋃

C∈T

up(a,C))(A)

4 Atomic Constraints and Propagation Rules

Atomic constraints and propagation rules were originally devised for reasoning
about propagation redundancy [1]. They provide a way of describing the be-
haviour of propagators.

An atomic constraint represents the basic changes in domain that occur
during propagation. For integer variables, the atomic constraints represent the
elimination of values from an integer domain, i.e. xi 6 d, xi > d, xi 6= d or
xi = d where xi ∈ VI and d is an integer. For set variables, the atomic constraints
represent the addition of a value to a lower bound set of integers or the removal
of a value from an upper bound set of integers, i.e. e ∈ Si or e 6∈ Si where e
is an integer and Si ∈ VS . We also consider the atomic constraint false which
indicates that unsatisfiabity is the direct consequence of propagation.

Define a propagation rule as C � c where C is a conjunction of atomic con-
straints, and c is a single atomic constraint such that 6|= C → c. A propagation
rule C � c defines a propagator (for which we use the same notation) in the
obvious way.

(C � c)(D)(v) =
{
{θ(v) | θ ∈ D ∩ solns(c)} if vars(c) = {v} and |= D → C
D(v) otherwise.

In another words, C � c defines a propagator that removes values from D
based on c only when D implies C. We can characterize an arbitrary propagator f
in terms of the propagation rules that it implements. A propagator f implements
a propagation rule C � c iff |= D → C implies |= f(D) → c for all D v Dinit .

Example 2. A common propagator f for the constraint x1 = x2 × x3 [11] is

f(D)(x1) = D(x1) ∩ [min S .. max S]
where S = {(minD(x2))× (minD(x3)), (minD(x2))× (max D(x3)),
(max D(x2))× (minD(x3)), (max D(x2))× (max D(x3))}

f(D)(x2) = D(x2) if minD(x3) < 0 ∧max D(x3) > 0
D(x2) ∩ [min S .. max S] otherwise
where S = {(minD(x1))/(minD(x3)), (minD(x1))/(max D(x3)),
(max D(x1))/(minD(x3)), (max D(x1))/(max D(x3))}

4

and symmetrically for x3.3 Note that f does not enforce any notion of consis-
tency.

The propagator f implements the following propagation rules (among many
others) for Dinit(x1) = Dinit(x2) = Dinit(x3) = [−20 .. 20].

x1 6 10 ∧ x2 > 6 � x3 6 1
x1 6 10 ∧ x2 > 9 � x3 6 1

x2 > −1 ∧ x2 6 1 ∧ x3 > −1 ∧ x3 6 1 � x1 6 1 �

Let rules(f) be the set of all possible propagation rules implemented by f .
This definition of rules(f) is usually unreasonably large, and full of redundancy.
For example the second propagation rule in Example 2 is clearly weaker than
the first.

A set of propagation rules F ⊆ rules(f) implements f iff solv(F,D) = f(D),
for all D v Dinit .

In order to reason more effectively about propagation rules for a given prop-
agator f , we want to have a concise representation rep(f) such that rep(f)
implements f .

A propagation rule C ′ � c′ is directly redundant with respect to another
rule C � c if Dinit |= C ′ → C ∧ c → c′ and not Dinit |= C → C ′ ∧ c′ → c.
A propagation rule r for propagator f is tight if it is not directly redundant
with respect to any rule in rules(f). Obviously we would prefer to only use tight
propagation rules in rep(f) if possible.

Example 3. Consider the reified difference inequality c ≡ x0 ⇔ x1 + 1 6 x2

where Dinit(x0) = {0, 1}, Dinit(x1) = {0, 1, 2}, Dinit(x2) = {0, 1, 2}. Then a set
of tight propagation rules rep(f) implementing the domain propagator f for c is

x1 6 0 ∧ x2 > 1 � x0 = 1
x1 6 1 ∧ x2 > 2 � x0 = 1

x0 = 1 � x2 > 1
x0 = 1 ∧ x1 > 1 � x2 > 2

x0 = 1 � x1 6 1
x0 = 1 ∧ x2 6 1 � x1 6 0

x1 > 2 � x0 = 0
x1 > 1 ∧ x2 6 1 � x0 = 0

x2 6 0 � x0 = 0
x0 = 0 ∧ x1 6 1 � x2 6 1
x0 = 0 ∧ x1 6 0 � x2 6 0
x0 = 0 ∧ x2 > 1 � x1 > 1
x0 = 0 ∧ x2 > 2 � x1 > 2

For constraints of the form x0 ⇔ x1 + d 6 x2 we can build rep(f) linear in the
domain sizes of the variables involved. �

5 Clausal Representations of Propagators

Propagators can be understood simply as a collection of propagation rules. This
gives the key insight for understanding them as conjunctions of clauses, since we
can translate propagation rules to clauses straightforwardly.

3 Division by zero has to be treated carefully here, see [11] for details.

5

5.1 Atomic constraints and Boolean variables

Changes in domains of variables are the information recorded by a propaga-
tion solver. In this sense they are the “decisions” made or stored representing
the sub-problem. In translating propagation to Boolean reasoning these deci-
sions become the Boolean variables. We introduce a, novel to our knowledge,
encoding of integer domains as Booleans, combining the DIMACS encoding
(see e.g. [18]) with that of [2]. It uses Boolean variables [[x = d]], d ∈ Dinit(x),
[[x 6 d]],minDinit(x) 6 d < max Dinit(x). Set bounds domains are encoded as
usual with the Boolean variables [[e ∈ Si]], e ∈ max Dinit(Si).

The Boolean variables directly represent changes to domains made by atomic
constraints. Let lit be the mapping of atomic constraints to Boolean literals. We
define

lit(false) = ⊥
lit(xi = d) = [[xi = d]]
lit(xi 6= d) = ¬[[xi = d]]
lit(e ∈ Si) = [[e ∈ Si]]
lit(e 6∈ Si) = ¬[[e ∈ Si]]

lit(xi 6 d) =
{
> d = minDinit(xi)
[[xi 6 d]] otherwise

lit(xi > d) =
{
> d = maxDinit(xi)
¬[[xi 6 d− 1]] otherwise

where minDinit(xi) 6 d 6 max Dinit(xi) and e ∈ max Dinit(Si). Note
that lit is a bijection except where the result is >, hence lit−1(l) is defined as
long as l 6= >. Note also that for “Boolean” integers where Dinit(x) = [0 .. 1] we
have that [[x = 1]] ↔ ¬[[x = 0]] ↔ ¬[[x 6 0]] so we can just use a single Boolean
variable to represent the integer.

There is a mapping from the domain of a variable v to an assignment on the
Boolean variables [[xi 6 d]], [[xi = d]], and [[e ∈ Si]] defined as:

assign(D, v) = {lit(c) | v ∈ D(v) |= c, v ∈ vars(c)}

assign(D) =
{
⊥ ∃v ∈ V.D(v) = ∅⋃

v∈V assign(D, v) otherwise

5.2 Consistency of Domains

Representations of set variables are automatically consistent with respect to a set
of literals, but this is not the case for representations of integer variables, since
we could assert for example [[x = 3]] and [[x 6 2]] simultaneously. For a variable
x where Dinit(x) = [l .. u] we maintain the consistency of assignment by adding
the clauses DOM (x):

¬[[x 6 d]] ∨ [[x 6 d + 1]] l 6 d < u− 1
¬[[x = d]] ∨ [[x 6 d]] l 6 d < u

¬[[x = d]] ∨ ¬[[x 6 d− 1]] l < d 6 u
[[x = l]] ∨ ¬[[x 6 l]]

[[x = d]] ∨ ¬[[x 6 d]] ∨ [[x 6 d− 1]] l < d < u
[[x = u]] ∨ [[x 6 u− 1]]

which encode [[x 6 d]] → [[x 6 d + 1]] and [[x = d]] ↔ ([[x 6 d]] ∧ ¬[[x 6 d− 1]]).
For a set variable S, we define DOM (S) = {}, and then for all variables, DOM =
∪{DOM (v) | v ∈ V}.

6

With these domain clauses, unit propagation on a translated set of atomic
constraints generates all the consequences of the atomic constraints, i.e. faithfully
represents a domain.

Theorem 1. Let C be a set of atomic constraints on variable v, and D =
solv({true � c|c ∈ C}, Dinit) then assign(D, v) = UP({}, {lit(c) | c ∈
C} ∪DOM (v)).

The usual encoding of finite domains into SAT is the so called DIMACS
encoding using only the variables [[x = d]] (see e.g. [18]). It enforces consistency
of domains for Dinit(x) = [l .. u] with the clause ∨u

d=l[[x = d]] and the O(n2)
clauses ∧l6d1<d26u¬[[x = d1]] ∨ ¬[[x = d2]]. Note our encoding is linear and has
equally strong unit propagation.

If for a variable x we are only interested in the atomic constraints x 6 d and
x > d (i.e. bounds propagation on x) then we can omit the propositions [[x = d]]
and the corresponding clauses from DOM (x).

We can map unit propagation fixpoints of DOM (v) to domains D(v). Suppose
A = UP(A,DOM (v)), then define domain(A, v) = {d | ∀l ∈ A.l involves v, v =
d |= l}.

We will be interested in minimal assignments that model a domain D. Let
A = UP(A,DOM (v)), then an information equivalent assignment is any A′

where A = UP(A′,DOM (v)). Define minassign(A, v) as the set A′ of minimal
cardinality where A = UP(A′,DOM (v)), and preferring positive equational lit-
erals, over inequality literals, over negative equational literals.

Example 4. The set A = {[[x = 1]], [[x 6 1]],¬[[x > 2]],¬[[x = 0]],¬[[x = 2]]} is a
fixpoint of DOM (x) assuming Dinit(x) = [0 .. 2]. minassign(A, x) = {[[x = 1]]},
since A = UP({[[x = 1]]},DOM (x)).

The set A′ = {[[x 6 1]],¬[[x = 2]]} is also a fixpoint of DOM (x). Here
minassign(A, x) = {[[x 6 1]]} even though A′ = UP({¬[[x = 2]]} is information
equivalent, because inequalities are preferred over negated equality literals. �

5.3 Propagation Rules to Clauses

The translation from propagation rules to clauses is straightforward:

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c)

Example 5. The translation of the propagation rule:

x2 > −1 ∧ x2 6 1 ∧ x3 > −1 ∧ x3 6 1 � x1 6 1

is the clause C0 ≡ [[x2 6 −2]] ∨ ¬[[x2 6 1]] ∨ [[x3 6 −2]] ∨ ¬[[x3 6 1]] ∨ [[x1 6 1]]
The advantage of the inequality literals is clear here: to define this clause using
only [[x = d]] propositions for the domains given in Example 2 requires a clause
of ≈100 literals. �

The translation of propagation rules to clauses gives a system of clauses where
unit propagation is at least as strong as the original propagators.

7

Theorem 2. Let R be a set of propagation rules such that D′ = solv(R,D). Let
A = UP(assign(D), DOM ∪

⋃
{cl(r) | r ∈ R}) then A = ⊥ or A ⊇ assign(D′).

In particular if we have clauses representing all the propagators F then unit
propagation is guaranteed to be at least as strong as finite domain propagation.

Corollary 1. Let rep(f) be a set of propagation rules implementing propagator
f . Let A = UP(assign(D),DOM ∪

⋃
{cl(r) | f ∈ F, r ∈ rep(f)}). Then A = ⊥

or A ⊇ assign(solv(F,D)).

Example 6. Notice that the clausal representation may be “stronger” than the
propagator. Consider the propagator f for x1 = x2 × x3 defined in Exam-
ple 2. Then the clause C0 defined in Example 5 is in the Boolean represen-
tation of the propagator. Given ¬[[x2 6 −2]], [[x2 6 1]],¬[[x3 6 −2]],¬[[x1 6 1]] we
infer ¬[[x3 6 1]]. But given the domain D(x1) = [2 .. 20], D(x2) = [−1 .. 1],
and D(x3) = [−1 .. 20] then f(D)(x3) 6= [2 .. 20]. In fact the propagator f can
determine no new information. �

Given the Corollary above it is not difficult to see that, if it uses the same
search strategy as a propagation based solver for propagators F , a SAT solver
using clauses

⋃
{cl(r) | f ∈ F, r ∈ rep(f)}) needs no more search space to find

the same solution(s).
But there is a difficulty in this approach. Typically rep(f) is extremely large.

The size of rep(f) for the propagator f for x1 = x2×x3 of Example 2 is around
100,000 clauses. But clearly most of the clauses in rep(f) must be useless in any
computation, otherwise the propagation solver would make an enormous number
of propagation steps, and this is almost always not the case. This motivates the
fundamental approach of this paper which is to represent propagators lazily as
clauses, only adding a clause to its representation when it is able to propagate
new information.

6 Lazy Clause Generation

The key idea is rather than apriori representing a propagator f by a set of clauses,
we execute the propagator during the SAT search and record what propagation
rules actually fired as clauses.

We execute a SAT solver over theory T ⊇ DOM . At each fixpoint of
unit propagation we have an assignment A. This corresponds to a domain
D = domain(A). We then execute (individually) each propagator f ∈ F on
this domain obtaining new domain D′ = f(D). We then select a set of propaga-
tion rules R implemented by f such that solv(R,D) = D′ and add the clauses
{cl(r) | r ∈ R} to the theory T in the SAT solver.

We do not execute the propagation solver to fixpoint (although this is possi-
ble) because adding a single new clause may cause failure which means the work
is wasted.

8

Given the above discussion we need to modify our propagators, so that rather
than returning a new domain they return a set of propagation rules that would
fire adding new information to the domain.

Let lazy(f) be the function from domains to sets of propagation rules R ⊆
rules(f) such that if f(D) = D′ then lazy(f)(D) = R where solv(R,D) = D′,
and for each C � c ∈ R not D |= c (that is they generate new information).
Ideally R ⊆ rep(f) for some concise representation rep(f) of the propagator f ,
but this may be difficult to achieve.

We can automatically create lazy(f) from f as follows. Let f(D) = D′ and
let Cv = minassign(D′, v)− assign(D, v) be the new information (propositions)
about v determined by propagating f on domain D. Then a correct set of rules
R = lazy(f)(D) is the set of propagation rules

∧v∈input(f){lit−1(l′) | l′ ∈ minassign(D, v)} � lit−1(l)

for each v ∈ output(f) and each l ∈ Cv

We can almost certainly do better than this. Usually a propagator is well
aware of the reasons why it discovered some new information.

Example 7. Consider the propagator f for x1 = x2 × x3 defined in Example 2.
Applied to D(x1) = [−10 .. 18], D(x2) = {3, 5, 6}, D(x3) = [1 .. 3] it determines
f(D)(x1) = [3 .. 18]. The new information is ¬[[x1 6 2]]. The naive propagation
rule defined above is

x1 > −10 ∧ x1 6 18 ∧ x2 > 3 ∧ x2 6= 4 ∧ x2 6 6 ∧ x3 > 1 ∧ x3 6 3 � x1 > 3

It is easy to see from the definition of the propagator, that the bounds of x1 and
the missing values in x2 are irrelevant, so the propagation rule could be

x2 > 3 ∧ x2 6 6 ∧ x3 > 1 ∧ x3 6 3 � x1 > 3

but in fact it could also correctly simply be x2 > 3 ∧ x3 > 1 � x1 > 3 but this
is not so obvious from the definition of f . The final rule is tight. �

Example 8. Consider the propagator f for x0 ↔ x1 + 1 6 x2 from Example 3
When applied to the domain D(x0) = {0, 1}, D(x1) = {1, 2}, D(x2) = {0} it
determines f(D)(x0) = {0}. We can define lazy(f) to return propagation rules
in rep(f) as defined in Example 3. For this case lazy(f)(D) could return either
{x1 > 1 ∧ x2 6 1 � x0 = 0} or {x2 6 0 � x0 = 0}. �

Given we understand the implementation of propagator f , it is usually
straightforward to see how to implement lazy(f).

Example 9. Let c ≡
∑n

i=1 aixi −
∑m

i=n+1 bixi 6 d be a linear constraint where
ai > 0, bi > 0. The bounds propagator f for c is defined as

f(D)(xi) = D(xi) ∩
[
−∞ .. bS−ai min D(xi)

ai
c
]

1 6 i 6 n

f(D)(xi) = D(xi) ∩
[
dS−bi max D(xi)

bi
e .. +∞

]
n + 1 6 i 6 m

9

where S = d−
∑n

i=1 ai minD(xi)+
∑m

i=n+1 bi max D(xi). If the bounds changes
for some xi, 1 6 i 6 n, so ui = max f(D)(xi) < max D(xi) then the propagation
rule lazy(f) generates is

n∧
j=1,j 6=i

xi > minD(xi) ∧
m∧

j=n+1

xi 6 max D(xi) � xi 6 ui

similarly for xi, n + 1 6 i 6 m. Note that this is not necessarily tight.

We claim extending a propagator f to create lazy(f) is usually straightfor-
ward. For example, Katsirelos and Bacchus [9] explain how to create lazy(f) (or
the equivalent in their terms) for the alldifferent domain propagator f by un-
derstanding the algorithm for f . For a propagator f defined by indexicals [17], we
can straightforwardly construct lazy(f) since the indexical definition illustrates
directly which atomic constraints contributed to the result. Direct constructions
of lazy(f) may not necessarily be tight. For propagators implemented using Bi-
nary Decision Diagrams we can automatically generate tight propagation rules
using BDD operations [7]. If we want to generate tight propagation rules from
arbitrary propagators f then we may need to modify the algorithm for f more
substantially to obtain lazy(f).

Example 10. We can make the propagation rules of Example 9 tight by weaken-
ing the bounds on some other variables. Let r = ai(ui+1)−(S−ai minD(xi))−1
be the remainder before rounding down will increase the bound. If there exists
aj 6 r where minD(xj) > minDinit(xj) then we can weaken the propagation
rule replacing the atomic constraint xj > minD(xj) by xj > minD(xj) − rj

where rj = min{b r
aj
c,minD(xj)−minDinit(xj)}. This reduces the remainder r

by ajrj . Similarly if there exists bj 6 r. We can repeat the process until r < aj

and r < bj for all j. The result is tight.
For example given 100x1 + 50x2 + 10x3 + 9x4 6 100 where Dinit(x1) =

Dinit(x2) = Dinit(x3) = Dinit(x4) = [−3 .. 10] where D(x1) = D(x2) =
D(x3) = D(x4) = [0 .. 10] then the propagation gives S = 100. The new upper
bound on x1 is u1 = 1, and r = 100× 2− (100− 100× 0)− 1 = 99. The initial
propagation rule is

x2 > 0 ∧ x3 > 0 ∧ x4 > 0 � x1 6 1

We have a2 < r so we can decrease the coefficient of x2 by min{b 99
50c, 3} = 1.

There is still a remainder of r = 99− 1× 50 = 49. We can reduce the coefficient
of x3 by 3 (the maximum since this takes it to the initial lower bound). This
still leaves r = 49 − 3 × 10 = 19. We can reduce the coefficient of x4 by 2, the
remainder is now 1, and less than any coefficient. The final tight propagation
rule is

x2 > −1 ∧ x3 > −3 ∧ x4 > −2 � x1 6 1 �

Regardless of the tightness of propagation rules, the lazy clause generation
approach ensures that the unit propagation that results is at least as strong as
applying the propagators themselves.

10

Theorem 3. Let A = UP(assign(D),DOM ∪{cl(r) | r ∈ ∪f∈F lazy(f)(D), }
then A = ⊥ or A ⊇ assign(iter(F,D)).

Because we only execute the propagators at a fixpoint of unit propagation,
generating a propagation rule whose right hand side gives new information means
the clause cannot previously occur. The advantage of tight propagators is that,
if the set of propagation rules R generated by lazy(f) is tight, over the lifetime
of a search it will not involve any direct redundancy.

7 Building a Lazy Clause Generator System

We construct a lazy clause generator, by adding a cut-down propagation engine
into a SAT solver. The interface between the propagators and the SAT solver is
managed as follows. Each Boolean variable is associated with an integer or set
atomic constraint. After the SAT solver reaches a fixpoint of unit propagation,
we run over the newly fixed Boolean literals. For each Boolean literal l which is
decided or inferred, we make the corresponding change to the domain defined
by the atomic constraint lit−1(l). We queue the propagators possibly effected by
the change, and then execute them. If we find a propagation that modifies the
domain of some integer or set variable, we construct the propagation rule that
explains it and add this as a clause permanently4 to the SAT solver, and add its
unit consequence to the SAT solvers literal queue (queue of decisions and unit
consequences). If we find a clause that causes failure we immediately invoke the
SAT solvers conflict resolution procedure. Otherwise when the queue is empty,
we invoke the SAT solver on the new literals discovered by propagation, and the
process repeats.

On failure for each Boolean literal l which is removed from the current as-
signment, we undo the change of atomic constraint lit−1(l). Note that since
all individual domain changes are reflected in Boolean literals this is sufficient.
For example suppose [[x 6 5]] was inferred at an earlier point in execution so
max D(x) = 5. Then suppose [[x 6 2]] is inferred. In forward execution we will
modify maxD(x) = 2, but unit propagation will also infer [[x 6 3]] and [[x 6 4]].
On backtracking we walk up the trail of decided and inferred variables. When
we unset [[x 6 4]] we reset max D(x) = 5, and then when unsetting [[x 6 3]] and
[[x 6 2]] we do not change it further.

8 Experiments

We have built a prototype lazy clause generator system using MiniSat [12] version
2.0 beta as the starting point. We give experiments using open-shop scheduling
problems from [3]. The experiments are run on a 3GHz Intel Pentium D with
4Gb RAM running Debian Linux 3.1. Each of the constraints in these problems is
of the form x1∨x2, x1 +d 6 x2 or x0 ⇔ x1 +d 6 x2 where d is a constant. These

4 We do not currently allow nogood minimzation to remove these clauses, though
perhaps we should.

11

Table 1. Open shop scheduling suite gp (80 instances)

Benchmark Time(sec) Conflict number Clause ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

gp04-09 0.38 6.84 1.31 0.17 32 21 39 5.15 5.15
gp05-01 1.41 27.32 6.53 0.27 39 19 61 5.67 5.67
gp08-09 5.09 136.62 32.25 0.86 129 53 121 9.05 9.05
gp10-07 16.25 347.60 99.30 9.53 622 622 1400 11.05 10.97
gp10-10 21.68 410.34 115.79 7.80 995 857 1371 10.85 10.82

Arith. mean 6.04 113.46 30.05 2.59 311 242 492 7.43 7.40
Geom. mean 2.49 47.43 11.14 0.59 100 48 94 7.03 7.02

problems are also amenable to solving using SAT modulo difference logic. All
of the propagators we use are tight bounds propagators so we only use Boolean
variables of the form [[x 6 d]] and the first class of clause for DOM (x). Using the
full domain representation approximately doubles the computation time of the
lazy approach. We use static translations for the first two kinds of constraints
and lazy propagators for the reified difference inequalities.

We compare our lazy clause generation approach versus the static approach
of [16] using MiniSat version 2.0 beta as the SAT solver, and versus the Barcelogic
DPLL(T) solver version 1.1 using its difference logic theory solver [5]. We do not
compare against other finite domain propagation solvers, because without very
sophisticated encodings and search strategies [10], they are not competitive on
these problems, since they lack nogoods.

These scheduling problems are optimization problems. we search for the min-
imal makespan (completion time for all jobs). The minimization is conducted by
dichotomic search over the space of possible makespans, see [16] for details. We
note that dichtomic optimization search is in a sense advantageous to the static
approach since it generates clauses once which are effectively used in solving
multiple (linked) satisfaction subproblems.

Since these are large suites of benchmarks, we show summary results as well
as a few individual instances to illustrate the spread of results. In each table we
show the user time to find and prove the optimal solution for: the lazy approach
cut sat, the static approach csp2sat (and just the time spend in the SAT
solver for the static approach sat), and the SMT approach smt. We also give
the number of conflicts for each approach, and the average and minimum across
all subproblems in the dichotomic search of the ratio of clauses for the static
approach divided by the total created by the lazy approach.

The open-shop scheduling suite gp shown in Table 1 is easy for all approaches.
For these problems csp2sat spends most of its time just generating the clauses.
While clearly SMT requires more search to find the solution, given the tiny
description of the problem for SMT it is very rapid. Note that some of these
problems were only closed in 2005 [10], so they are not considered easy for
technologies without nogoods.

The open-shop scheduling suite tai shown in Table 2 is more difficult. As the
problem size grows the advantage of the lazy and static approaches grows over

12

Table 2. Open shop scheduling suite tai (60 instances)

Benchmark Time(sec) Conflict number Clause ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

tai 5x5 1 0.42 4.64 1.08 0.95 887 774 1679 6.33 5.53
tai 7x7 6 16.23 23.75 10.37 452.15 12722 4397 264167 7.38 5.38
tai 10x10 1 7.52 78.76 18.65 674.99 3614 1599 108764 12.90 10.63
tai 10x10 10 3.80 79.32 17.97 33.34 1431 2675 7848 13.21 12.66
tai 20x20 4 269.89 1361.31 369.42 601.35 11247 3782 39831 26.23 24.42
tai 20x20 8 424.78 1420.77 428.60 6035.09 56092 15891 345876 24.42 20.51

Arith. mean 62.42 317.95 88.39 631.78 6611 3597 43231 13.17 12.03
Geom. mean 4.02 42.47 9.98 21.12 1783 1231 5565 11.20 10.14

Table 3. Open shop scheduling suite j (48+3 instances)

Benchmark Time(sec) Conflict number Cl. ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

j3-per0-2 0.29 4.02 0.89 0.15 57 20 31 3.46 3.46
j6-per0-0 500.68 703.66 638.23 277.67 158117 137911 212512 6.22 5.35
j7-per10-1 25.45 84.75 36.84 47.83 8967 5019 23478 8.23 7.75
j7-per10-2 1451.79 1437.52 1379.42 3136.69 303011 250942 1625354 6.90 5.04
j8-per20-0 19.02 104.56 36.57 552.40 5493 3138 186300 9.36 8.55

Arith. mean 113.48 252.97 226.08 298.71 25430 29877 110525 6.51 6.21
Geom. mean 3.19 29.37 8.96 2.66 780 559 937 6.30 6.04

j7-per0-0-sat 8443 5246 5210 11470 991907 533852 4328222 3.92 3.92
j8-per0-1-sat 19031 34322 34246 32413 1828054 1452649 8539727 5.90 5.90
j8-per10-2-sat 2205 1395 1322 3846 209822 160075 1316112 5.52 5.52

the SMT approach. The search space explored by the lazy approach is around
twice that of the static approach, but it is still uniformly faster. Note also that
the larger the example the smaller the percentage of clauses generated by the
lazy approach.

The open-shop scheduling suite j shown in Table 3 is much harder. The three
hardest problems j7-per0-0, j8-per0-1, and j8-per10-2 which were closed
recently [16] are examined separately. The lazy approach is uniformly better
than the static approach, and better than SMT on the larger problems (all j7
and above except j7-per10-1). To save experimental time for the three hardest
problems we only try to find a solution with optimal makespan (a single subprob-
lem) (dichotomic search for the largest problem takes over 2 days for csp2sat).
Surprisingly csp2sat improves on cut sat for two of these problems, showing
that having all the clause information from the beginning can be advantageous.
The main extra cost appears to be the size of nogoods generated.

Overall, cut sat solves faster than csp2sat except for j7-per0-0,
j8-per10-2 and j7-per10-2. While it requires more search than csp2sat, the
massive reduction in clauses pays off. The lowest clause ratio that occurs in any
instance is 3.46. Overall cut sat generally improves upon smt the harder the
examples become.

13

Table 4. Linear equations examples (average of 100 runs)

Benchmark Time(sec) Conflicts/Failures
cut sat gecode cut sat gecode

eq10 0.010 0.074 28 94
eq20 0.010 0.073 18 54
alpha 0.310 0.267 143 7435
money 0.004 0.069 29 3

Finally we also experimented with some well-known problems using (non-
tight) bounds propagators for large linear equations (see Example 9). For none
of these problems could the static approach generate the clauses within hours,
and SMT modulo difference logic is not applicable, so we compare with Gecode
1.3.1 [6] a highly optimized propagation solver. The lazy approach uses an alld-
ifferent propagator equivalent to bounds propagation on disequations (x1 6= x2)
and SAT VSIDS search, while Gecode uses its native distinct propagator and
default labelling. Both solvers look for all solutions. The results are shown in
Table 4. Clearly nogoods can substantially reduce the search for these problems,
and the lazy approach is at least competitive with Gecode.

9 Related Work and Conclusion

The paper [16] explains how to statically encode linear arithmetic constraints
into CNF (to give tight clauses) using the propositions [[x 6 d]]. They closed
three very hard open-shop scheduling problems using their static approach, but
the approach is manifestly impractical when the linear constraint involves a
significant number of variables. Our lazy approach makes the encoding of linear
arithmetic possible for large linear constraints, and allows encoding of arbitrary
propagators.

The closest related work to this paper is the hybrid BDD and SAT bounds
propagation set solver described in [7]. There a BDD-based set solver and a
SAT solver are integrated and the BDD set solver passes clauses describing its
propagations to the SAT solver in order to make use of the nogood capabilities of
the SAT solver. Using BDD propagators, the construction of tight propagation
rules can be automatic. Here we extend the approach beyond set variables to
support integer variables, eliminate the propagation solver by embedding the
minimal amount of machinery required into the SAT solver.

There is a substantial body of work on look back methods in constraint
satisfaction (see e.g. [4], chapter 6), but there was little evidence until recently
of success for look back methods that combine with propagation. The work of
Katsirelos and Bacchus [8] showed that one could use nogood technology derived
from SAT for storing and managing nogoods in a CSP system using FC-CBJ. In
further work [9] they consider how to generate explanations (which are effectively
clauses) of propagation for a number of global constraints, in order to support
nogoods in a CP solver. They consider the usual DIMACS encoding of integers
{[[x = d]]} and hence do not consider bounds propagation.

14

Roussel [15] gave a linear encoding of domains (not including inequality lit-
erals) which has the same unit propagation strength as our new encoding, but
requires more variables and literals.

The lazy propagation approach can be viewed as a special form of Satisfi-
ability Modulo Theories [14] solver, where each propagator is considered as a
separate theory, and theory propagation is used to learn clauses.

In conclusion, we have constructed a hybrid SAT finite domain propagation
solver using lazy clause generation that captures some of the advantages of both
paradigms. It can tackle hard scheduling problems efficiently without complex
search strategies. Where large amounts of search are required we expect it to be
more effective than propagation based solvers because it includes nogoods and
conflict directed backjumping. But we have only really scratched the surface of
the possibilities of the lazy approach.

References

1. C.W. Choi, J.H.M. Lee, and P. J. Stuckey. Propagation redundancy in redundant
modelling. In Proceedings of CP-2003, volume 2833 of LNCS, pages 229–243, 2003.

2. J. Crawford and A. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In Procs. AAAI-94, pages 1092–1097, 1994.

3. CSP2SAT. http://bach.istc.kobe-u.ac.jp/csp2sat/. [Dec06].
4. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
5. Barcelogic for SMT. www.lsi.upc.es/~oliveras/bclt-main.html. [Feb07].
6. GECODE. www.gecode.org. [Feb07].
7. P. Hawkins and P.J. Stuckey. A hybrid BDD and SAT finite domain constraint

solver. In Proceedings PADL06, volume 3819 of LNCS, pages 103–117, 2006.
8. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In

Proceedings of CP2003, volume 2833 of LNCS, pages 873–877, 2003.
9. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In The Twentieth

National Conference on Artificial Intelligence (AAAI-05), pages 390–396, 2005.
10. P. Laborie. Complete MCS-based search: Application to resource constrained

project scheduling. In Proceedings IJCAI 2005, pages 181–186, 2005.
11. K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.

MIT Press, 1998.
12. MiniSat. www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/. [Dec06].
13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proceedings of DAC-2001, 2001.
14. R. Niewenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL

modulo theories. In LPAR’04, volume 3452 of LNAI, pages 36–50, 2004.
15. O. Roussel. Some notes on the implementation of csp2sat+zchaff, a sim- ple trans-

lator from CSP to SAT. In Proceedings of the 2nd International Workshop on
Constraint Propagation and Implementation, pages 83–88. 2005.

16. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
to SAT. In Proceedings of CP-2006, volume 4204 of LNCS, pages 590–603, 2006.

17. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and
evaluation of the constraint language cc(FD). JLP, 37(1–3):139–164, 1998.

18. T. Walsh. SAT v CSP. In Proceedings of CP-2000, volume 1894 of LNCS, pages
441–456, 2000.

15

