
New Integer Linear Programming Approaches for

Course Timetabling

Natashia Boland1∗, Barry D. Hughes1, Liam T.G. Merlot2,

and Peter J. Stuckey3

1Department of Mathematics and Statistics,

The University of Melbourne, Victoria 3010, Australia

natashia@ms.unimelb.edu.au, hughes@ms.unimelb.edu.au

2Quantm, 4/333 Flinders Lane,

Melbourne 3000, Australia

liam.merlot@quantm.net

3Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia

pjs@cs.mu.oz.au

∗Corresponding author: fax +61 3 8344 4599

April 24, 2006

(To be submitted to Computers and Operations Research)

1

Abstract

The most complete form of academic timetabling problem is the population and

course timetabling problem. In this problem, there may be multiple classes of

each subject, and the decision on which students are to constitute each class is

made in concert with the decision on the timetable for each class. In order to

solve this problem, it is normally simplified or decomposed in some fashion. One

simplification commonly used in practice is known as blocking : it is assumed

that the classes can be partitioned into sets of classes (or blocks) that will be

timetabled in parallel. This restricts clashing to occur only between classes in

the same block, and essentially removes the timetabling aspect of the prob-

lem, which can be carried out once the blocks are constituted and the classes

populated. The problem of constituting the blocks and populating the classes,

known as the course blocking and population problem is nevertheless a challeng-

ing problem, and provides the focus of this paper. We demonstrate, using data

provided by a local high school, that integer linear programming approaches can

solve the problem in a matter of seconds. Key features include remodelling to

remove symmetry caused by students with identical subject selection, and the

observation that in practice, only integrality of the block composition variables

needs to be enforced; the class population aspects of the model have strong

integrality properties.

2

1 Introduction

Academic timetabling is a challenging problem faced by educational institutions

of many types. Academic timetabling problems tend either to be large (such as

the timetabling problems faced by universities) or small but tightly constrained

(such as the timetabling problems faced by high schools). This paper will con-

sider a quite general form of the problem, but the approach taken is more usually

used in high schools.

The most complete form of academic timetabling problem is the population

and class timetabling problem (PCTP). The PCTP requires the timetabler to

determine the population of each class, for subjects with multiple classes, in

addition to finding a session in the timetable for every lesson of every class.

A popular simplification for the population and class timetabling problem

is known as blocking. Under blocking, it is assumed that the set of classes can

be partitioned into subsets, with all classes in a subset timetabled in parallel.

Each subset is known as a block. It is assumed that the blocks will induce a

partition of the sessions available in the timetable; all classes in a block will

be timetabled within the set of sessions corresponding to the block, and none

of these sessions can be used for classes in other blocks. This process restricts

clashes to occur within blocks, and in effect removes the timetabling aspect of

the problem. It thus decomposes the problem into two independent problems:

the class blocking and population problem (CBPP) and the block timetabling

problem (BTP). The former determines the blocks (i.e. the partition of classes)

and populates the classes; the latter determines the timetable, by partitioning

the sessions in the timetable into disjoint sets, one for each block.

In this paper, we focus on the hardest aspect of the blocking approach: solv-

ing the CBPP. Our paper is structured as follows. We first review the literature

on the PCTP and articulate the contribution of this paper, in Section 2. In

Section 3, we present a formal definition of the CBPP as a feasibility problem,

namely that of finding a clash-free solution. Two variants on an integer lin-

ear programming formulation are then presented. In the first variant, (binary)

variables are included for every student. In the second, symmetry caused by stu-

dents with identical subject selections is removed, by the use of general integer

variables. We also present three alternative approaches for relaxing the feasi-

bility problem as an optimization problem, with penalties on infeasibility. Now

3

the general integer student variable models essentially aggregate students; it is

not obvious, a priori, that a solution to these models can be decomposed to fea-

sible solutions for individual students. In Section 4 we prove that this is indeed

possible, showing the correspondence between the general integer and binary

models. Using data from a local high school that uses the blocking approach,

we compare the performance of both the binary and general integer models, and

all three infeasibility penalty models, reporting the results in Section 5. We also

test enforcing integrality on only the block constitution variables, and find that,

for these data sets, this is sufficient to yield fully integer solutions. The results

demonstrate that under priority branching on the block constitution variables,

one of the penalty models with general integer variables performs consistently

better than the other variations, solving all instances in under 4 seconds.

2 Review of the Literature on the PCTP

Although many papers have been written on academic timetable problems, most

have assumed that all classes have already been allocated, that is, that the

students constituting the population of each class are already decided. Only

a small proportion of the educational timetabling papers have investigated the

complete PCTP variant of the timetabling problem (either for universities or

schools). Typically researchers looking at the PCTP for university data sets

used the population-timetabling decomposition and the papers looking at the

PCTP for secondary school data sets tended to use a blocking simplification

(with the notable exception of Willemen [18], who uses a population-timetabling

decomposition for a school problem).

Of those that do consider the PCTP, the majority [1, 2, 3, 6, 7, 9, 10, 13,

11, 14, 18] decompose the problem into the two parts of populating the classes,

and timetabling the classes, often with some form of iteration between the two

subproblems. The techniques applied are usually heuristics, meta-heuristics and

constraint programming, often used in combination. Tabu search is the most

popular of the metaheuristics, used by Alvarez-Valdes et al. [1, 2], Hertz [9],

Hertz and Robert [10, 13], and, in conjunction with constraint programming, by

Willemen [18]. Constraint programming is also relatively popular; in addition

to Willemen [18], it is used by Ferland and Fleurent [7] in conjunction with

sequential construction heuristics, and by Rudova and Matyska [14]. Other

4

techniques include the use of graph colouring heuristics, employed by Carter [6]

in conjunction with other heuristics, and by Lewandowski [11], and hill-climbing,

used by Aubin and Ferland [3].

There appears to be no work that provides exact solutions to the PCTP.

Furthermore, it would appear to be quite difficult to compare the methods

developed for PCTP. Whilst most of the papers listed above give the results of

tests on real data, there has been no attempt to compare different methods on

the same data sets, and no standard data set has yet been developed for testing.

Several papers in the literature have approached the CBPP [4, 15, 16, 17, 19].

All but one of these, (the exception is the paper of van Kesteren [17]), solve the

problem by decomposing it along similar lines to the PCTP decomposition: the

two aspects of the problem, constituting the blocks, and populating the classes,

are treated separately, possibly with iteration between the two subproblems.

Thus the solutions methods are at best heuristic in terms of solving the CBPP.

Furthermore, with the exception of Banks et al.[4], who employ pure constraint

programming, the techniques applied are generally heuristic, or some combina-

tion of constraint programming and heuristic: Tripathy’s approach [16] is purely

heuristic, while both Sampson et al. [15] and Wood and Whitaker [19] combine

simulated annealing with constraint programming.

Again, it would appear to be quite difficult to compare the methods devel-

oped for CBPP: there has been no attempt to compare different methods on the

same data sets, and no standard data set. For a more detailed review of this

work, including information on the size of problem instances solved, we refer

the interested reader to the thesis of Merlot [12].

As far as we are aware only work published that solves the CBPP without

further decomposition is that of van Kesteren [17]. This paper develops a highly

tailored combination of branch-and-bound and constraint programming, leading

to a rather complex algorithm, which we believe is an exact method. Results for

the CBPP are reported for two problems, one with with 97 students (apparently

a hard problem) and another with 131 students (an easier problem). It is difficult

to assess the effectiveness of his approach from the results in [17]: depending on

the data and version of the algorithm used, solution times ranges from as little

as 15 seconds for the easier problem, to times in the range 900 to over 7000

seconds for the harder problem; of course these times are for an old machine.

Numbers of branch-and-bound nodes are not given, but the numbers of restarts

5

due to hitting a local minima in the search tree with no improvement for two

seconds, are given. These were 4 for the easier problem and in the range 152–409

for the harder problem. The number of branch-and-bound nodes and/or search

choice points could be expected to exceed these figures.

Whilst only van Kesteren [17] solves the CBPP without decomposition, two

papers, those of Wood and Whitaker [19] and Sampson et al. [15], do present ex-

act integer programming models. Neither actually solve the mathematical pro-

gramming models they present, in both cases believing them to be intractable.

Wood and Whitaker [19] give a nonlinear integer programming model, with

binary variables used to allocate students and teachers to classes and classes to

blocks. The nonlinearity occurs in the clash constraints. Although standard lin-

earization techniques could be applied, these would greatly increase the number

of variables required: Wood and Whitaker [19] did not solve either their model,

or any linearization of it1. Instead their model is decomposed into a series of

subproblems that are solved heuristically.

Sampson et al. [15] consider a PCTP that arises in course timetabling for an

MBA program. A special feature of their problem is that each class only requires

one lesson2. In this context, one can view the role of a session as equivalent

to that of a block. Thus the model of Sampson et al. [15] can be reinterpreted

as a model for the CBPP. Sampson et al. [15] use binary variables3 similar to

those we will use to indicate constitution of each block. The other variables

are equivalent to the binary individual student class allocation variables we will

discuss in Section 3. Sampson et al. [15] also use a ‘preference’ value for each

student’s preference for each subjects in his/her program.

The major difference between the models of Wood and Whitaker [19] and

Sampson et al. [15] is that the model used by Sampson et al. [15] does not

explicitly allocate students to classes (but rather to blocks). This allows the

constraints preventing student clashing to be linear. However, Sampson et
1‘. . . it would be extremely difficult, if not impossible, to find a solution to a real timetabling

problem with the above constraints’ [19].
2This fact is never explicitly stated in the paper. However the model given appears to

assume that each class has only one lesson.
3The paper is ambiguous about whether the class variables are integer or binary; they are

defined as both in different parts of the paper. The constraints used force the variables to be

binary, but the variable definitions themselves are given as general integer. We assume that

these variables are binary.

6

al. [15] still feel the need to decompose the problem further4, and solve it using

a population-block constitution style decomposition.

The contribution we make here in this paper is to demonstrate that—with

the right model—standard integer linear programming packages can be used to

solve the CBPP exactly. The approach is far simpler to that of van Kesteren [17],

and we obtain solutions on problem instances of similar size, in a matter of

seconds, indeed, without the need for any branching at all. With an appropriate

re-interpretation, the first variant of our model can be shown to be quite similar

to that of Sampson et al. [15]. However we also investigate a second variant, in

which symmetry is reduced, by aggregating variables for students with the same

subject selection, and demonstrate the efficacy of priority branching. We note

that in a somewhat different context, Willemen [18] also combines students who

take identical programs of subjects. However when allocating students with the

same program to classes, Willemen uses binary variables, forcing all students

with the same subject selection into the same classes. As we show, our model

imposes no such restriction; nor is any required.

We believe our paper also makes a secondary, but nevertheless useful, con-

tribution to the more general area of “aggregated”, or “implicit”, models. Our

general integer model does not explicitly represent the assignment of individual

students to classes, but rather only represents the allocation of groups of stu-

dents (those with identical subject selections) into groups of classes (blocks).

Both students and class variables have been aggregated, and their representa-

tion in terms of individual students and classes is implicit in the model. Whilst

the proof of this is somewhat long and technical, we believe it worth including,

as we believe this general idea to have much wider application. Since carrying

out the research we report in this paper, some of the authors have found the

same idea can be applied to improve models for problems as diverse as cutting

stock, cancer radiation treatment planning and labour force modelling. We thus

believe that rigourously establishing the underlying theory is worthwhile.
4‘We considered general integer programming, but abandoned the attempt because of the

combinatoric nature of the problem’ [15].

7

3 Problem Definition and Integer Linear Pro-

gramming Approaches

We begin by introducing the notation and terminology we will use, first formally

defining the PCTP, and then discussing precisely the form of the CBPP and

how it arises. We go on to give two variants on an integer linear programming

model of the feasibility version of the CBPP. We then discuss three alternative

approaches to solve this via optimization, with penalties on infeasibility.

3.1 Terminology, Notation and Problem Definition

There is considerable variation in terminology for academic timetabling, and

some words used with technical meanings also have common meanings that

may mislead the reader. It is therefore necessary to explain the concepts and

terminology for course timetabling used throughout this paper. We do so with

a particular focus on the CBPP. However the terminology is equally suitable

for other course timetabling problems. The data set under investigation in this

paper is a school data set, and consequently the language will assume that the

problem is being defined for a school, even though the terminology may well be

appropriate for a university or other institution.

Some notation is introduced only for the purpose of initial exposition of

the problem; any notation used in subsequent sections is gathered together,

including definitions of variables and parameters of the integer programming

models, in Table 1.

The first definitions required make no specific mention of individual teach-

ers or students, and represent some of the data supplied at the start of the

timetabling process.

A school offers to its students a variety of subjects, represented by an indexed

set S = {1, 2, . . . , S}. A subject s ∈ S is defined primarily by its content (for

example, Geography) and its year level (so that Year 11 Geography and Year 12

Geography are treated as distinct subjects). Each distinct subject s is taught in

one or more classes: a subject with sufficiently few students requires only one

class, while one taken by all students in a given year level will require several

classes. We assume that the number of classes of each subject is determined a

8

priori. The following parameters are defined

γs = the capacity (maximum students) for any one class of subject s;

µs = the number of classes of subject s.

The ith class of subject s is denoted by the ordered pair (s, i) and the set of

classes is

C = {(s, i) : s ∈ S, 1 ≤ i ≤ µs}.

School timetables are based on cycles (weekly or fortnightly cycles are the most

common) and setting the timetable for one cycle determines it for a longer

period (a term, semester or year, depending on the practices of the school).

The teacher and students assigned to a given class meet a number of times each

timetable cycle for activities that will be called lessons (discussed more fully

below). The parameter λs, defined to be the number of lessons for any one class

of subject s per timetable cycle, is assumed to be given. Each lesson occupies

one of a set of possible time intervals, called sessions, for example 8.50 a.m.

to 9.30 a.m. on Tuesday of the first week in a fortnightly timetable cycle. The

indexed set A = {1, 2, . . . , A} is the set of sessions available per timetable cycle.

Each lesson also has a location, referred to as a room, which may be a generic

classroom, or a specialized location such as a laboratory. In this paper, we

assume rooms are not a scarce resource, and ignore the room allocation aspect

of timetabling.

Thus we define a timetable to be an assignment of each lesson to a session

of the timetable, for all lessons of all classes of all subjects.

The students and teachers at the school are represented by the indexed sets

N = {1, 2, . . . , N} and T = {1, 2, . . . , T}, respectively. The set of all students

taking subject s ∈ S is denoted by Ns, while the set of all teachers who teach

subject s ∈ S is denoted by Ts.

Some students will have made identical subject selections, but there is typ-

ically considerable diversity. Each student at a school, n ∈ N, will be taking a

selection of subjects, which we will call a program.

It is useful to define an indexed set P = {1, 2, . . . , P} of (distinct) student

programs: each element of this set is a set of subjects and there is at least one

student who takes precisely these subjects and no others. It is also helpful to

9

define

νp = the number of students taking program p,

ωn = the program that student n takes,

πp = the program represented by p.

As teachers may take multiple classes of the same subject, the parameter

θts = the number of classes of subject s taken by teacher t

is defined. From θts for each s ∈ S we deduce

τ t = the set of subjects taught by teacher t.

Note that it is not τ t alone, but rather the set τ t and the parameters θts for

all subjects s ∈ τ t, that captures the teacher’s assigned duties. We assume

that this is defined a priori (such was the case in the high school we worked

with). However, it is not difficult to extend the models in this paper to relax

this requirement, for example, assuming that only τ t is given for each teacher

t. Indeed, the models we give take the values of θts to be upper bounds on the

number of classes of each subject a teacher can teach.

In terms of the sets and parameters introduced, it is now possible to to

address the issue of the membership of class (s, i), the ith class of subject s.

When the timetable has been fully constructed, the class (s, i) will be associated

with

Qi
s = the set of students in class i of subject s;

tis = the teacher assigned to teach class i of subject s.

When these quantities are known, one may say that the classes have been

populated with teachers and students. For example, consider year 12 Geog-

raphy (subject 43, say). The second year 12 Geography class may be defined

as being taught by teacher Burstall (teacher 6) to students Blake, Blundell,

Forster, Hagen and Miller (students 4, 27, 40, 46 and 87), or t243 = 6 and

Q2
43 = {4, 27, 40, 46, 87}. For this definition to be correct year 12 Geography

must be an element of the programs of both the teacher and all students (43 ∈ τ t

for t = 6 and 43 ∈ ωn for all n ∈ {4, 27, 40, 46, 87}). In other words, the sets

{Qi
s}i=1,...,µs

partition the set Ns.

10

Each class will meet in multiple sessions of a timetable. A lesson will be

defined as each instance of class i of subject s meeting in the timetable, and

can be thought of as an event, with the set of all events given by V = {(s, i, j) :

s ∈ S, i = 1, ..., µs, j = 1, ..., λs}. (Recall that we assume that the school has

already determined how many lessons for each class of each subject there will

be in the timetable, denoted by λs.) In the creation of a timetable, each lesson

(event) (s, i, j) ∈ V must be timetabled. lijs ∈ A is used to denote the session

assigned to event (s, i, j) ∈ V. From this we can derive the set of lessons, Li
s,

for each class i = 1, . . . , µs of each subject s ∈ S: Li
s = {lijs : j = 1, . . . , λs}.

For example the lessons of the second class of year 12 Geography (subject 43)

will be held in sessions 6, 12, 15, 16, 26 and 33 or L2
43 = {6, 12, 15, 16, 26, 33}.

In order to produce a populated timetable for a PCTP it must be determined

which students and which teacher will comprise each class of each subject (the

classes need to be populated), and it needs to be determined in which sessions

each lesson of each class of each subject will be held (the classes need to be

timetabled). Consequently a successful outcome of the timetabling process will

be:

• a set of class populations {tis,Qi
s} for each class i ∈ 1, ..., µs of each subject

s ∈ S; and

• the sessions lijs ∈ A in which the lessons of each class will be held.

Having defined the inputs and outputs of a PCTP, we now discuss the block-

ing simplification, and describe the consequent decomposition into two prob-

lems: the block constitution and population problem, and the block timetabling

problem. Note that it is the former of these two (the CBPP) which is the focus

of this paper.

Blocking is the assumption that the classes can be partitioned into sets,

called blocks, that will be timetabled together, with each session in the timetable

devoted to classes in a single block, i.e. no classes in different blocks will have

a lesson timetabled at the same time. This leads to a problem with two in-

dependent parts: the constitution of the blocks and population of classes has

no bearing on the actual timetabling of the lessons; the two can be treated as

independent problems. Thus blocking is essentially a heuristic idea, which re-

stricts the solution space of the PCTP so that it can be decomposed. The two

subproblems in the decomposition – the class blocking and population problem

11

(CBPP) and the block timetabling problem (BTP) – will be defined as follows.

The set of all blocks is defined as the set B = {1, ..., B}. Each block b ∈ B

is used to represent a set of classes. It is generally assumed when using this

decomposition that all subjects s ∈ S require the same number of lessons which

is defined to be λ = λs for all s ∈ S. Each block b ∈ B has associated with

it a set of classes Cb ⊆ C. In other words, {Cb}b∈B partitions the set of all

classes C. All lessons of all classes allocated to the block will be allocated to an

identical set of sessions in the timetable (Li
s1

= Lj
s2

, for all (s1, i), (s2, j) ∈ Cb,

for all b ∈ B). Thus no student or teacher may be in the population of two

classes that are allocated to the same block. Subjects with more than one class

may have multiple classes in each block.

To summarize, the input for the CBPP is the set S of subjects and the

programs for all students (ωn for all n ∈ N) and teachers (τ t for all t ∈ T),

together with all of the parameters associated with these sets (µs, γs, λs and

θts). The population of each class must be determined and each class of each

subject must be allocated to exactly one block. The output will be a set of

class populations (tis,Q
i
s) for all i ∈ 1, ..., µs, for all s ∈ S and the set of classes

allocated to each block (Cb for all b ∈ B). The CBPP can be seen as a constraint

satisfaction problem where one is trying to satisfy the following constraints:

• Student Allocation (SA): All students must be allocated to a class for

each subject in their program;

|{i : (s, i) ∈ C, n ∈ Qi
s}| = 1, ∀s ∈ ωn,∀n ∈ N. (1)

• Student Capacity (CS): The total number of students allocated to a

class must not exceed the capacity of the class;

|Qi
s| ≤ γs, ∀(s, i) ∈ C. (2)

• Teacher Allocation (TA): All teachers must be allocated to the required

number of classes for each subject in their program;

|{i : (s, i) ∈ C, t = tis}| = θts, ∀s ∈ τ t,∀t ∈ T. (3)

• Teacher Capacity (CT): There must be a teacher allocated to teach

each class of every subject. This constraint is enforced implicitly by the

definition of the tis variables;

tis ∈ T, ∀(s, i) ∈ C. (4)

12

• Class Block Allocation (CB): every class of every subject must be

allocated to a block;

|{b : (s, i) ∈ Cb}| = 1, ∀(s, i) ∈ C. (5)

Note that this is equivalent to asking that the sets {Cb}b∈B partition the

set C.

• Student Block Clash (SB): only one class requiring the same student

may be allocated to a block;

|{(s, i) ∈ Cb : n ∈ Qi
s}| ≤ 1, ∀b ∈ B,∀n ∈ N. (6)

• Teacher Block Clash (TB): only one class requiring the same teacher

may be allocated to a block;

|{(s, i) ∈ Cb : tis = t}| ≤ 1, ∀b ∈ B,∀t ∈ T. (7)

The above defines a feasible solution to the CBPP. As mentioned in Section 2,

the CBPP can be further, heuristically, decomposed into two problems: the

student population problem, and the class blocking problem. The former seeks

sets (tis,Q
i
s) while the block sets Cb remain fixed. The latter involves finding

block sets Cb while the population sets (tis,Q
i
s) remain fixed. Papers taking

this approach were discussed in Section 2.

Once the CBPP has been solved, the blocks themselves need to be timetabled,

that is, the block timetabling problem (BTP) needs to be solved, to create the

sets Lb ⊆ A.

Again it should be noted that it is assumed for this model that all classes

(and therefore blocks) require the same number of lessons λ. Consequently the

constraints defining the BTP are:

• Block Allocation (BA): every class in a block must have lessons in the

same set of sessions, and there must be the appropriate number of sessions;

|{Lb}| = λ, ∀b ∈ B. (8)

• Block Clashing (BC): no more than one block may be allocated to a

session;

|{b ∈ B : a ∈ Lb}| ≤ 1, ∀a ∈ A. (9)

13

For practical application, additional constraints determined by the institu-

tion may be anticipated. For example a school may forbid a class to have more

than one lesson in a day, and the available sessions for some teachers may be

restricted. A solution to this problem will be the partitioning of the sessions

into appropriate size sets (λ sessions in each set) for each block, and depending

on the school’s restrictions this can be either relatively trivial (if there are no

restrictions, it can be modelled as a transportation problem), or more difficult.

The major strength of the blocking decomposition is that the timetable has

a strong underlying structure and so minor changes to the finished timetable are

very easy to make. The major weakness is that it restricts the solution space

of the PCTP, which may eliminate many, or possibly all, feasible solutions for

instances that are tightly constrained (such as when students or teachers have

strong restrictions on the sessions for which they are available). As we will

show, another strength of the blocking model is that it can be solved easily with

standard integer linear programming packages.

In what follows, we present our approach to modelling and solving the CBPP.

In doing so, we make several assumptions, for example, that any class can be

assigned to any block, which is reasonable if subjects require the same number

of lessons, but which may present problems otherwise. We call the result “pure

blocking”, and have found this representative of the core practices at the local

high school, in particular in the upper year levels. However the complete high

school timetabling problem, in practice, involves “partial blocking”, subjects

with different numbers of lessons, students in the same year level taking different

numbers of subjects, etc. Whilst the blocking models we present here form the

basis for a complete solution to the problem, much more needs to be done to

obtain this solution. For further details, see the thesis of Merlot [12].

3.2 Two Integer Linear Programming Models for the CBPP

In this section we introduce a new integer linear programming model, with two

variants, for the CBPP. In contrast to all previous work, each of the following

extensions of simpler ideas is simultaneously incorporated in the new model.

(a) Class allocation variables are not binary variables, but are general integer

variables, allowing more than one class of a subject to be allocated to the

same block.

14

(b) Teacher allocation is considered in detail with no a priori restrictions.

(c) In the second variant, variables combining students with the same program

of subjects are used, thus eliminating symmetry in the student allocation

variables, but in a way that allows students with the same program to be

allocated differently when necessary.

An important practical advantage of the model we will present is that, as we

will demonstrate with the data from a local high school, relaxing integrality of

the student or teacher allocation variables leads to all fully integer solution of

all instances without the need for branching.

The model assumes that the number of blocks to be created is known a

priori. In high school timetabling, this is not a strong requirement: generally

students are occupied during every session of the timetable, so the number of

blocks can be taken to be the number of subjects in the students’ programmes.

In other words, we assume the values of |ωn| are identical for all students n ∈ N,

and set B to this value. In university timetabling, it is more difficult to know

B in advance; we discuss possible approaches to this in Section 6.

The model does not explicitly populate classes with students. Instead, it

allocates classes of subjects to blocks, and allocates students and teachers to

take specific subjects in specific blocks. In other words, subjects in blocks are

populated, but specific classes are not populated explicitly. This is an impor-

tant distinction, as it allows the model to be linear, in contrast to nonlinear

models, such as that of Wood and Whitaker [19], without using a large number

of additional variables or standard linearization techniques, which often lead to

weak models. The key to this approach is that the solution can a posteriori be

shown to induce feasible class populations. In other words, the detail of class

population can safely be deduced from the subject-block population.

To constitute the blocks, we use general integer variables xsb to represent

the number of classes of subject s assigned to block b. Note we assume no a

priori prescription on the blocks, assuming that any class can be assigned to

any block. (If all classes require the same number of lessons, this is a reasonable

assumption.) Since all classes of every subject must be allocated to a block, we

require the following constraint:∑
b∈B

xsb = µs, ∀s ∈ S. (10)

15

For teachers the variables used will be the binary variables, ztsb, which are

1 if a class of subject s ∈ τ t is taken by teacher t in block b and 0 otherwise. To

ensure each teacher is allocated to the set of classes they have been assigned to

teach, is not required to teach two classes at the one time (no clashes), and to

ensure every class receives a teacher, we require the following constraints, where

Ts is the set of teachers that teach subject s ∈ S (Ts = {t ∈ T : s ∈ τ t}).

• Teacher Subject Allocation (ST): every teacher must be allocated a

block for every class of every subject in their program;∑
b∈B

ztsb = θts, ∀t ∈ T, ∀s ∈ τ t. (11)

• Teacher Block Allocation (BT): each teacher must have no more than

one subject allocated to any block;∑
s∈τ t

ztsb ≤ 1, ∀t ∈ T, ∀b ∈ B. (12)

• Teacher Block Capacity (TBC): every class of every subject must

have a teacher; ∑
t∈Ts

ztsb = xsb, ∀s ∈ S, ∀b ∈ B. (13)

In the first variant of our pure blocking model, which we call the separate

student model (since students are modelled separately, rather than in groups),

binary variable vnsb is equal to 1 if student n takes subject s in block b and

0 otherwise. To ensure every student is assigned to block for every subject in

their program, and a subject in every block, and that the class capacities are

respected, we require the following constraints.

• Program Subject Allocation (SP): every student must be allocated a

block for every subject in their program;∑
b∈B

vnsb = 1, ∀s ∈ ωn, ∀n ∈ N. (14)

• Program Block Allocation (BP): every student taking a program must

have a subject allocated to every block (the student must always be occu-

pied); ∑
s∈ωn

vnsb = 1, ∀n ∈ N, ∀b ∈ B. (15)

16

• Block Subject Capacity (BSC): the total number of students taking a

subject in a block must be no more than the total capacity of the classes

of that subject in the block;∑
n∈Ns

vnsb ≤ γsxsb, ∀s ∈ S, ∀b ∈ B. (16)

It is not hard to see the latter constraint ensures that if multiple classes of the

same subject sare assigned to a block b, the student population of the subject

in the block induced by the vnsbvariables for each n ∈ Ns can be (arbitrarily)

partitioned into xsbclasses, each having capacity no more than γs.

The separate student variant of our pure blocking model is thus given by the

variables xsb, ztsb and vnsb, together with the constraints (10), (11), (12), (13),

(14), (15) and (16). With the appropriate re-interpretation, this model is quite

similar to that of Sampson et al. [15], except that their xsb variables were taken

to be binary, and of course, their model was never implemented or tested.

A potential problem with this model is that many students may have an

identical programme of study, that is, an identical subject selection. The vnsb

variables for such students will play an identical role in the model, which will

then suffer from symmetry.

We have observed that it is not in fact necessary to model individual students

explicitly. Students having the same programme can be grouped together; the

activity of these students can be represented using (general integer) variables

that depend only on the program taken, not on the individual student. To do

this, we define the set of distinct programs taken by students by P = {1, ..., P},
with each p ∈ P representing program πp. The sets Np = {n ∈ N : ωn = πp}
partition the set of all students N into sets of students all taking an identical

program πp. Note that

{πp : p ∈ P} = {ωn : n ∈ N},

and define

νp = |{n ∈ N : ωn = πp}|

to be the number of students taking program p. The set Ps = {p ∈ P : s ∈ πp}
is defined to be the set of student programs that include subject s ∈ S.

Now integer variables ypsb are used to represent the number of students

taking program p that are assigned to a class of subject s in block b, for all

17

programs p ∈ P, for each subject s ∈ πp and each block b ∈ B. Use of these

variables has clear advantages over the use of the binary variables for every

student: the number of variables is reduced, but also the symmetry in the model

is greatly reduced, as the binary variables for students taking identical programs

play an identical role in the model. Symmetry of this type can significantly

degrade the performance of the branch-and-bound method for solving the integer

linear program, so reducing the symmetry in this way is a significant advantage.

We require the ypsb variables to satisfy the following constraints, which can

be derived by substituting

ypsb =
∑

n∈Np

vnsb, ∀p ∈ P, ∀s ∈ πp, ∀b ∈ B (17)

in constraints (14) and (15), summed over all n ∈ Np, and in constraint (16),

where it can be observed that the set Ns is partitioned by the sets Np with

s ∈ πp.

• Program Subject Allocation (SP): all students taking a particular

program must take each subject of their program in some block;∑
b∈B

ypsb = νp, ∀p ∈ P, ∀s ∈ πp. (18)

• Program Block Allocation (BP): every student taking must take some

subject of their program in a given block;∑
s∈πp

ypsb = νp, ∀p ∈ P, ∀b ∈ B. (19)

• Block Subject Capacity (BSC): the total number of students taking a

subject in a block must be no more than the total capacity of the classes

of that subject in the block;∑
p∈Ps

ypsb ≤ γsxsb, ∀s ∈ S, ∀b ∈ B. (20)

The combined student variant of our pure blocking model is thus given by

the variables xsb, ztsb and ypsb, together with the constraints (10), (11), (12),

(13), (18), (19) and (20).

It is far from obvious that the solution resulting from the use of these ypsb

variables can always be decomposed into a feasible assignment of individual

students to classes in blocks. It is shown in Section 4 that this is indeed possible.

18

Figure 1: The Network Structure of the Constraints. This diagram shows

the balanced transportation problem induced by the constraints (18) and (19)

on the ypsb variables, for each program p. In this example, there are six blocks

(and six subjects in every program). There is a supply node for each subject in

the program with supply νp, and a demand node for each block, with demand

νp.

Blocks

Subjects p p p+ν p+ν p+ν p+ν

p−νp−νp−νp−νp−νp−ν

+ν +ν

Before proceeding to discuss optimization models for solving the pure block-

ing feasibility problem, we note that this model has some nice underlying struc-

ture. For each program p, constraints (18) and (19) define a special case of a

balanced transportation problem. The corresponding network structure is illus-

trated in Figure 1, with a supply node for each subject in the program, and a

demand node for each block. (Recall the standing assumption that there are an

identical number of subjects in every program, and that this number is precisely

the number of blocks.) The transportation problems for each program are tied

together via the constraint (20), which can be seen to be a kind of variable up-

per bound flow constraint. A similar network structure underlies the constraints

(11) and (12) on the ztsb variables.

The strong underlying network structure of these variables has some ben-

efits. When the allocation of classes to blocks is fixed, (the xsb variables are

determined), the problem is still a non-standard network flow problem as the

upper bounds on the flows are summed over many arcs. However the problem

solves very quickly, and still has the benefits of the underlying network struc-

ture. As we demonstrate in our numerical results, in all of our instances, (under

all model variants), once the xsb variables are determined, no further branching

is required.

19

So far, our CBPP has been formulated as constraint satisfaction problem.

However, in practice, this problem may not be feasible. In the next section,

we discuss three alternative optimization models, in which some aspect of the

problem is relaxed, and penalties imposed on infeasibility.

3.3 Optimization Models for Minimizing Infeasibility

Infeasibility in a CBPP model can arise from several “causes”. Perhaps more

classes of a particular subject are needed, or perhaps the teacher assignment’s

need to be altered. Perhaps some students should change their subject alloca-

tion.

We consider three alternative ways of relaxing the constraints, and minimiz-

ing infeasibility (or maximizing feasibility). We discuss these in terms of the

combined student variant, but the same alternatives exist (and are implemented

and tested) for the separate student variant, in the obvious way. In all cases, we

relax the ST (11) constraints, and the number of teacher assignments to classes

is maximized.

In the first model, the SP (18) and BP (19) constraints are relaxed, and the

number of student assignments to classes is maximized (see model (PBILP1)

below). In the case that the problem is not in fact feasible, there is a risk with

this approach that the model may assign many students to classes for parts of

their programs rather than assigning complete programs for fewer students.

In the second, we encourage the model to ensure as many students as possible

are assigned blocks for all subjects in their programs. To do this, we introduce

new variables, wp, that represent the number of students taking program p that

have had all of their subjects completely assigned. The model seeks to maximize

the total number of student programs that have been completely assigned (see

model (PBILP2) below).

A third alternative (model (PBILP3) below) is allow class capacities to be

exceeded. Consequently the variables usb are introduced to model the extra

capacity required for each subject and block combination.

It is not clear which of these alternatives might be most useful for the schools

in the case of infeasibility, as all the real data sets we obtained from the local high

school were in fact feasible. In practice, all three may provide useful information

to the timetabler, when infeasibility occurs.

The first Pure Blocking Integer Linear Program (PBILP1) is given below,

20

where α and β are the respective “rewards” for assigning a student to a class

in a block for one of the subjects in his/her program, and for giving a class a

teacher:

max{
∑
p∈P

∑
s∈πp

∑
b∈B

αypsb +
∑
t∈T

∑
s∈τ t

∑
b∈B

βztsb} (21)

subject to constraints (10), (12), (20), and∑
b∈B

ypsb ≤ νp, ∀p ∈ P, ∀s ∈ πp; (22)∑
s∈πp

ypsb ≤ νp, ∀p ∈ P, ∀b ∈ B; (23)

∑
b∈B

ztsb ≤ θts, ∀t ∈ T, ∀s ∈ τ t; (24)∑
t∈Ts

ztsb ≤ xsb, ∀s ∈ S, ∀b ∈ B; (25)

xsb ∈ Z+, ∀s ∈ S, ∀b ∈ B; (26)

ypsb ∈ Z+, ∀p ∈ P, ∀s ∈ πp, ∀b ∈ B; (27)

ztsb ∈ {0, 1}, ∀t ∈ T, ∀s ∈ τ t, ∀b ∈ B. (28)

The second Pure Blocking Integer Linear Program (PBILP2) is given below,

where ω is the “reward” for assigning a student’s complete program of subjects

to blocks, and β is as defined earlier:

max

∑
p∈P

ωwp +
∑
t∈T

∑
s∈τ t

∑
b∈B

βztsb

 (29)

subject to constraints (10), (12), (20), (24), (25), (26), (27), (28) and∑
b∈B

ypsb = wp, ∀p ∈ P, ∀s ∈ πp; (30)∑
s∈πp

ypsb = wp, ∀p ∈ P, ∀b ∈ B; (31)

wp ≤ νp, ∀p ∈ P; (32)

wp ∈ Z+, ∀p ∈ P. (33)

The third Pure Blocking Integer Linear Program (PBILP3) is given below,

where γ is the “penalty” per student per class for violating the class capacity

constraint:

max

{∑
t∈T

∑
s∈τ t

∑
b∈B

βztsb −
∑
s∈S

∑
b∈B

γusb

}
(34)

21

subject to constraints (10), (12), (18), (19), (24), (25), (26), (27), (28), and∑
p∈Ps

ypsb ≤ γsxsb + usb, ∀s ∈ S, ∀b ∈ B; (35)

usb ∈ Z+, ∀s ∈ S, ∀b ∈ B. (36)

At this point, we have defined all notation and variables required to formulate

our models; we summarize these in Table 1. Choices of α, β, γ and ω used for

the data sets tested are discussed in Section 5.

We now proceed to prove that the combined student variant “makes sense”

for all three of the PBILP models.

22

Table 1: Table of Symbols

Symbol Description

S = {1, ..., S} set of subjects (with elements s)

B = {1, ..., B} set of blocks (with elements b)

µs ∈ Z+ number of classes there will be of subject s

γs ∈ Z+ maximum capacity of a class of subject s

C = {(s, i) : s ∈ S, 1 ≤ i ≤ µs} set of all classes

N = {1, 2, . . . , N} set of all students

ωn ⊂ S set of subjects in programme of student n ∈ N

Ns = {n ∈ N : s ∈ ωn} set of students taking subject s

P = {1, ..., P} set of discrete programs (with elements p)

πp ⊂ S program of subjects represented by p

νp ∈ Z+ number of students taking program p

Np = {n ∈ N : ωn = πp} set of all students taking program πp

Ps = {p ∈ P : s ∈ πp} set of student programs that include subject s ∈ S

T = {1, ..., T} set of teachers (with elements t)

τ t ⊂ S program taught by a teacher (set of subjects)

θts ∈ Z+ number of classes of subject s taught by teacher t

Ts = {t ∈ T : s ∈ τ t} set of teachers that teach subject s ∈ S

xsb number of classes of subject s allocated to block b

ztsb indicates teacher t teaches subject s in block b

vnsb indicates that student ntakes subject s in block b

ypsb number of students with program p taking subject

s in block b

wp number of students taking program p that have

every subject in their program allocated to a block

usb number of extra students beyond capacity

taking subject s in block b

α “reward” for assigning a student to a class in a

block for one of the subjects in his/her program

β “reward” for giving a class a teacher

ω “reward” for assigning a student’s complete

program of subjects to blocks

γ “penalty” per student per class for violating

the class capacity constraint

23

4 Validity of Combined Student Variables in PBILP

For the PBILP models to be able to use general integer variables for students

with the same program (ypsb), we must prove that the allocation of subjects to

blocks for all students taking this program can be decomposed into allocations

of subjects to blocks for individual students, (vnsb variables), and that doing so

does not “disturb” the objective function. In particular, it will be proved that

the PBILP models are valid, in a sense defined as follows.

For all three combined student PBILP models, it is claimed that if ypsb for

each p ∈ P, s ∈ S and b ∈ B is the student allocation part of any feasible

solution to the model, then there exist values for vnsb for every n ∈ N, each

subject s ∈ ωn and each block b ∈ B such that∑
n∈Np

vnsb = ypsb, ∀p ∈ P, ∀s ∈ πp, ∀b ∈ B, (37)

∑
s∈ωn

vnsb ≤ 1, ∀n ∈ N, ∀b ∈ B, and (38)∑
b∈B

vnsb ≤ 1, ∀n ∈ N, ∀s ∈ ωn. (39)

Thus for all models, it is assured that student clashing is avoided (no student

takes more than one subject in any block) and every student takes each subject

in his/her program no more than once. As is now shown, the total number

of student subject allocations to blocks is identical to that recorded by the

program variables. Using (37, interchanging the order of summation and noting

that ωn = πp∀n ∈ Np, we have∑
p∈P

∑
s∈πp

∑
b∈B

ypsb =
∑
p∈P

∑
s∈πp

∑
b∈B

(∑
n∈Np

vnsb

)
=

∑
p∈P

∑
n∈Np

∑
s∈ωn

∑
b∈B

vnsb. (40)

Since, as noted earlier, the sets Np for p ∈ P partition the set of all students

N, we conclude that ∑
p∈P

∑
s∈πp

∑
b∈B

ypsb =
∑
n∈N

∑
s∈ωn

∑
b∈B

vnsb. (41)

This shows that in PBILP1, maximizing the sum of the program allocation

variables is equivalent to maximizing the number of individual student subject

to block allocations that can be made.

Furthermore, if ypsb for each p ∈ P, s ∈ S and b ∈ B, and wp for each p ∈ P,

provide the student allocation part of any feasible solution to PBILP2, it will

24

be shown that for each program p ∈ P, values can be found for the student

variables vnsb so that exactly wp individual students can be assigned to take

all their subjects in some block, i.e., there exists a subset of students taking

program p, Wp ⊆ Np, with |Wp| = wp, such that for every student n ∈ Wp in

this set, ∑
s∈ωn

vnsb = 1, ∀b ∈ B, and∑
b∈B

vnsb = 1, ∀s ∈ ωn.

This shows that in PBILP2, maximizing the sum of the wp variables is equivalent

to maximizing the number of individual students that can have their programs

completely allocated to blocks. The same can be said for PBILP3, except that

in this case, wp is replaced by νp, so this shows that every individual student

can be given a complete allocation of their subjects. That the excess capacity

in each subject and block is identical is obvious from the discussion around

constraint (17).

The proof of these claims involves first showing that the feasible solution of

any balanced transportation problem with equal supplies and demands at every

node can be decomposed into perfect matchings on the underlying bipartite

graph, where the number of perfect matchings in the decomposition is exactly

the supply (demand). Now wp and ypsb variables (νp parameters) that provide

the student allocation part of any feasible solution to PBILP2 (PBILP3) have

the property that for each program, p ∈ P, the ypsb variables induce a feasible

solution for a balanced transportation problem with supply and demand at every

node given by wp (νp). Thus the vnsb variables are set to values that indicate

the perfect matchings in the decomposition, for the first wp (νp) students, and

the rest are set to zero. This shows the second claim. To prove the first,

it will be shown that dummy subject and blocks can be introduced, and the

ypsb variables augmented correspondingly, to induce a feasible solution to a

balanced transportation problem with equal supplies and demands (equal to the

largest supply or demand induced by the original ypsb variables in the underlying

network). Again the variables vnsb are set to indicate the perfect matchings

found in a decomposition; these must then have components corresponding to

dummy subjects or blocks removed.

25

4.1 Proof of Transportation Problem Solution Decompo-

sition

In this section it will be proved that any feasible solution of a balanced trans-

portation problem with equal supplies and demands at every node can be de-

composed into perfect matchings on the underlying bipartite graph, where the

number of perfect matchings in the decomposition is exactly the supply (de-

mand). The notation introduced and used in this section is local only to this

section and the next. The transportation problem is defined by two sets: A, the

set of supply nodes, and B, the set of demand nodes, with equal cardinality,

|A| = |B| = µ. The complete bipartite graph on A and B is denoted by G(A,B).

The supply at every node in A and the demand at every node in B is given

by η ∈ Z+, η ≥ 1. In what follows, β is used to represent feasible solutions

to the transportation problem, and ζ to indicate the perfect matchings in the

decomposition. For brevity we write Zµ
+ = {1, 2, . . . , µ}.

The main result in this section is given in Theorem 2, and is proved by

mathematical induction, using the following hypothesis.

Hypothesis 1 H(η): If β ∈ Zµ
+ × Zµ

+, satisfies∑
i∈A

βij = η, ∀j ∈ B (42)

and ∑
j∈B

βij = η, ∀i ∈ A (43)

then there exists a decomposition ζijk ∈ {0, 1} for each k ∈ {1, . . . , η} , i ∈ A,

j ∈ B satisfying ∑
i∈A

ζijk = 1, ∀j ∈ B, ∀k ∈ {1, . . . , η}, (44)∑
j∈B

ζijk = 1, ∀i ∈ A, ∀k ∈ {1, . . . , η}, (45)

η∑
k=1

ζijk = βij , ∀i ∈ A,∀j ∈ B. (46)

We recall several definitions from graph theory. For any graph G the set of

nodes which have an arc connected to a specific node x on a graph is called the

neighboring set NG(x) of node x. Similarly, the set of nodes which have an arc

to any node in a subset R ⊆ G of nodes on a graph is called the neighboring set

26

NG(R) of subset R. For any graph G and any vector β ≥ 0 with a component

for every arc in G, the support graph of β in G is the subgraph of G induced by

non-zero elements of β, denoted by G(β).

In order to prove Theorem 2, it is first necessary to establish several sub-

sidiary results, concerning the support graph of a feasible solution to the trans-

portation problem. It is first shown that the neighbouring set of any set of

supply nodes in this support graph has cardinality at least as big as as that

of the set of supply nodes. This is a necessary and sufficient condition for the

support graph to contain a perfect matching. Then it is demonstrated that if

a vector indicating the perfect matching is “stripped off” from the transporta-

tion problem solution, a feasible solution to a similar transportation problem is

produced, with supply (demand) one less. Applying induction is then relatively

straightforward.

Lemma 1 Let A and B be two sets of equal cardinality, let η ∈ Z, with η ≥ 1,

and let β ∈ Zµ
+ × Zµ

+ satisfy constraints (42) and (43). Let G(A,B)(β) be the

support graph of β. For all subsets R ⊆ A,

|NG(A,B)(β)(R)| ≥ |R|, ∀R ⊆ A. (47)

Proof of Lemma 1

For brevity write N ′(R) = NG(A,B)(β)(R) to denote the neighbouring set of R

in the support graph of β.

Let R be a subset of A. By summing equation (42) over all i ∈ R the

following equation is obtained∑
i∈R

∑
j∈B

βij =
∑
i∈R

η = |R|η. (48)

The neighboring set N ′(R) of R represents the nodes j ∈ B where βij > 0 for

all i ∈ R, and so ∑
i∈R

∑
j∈N ′(R)

βij =
∑
i∈R

∑
j∈B

βij = |R|η. (49)

By equation (43), and since R is a subset of A, and all β ≥ 0∑
i∈R

βij ≤
∑
i∈A

βij = η, ∀j ∈ B. (50)

Summing these equations over all j ∈ N ′(R) gives∑
j∈N ′(R)

∑
i∈R

βij ≤
∑

j∈N ′(R)

η = |N ′(R)|η. (51)

27

Combining (49) and (51) and exchanging the order of summation,

|R|η ≤ |N ′(R)|η. (52)

As η > 0, it is deduced that

|R| ≤ |N ′(R)|, (53)

as required and the proof is complete. 2

It will now be shown that there must exist a perfect matching in the support

graph of a feasible solution to the transportation problem.

Formally, a matching is defined as a subset of the arcs on a graph, such that

no node has more than one arc incident to it in the subset. If an arc (i, j) is

in a matching, node i is said to be matched to node j. For a matching M on

a bipartite graph with bipartition (A,B), if for all i ∈ A there exists an arc

(i, j) ∈ M , for some j ∈ B, then the matching is said to saturate A. Similarly,

if for all j ∈ B there exists an arc (i, j) ∈ M , for some i ∈ A, then the matching

is said to saturate B. If a matching saturates both A and B then the matching

is said to be perfect.

Bondy and Murty [5] (p. 72), state and prove the following theorem of

Hall [8], from which it may be deduced that the support graph of a feasible

solution to the balanced transportation problem with identical supplies and

demands contains a perfect matching.

Theorem 1 [Bondy and Murty [5]] Let G be a bipartite graph with bipartition

(X, Y). Then G contains a matching that saturates every vertex (node) in X if

and only if:

|NG(S)| ≥ |S|, ∀S ⊆ X (54)

Theorem 1 is required to prove the following result.

Lemma 2 Given two sets A and B with equal cardinality, |A| = |B|, and given

η ∈ Z, η ≥ 1, if β ∈ Zµ
+ × Zµ

+ satisfies equations (42) and (43) then there exists

a perfect matching in the support graph G(A,B)(β) of β.

Proof of Lemma 2

Firstly note that G(A,B)(β) is a bipartite graph with bipartition (A,B). Now

the definitions of A, B, η and β in Lemma 2 satisfy the conditions of Lemma 1,

and thus for any subset R ⊆ A the neighboring set is at least as large as the

28

original subset. Thus, by Theorem 1, G(A,B)(β) must contain a matching that

saturates every node in A. As there are µ nodes in A, there must be µ arcs

in the matching, one incident to each node in A. However |B| = µ also, and

no node in B can be incident to more than one arc in any matching. Thus the

matching also saturates B. Hence the matching is perfect. 2

Since the support graph of a feasible solution to the balanced transportation

problem with identical supplies and demands contains a perfect matching, a

vector indicating the perfect matching can be “stripped off”, leaving a feasible

solution to a balanced transportation problem having supply (demand) reduced

by one. This is established formally in the following two corollaries to Lemma 2.

Corollary 1 Under the conditions of Lemma 2, if there exists β ∈ Z|A|
+ × Z|B|

+

satisfying equations (42) and (43), then there must exist a binary vector ξ ∈
{0, 1}|A| × {0, 1}|B| with the following properties:

(i) ξij > 0 only if βij > 0,

(ii)
∑

i∈A ξij = 1 for all j ∈ B, and

(iii)
∑

j∈B ξij = 1 for all i ∈ A.

Proof of Corollary 1

Let M be the perfect matching in G(A,B)(β) that must exist by Lemma 2.

Let ξ be the incidence vector of M , i.e., let ξij = 1 if (i, j) ∈ M and ξij = 0

otherwise. Now ξ is binary, so if ξij > 0, then ξij = 1. Thus (i, j) ∈ M , by

the definition of ξ, and M is a subset of the edges in G(A,B)(β), so, by the

definition of a support graph, βij > 0, and we have established property (i).

Since M is a perfect matching, M saturates both A and B. As M saturates B,

there is exactly one arc in M incident to each node in B. Property (ii) follows.

Similarly, as M saturates A, there is exactly one arc in M incident to each node

in A. Property (iii) follows. 2

Corollary 2 Under the conditions of Lemma 2, if there exists β ∈ Z|A|
+ × Z|B|

+

satisfying equations (42) and (43), then β′ defined by

β′
ij = βij − ξij , ∀i ∈ A, ∀j ∈ B, (55)

where ξ ∈ {0, 1}|A| × {0, 1}|B| is the vector guaranteed to exist by Corollary 1,

then β′ ∈ Z|A|
+ × Z|B|

+ and furthermore β′ satisfies the equations∑
i∈A

β′
ij = η − 1, ∀j ∈ B (56)

29

and ∑
j∈B

β′
ij = η − 1, ∀i ∈ A. (57)

Proof of Corollary 2

By Corollary 1, ξ satisfies the three properties listed in the statement of that

corollary. Now β′ ∈ Z|A|
+ × Z|B|

+ , and, in particular, β′ ≥ 0, since β is integer, ξ

is binary, and by property (1) of Corollary 1. Also∑
i∈A

β′
ij =

∑
i∈A

(βij − ξij) =
∑
i∈A

βij −
∑
i∈A

ξij = η − 1

by (42) and property (2) of Corollary 1. This proves that (56) holds. Similarly,∑
j∈B

β′
ij =

∑
j∈B

(βij − ξij) =
∑
j∈B

βij −
∑
j∈B

ξij = η − 1

by (43) and property (3) of Corollary 1, proving that (57) holds. 2

The main theorem is now presented, which shows that a feasible solution to

a balanced transportation problem with identical supplies and demands can be

decomposed into a sum of incidence vectors of perfect matchings in the support

graph of the transportation problem solution.

Theorem 2 Given two sets A and B of equal cardinality, |A| = |B| = µ,

hypothesis H(η) holds for all η ∈ Z with η ≥ 1.

Proof of Theorem 2

The result will be proved by mathematical induction on η. The case η = 1 is

straightforward. Suppose β satisfies the conditions of H(1). Let ζij1 = βij for

all i ∈ A and all j ∈ B. Then (44), (45) and (46) all hold trivially, and H(1)

holds.

Now suppose that for some η ∈ Z, η > 1, H(η − 1) holds. Furthermore,

suppose β satisfies the conditions of H(η). Then, by Corollary 1, there exists a

vector ξ ∈ {0, 1}|A|×{0, 1}|B| having the three properties given in the statement

of that corollary. Let ζijη = ξij for all i ∈ A and j ∈ B. Then properties (2)

and (3) of Corollary 1 ensure that (44) and (45) hold for ζijk with k = η.

Set β′
ij = βij − ξij for all i ∈ A and j ∈ B. Now β′ has been constructed

here precisely as in the statement of Corollary 2, and so meets the conditions

of the inductive hypothesis H(η− 1). Thus there exists ζijk for all i ∈ A, j ∈ B

30

and k = {1, . . . , η − 1} satisfying∑
i∈A

ζijk = 1, ∀j ∈ B, ∀k = 1, . . . , η − 1,

and ∑
j∈B

ζijk = 1, ∀i ∈ A, ∀k = 1, . . . , η − 1.

Since it has already been established that (44) and (45) hold for ζijk with k = η,

it has been shown that ζ satisfies (44) and (45).

Now, by the inductive hypothesis,

η−1∑
k=1

ζijk = β′
ij , ∀i ∈ A, ∀j ∈ B.

So
η∑

k=1

ζijk =
η−1∑
k=1

ζijk + ζijη = β′
ij + ξij = βij , ∀i ∈ A, ∀j ∈ B,

and it has been shown that (46) also holds.

Thus the hypothesis H(η) holds. The result follows by the principle of

mathematical induction. 2

4.2 Application of Proof to PBILP

The results of the previous section are now applied to show that program vari-

ables from the PBILP models can be decomposed into student variables, having

the desired properties. The proof begins with the PBILP2 and PBILP3 models,

and subsequently addresses the PBILP1 model. The general result is given in

Theorem 3.

Theorem 3 Suppose ypsb for each p ∈ P, s ∈ S and b ∈ B, and wp for each

p ∈ P satisfy equations (27) (30), (31), (32) and (33). Then for every program

p ∈ P with wp ≥ 1, there exist values for the student variables vnsb, for n ∈ Np,

s ∈ ωn = πp, and b ∈ B, so that∑
n∈Np

vnsb = ypsb, ∀s ∈ πp, ∀b ∈ B, (58)

∑
s∈ωn

vnsb ≤ 1, ∀b ∈ B, ∀n ∈ Np, (59)∑
b∈B

vnsb ≤ 1, ∀s ∈ ωn ∀n ∈ Np. (60)

31

Further, there exists a subset of students taking program p, Wp ⊆ Np, with

|Wp| = wp, such that for every student n ∈ Wp in this set,∑
s∈ωn

vnsb = 1, ∀b ∈ B, (61)∑
b∈B

vnsb = 1, ∀s ∈ ωn. (62)

Proof of Theorem 3

Let p ∈ P be a program with wp ≥ 1. Observe that by our standing assumptions,

πp and B are sets of equal cardinality. Define β by βsb = ypsb for each s ∈ πp and

b ∈ B. Then β ∈ Z|πp|×Z|B| by (27) and (33), and β satisfies the conditions of

the hypothesis H(wp) by (30) and (31). By Theorem 2, there exist ζsbk ∈ {0, 1}
for each s ∈ πp, b ∈ B and k ∈ {1, . . . , wp} such that∑

s∈πp

ζsbk = 1, ∀b ∈ B, ∀k ∈ {1, . . . , wp}, (63)

∑
b∈B

ζsbk = 1, ∀s ∈ πp, ∀k ∈ {1, . . . , wp}, (64)

wp∑
k=1

ζsbk = βsb, ∀s ∈ πp, ∀b ∈ B. (65)

Now we may take Wp to simply be the first wp students in the set Np; this is

possible by constraint (32). Let σ(n) be a unique integer in {1, . . . wp} identified

with each n ∈ Wp, and set

vnsb =

{
ζsbσ(n), if n ∈ Wp;

0, otherwise

for each n ∈ Np, s ∈ πp and b ∈ B. (Recall that ωn = πp for all n ∈ Np.) It is

now obvious that equation (58) follows by equation (65) and the definitions of β

and v. Equations (61) and (62) follow from equations (63) and (64) respectively,

and the definition of v. Constraints (59) and (60) also follow from (63) and (64)

respectively, and the definition of v. 2

Theorem 3 demonstrates that the PBILP2 is valid. It is a straightforward

corollary (the νp parameters take the role of the the wp variables) that the

PBILP3 model is valid also. The variables used in the models combine students

with an identical program into one set of variables, and record the number of

students taking each program that have their program fully assigned to blocks.

32

Theorem 3 demonstrates that these variables can be decomposed into variables

for individual students, with the correct number of students having fully as-

signed programs. The proof also suggests how the decomposition can be per-

formed in practice. The timetabler could solve a sequence of perfect matching

problems on the supporting graph of the program variables (for example, by

using the Hungarian algorithm, which finds perfect matchings in polynomial

time).

It remains to show that the PBILP1 model is also valid, in the sense discussed

earlier, i.e. that a decomposition of the program variables into student variables

satisfying equation (58) and constraints (59) and (60) exists in this case also.

However the proof of Theorem 3 relies on equality between the “flow” out of

each subject and the “flow” into each block, which may not occur in the PBILP1

model. Fortunately, it is possible to adapt the solution of the PBILP1 model so

as to ensure equality, with the use of dummy flows. The decomposition can be

performed, dummy components removed, and the result follows. The general

result is given in Theorem 4.

Theorem 4 Suppose ypsb for each p ∈ P, s ∈ S and b ∈ B satisfies equations

(22), (23), and (27). Then for every program p ∈ P there exist values for the

student variables vnsb, for n ∈ Np, s ∈ πp = ωn, and b ∈ B, so that∑
n∈Np

vnsb = ypsb, ∀s ∈ πp, ∀b ∈ B, (66)

∑
s∈ωn

vnsb ≤ 1, ∀b ∈ B, ∀n ∈ Np, (67)∑
b∈B

vnsb ≤ 1, ∀s ∈ ωn, ∀n ∈ Np. (68)

Proof of Theorem 4

Let p ∈ P, and suppose ypsb for each s ∈ πp and b ∈ B satisfies equations (22),

(23), and (27). Consider the transportation problem defined by the complete

bipartite graph Gp
(πp,B), with supply νp−

∑
b∈B ypsb for each s ∈ πp and demand

νp −
∑

s∈πp
ypsb for each b ∈ B. This transportation problem picks up the

“shortfall” from a complete allocation for the students in this program, and is

33

clearly balanced, as∑
s∈πp

(νp −
∑
b∈B

ypsb) = |πp|νp −
∑
s∈πp

∑
b∈B

ypsb

= |B|νp −
∑
b∈B

∑
s∈πp

ypsb,

since |πp| = |B|, and by exchange of summation order, and thus∑
s∈πp

(νp −
∑
b∈B

ypsb) =
∑
b∈B

(νp −
∑
s∈πp

ypsb).

Furthermore, since the bipartite graph is complete, and all supplies and demands

are in Z+ (by (22), (23) and (27)), the balanced transportation problem is

feasible, and an integer solution can be found in polynomial time. Let δp ∈
Z|πp|

+ × Z|B|
+ denote such a solution; this can be viewed as a “dummy flow”,

which we will add to the ypsb variables to define a complete allocation: define

y′p ∈ Z|πp|
+ × Z|B|

+ by

y′psb = ypsb + δpsb (69)

for all s ∈ πp and b ∈ B. Now it is obvious, since δp exactly meets the demand

at each node of Gp
(πp,B) in B , that∑

s∈πp

y′psb =
∑
s∈πp

ypsb +
∑
s∈πp

δpsb =
∑
s∈πp

ypsb + (νp −
∑
s∈πp

ypsb) = νp, ∀b ∈ B

(70)

and it is similarly obvious, since δp exactly achieves the supply at each node of

Gp
(πp,B) in πp, that∑

b∈B

y′psb =
∑
b∈B

ypsb +
∑
b∈B

δpsb =
∑
b∈B

ypsb +(νp−
∑
b∈B

ypsb) = νp, ∀s ∈ πp. (71)

Thus y′psb satisfies the conditions of hypothesis H(νp) and Theorem 2 can be

applied to deduce that there exists v′nsb ∈ {0, 1} for each n ∈ Np, (recall that

|Np| = νp), s ∈ πp and b ∈ B such that∑
s∈πp

v′nsb = 1, ∀n ∈ Np, ∀b ∈ B, (72)

∑
b∈B

v′nsb = 1, ∀n ∈ Np, ∀s ∈ πp, (73)

∑
n∈Np

v′nsb = y′psb, ∀s ∈ p, ∀b ∈ B. (74)

34

Consider a subject s ∈ πp and a block b ∈ B. By equations (69) and (74)∑
n∈Np

v′nsb = y′psb = ypsb + δpsb.

Define ∆psb to be any subset of {n ∈ Np : v′nsb = 1} having cardinal-

ity |∆psb| = δpsb; the above equation (together with the integrality and non-

negativity conditions that follow from the definitions of y and δ), ensures that

this set is well defined. Now define

vnsb =

{
v′nsb, n ∈ Np \∆psb

0 n ∈ ∆psb

for each n ∈ Np. Obviously

vnsb ≤ v′nsb, ∀n ∈ Np, (75)

and furthermore, since vnsb = v′nsb except for n ∈ ∆psb, in which case vnsb = 1

and v′nsb = 0, and since |∆psb| = δpsb,∑
n∈Np

vnsb =
∑

n∈Np

v′nsb − δpsb = ypsb. (76)

Now since (75) holds for every subject s ∈ πp and every block b ∈ B, and

from equations (72) and (73), constraints (67) and (68) follow. Similarly, since

equation (76) holds for every subject s ∈ πp and every block b ∈ B equation

(66) must also hold. Since program p ∈ P was chosen arbitrarily, the theorem

follows. 2

It has now been confirmed that the use of general integer variables to model

the activities of all students taking a distinct program is valid, i.e. can be decom-

posed into activities for individual students, satisfying reasonable conditions.

5 Results

The PBILP model is useful for solving the CBPP faced by each year level of an

Australian secondary school, the senior campus of Xavier College, Melbourne,

which we refer to for brevity as Xavier College. We use real data for the year

2002; minor changes to numbers of students and other matters occur from year

to year, but the 2002 data is representative of the typical complexity of the

Xavier College problem, and of the analogous problem at other schools of com-

parable size and academic profile.

35

Table 2: Xavier College individual year level data sets.

Year Subjects Classes Students Programs Teachers Blocks

9 15 40 220 58 25 3

10 16 41 234 97 26 3

11 33 96 227 180 53 6

12 32 90 211 186 68 6

Xavier College has four year levels and in each of the year levels there is

a subset of subjects (the elective subjects) from which each student will select

a specified number to study. In year 12 a student chooses up to 6 of the 32

elective subjects. For each of these subjects the class populations need to be

determined, and the classes must be allocated to blocks (a CBPP needs to be

solved). Importantly each elective subject requires the same number of lessons,

satisfying the assumption necessary for using the PBILP model. Therefore it is

appropriate to solve the CBPP for this set of subjects for each year level of the

school (separately) using the PBILP model.

The details for each data set from each year level are shown in Table 2.

Students have much greater freedom in choosing electives in the upper year

levels (11 and 12) than in the lower year levels (9 and 10). In the lower year

levels, each student has three electives (from a set of 15 in year 9, and 16 in

year 10). In the upper year levels, there are six electives (chosen from 32 in

year 11, and 33 in year 12). Consequently the problem for the two upper year

levels is more complex than that for the lower two year levels. The data sets

for each year level were taken from an existing timetable for the school, and

consequently it was known that a maximal feasible solution was possible (all

students allocated to a class for all of the subjects in their programs and all

classes allocated to blocks).

Upon inspection of the data sets, it is clear that the major benefit of hav-

ing integer variables for each program, compared to binary variables for each

student, comes in years 9 and 10. There the smaller number of subjects per

student (each only has to choose three subjects) results in a smaller range of

individual programs (58 and 97 programs for 220 and 234 students in years 9

and 10 respectively). The integer variables do not produce the same economy

36

Table 3: Numbers of variables and constraints in Xavier College data

for the three PBILP models with and without combined variables.

Combined variables Separate variables

Year Variables Constraints Variables Constraints

PBILP1

9 651 556 2188 556

10 1008 801 2241 801

11 7032 2966 8724 2966

12 7314 3367 8430 3367

PBILP2

9 709 556 2339 1534

10 1105 801 2475 1623

11 7212 2966 8951 3530

12 7500 3367 8467 3739

PBILP3

9 696 1534 2163 1534

10 1056 1623 2289 1623

11 7320 3530 8922 3530

12 7506 3739 8622 3739

for the upper year levels (180 and 186 programs for 227 and 211 students in

years 11 and 12 respectively). This is illustrated more clearly in Table 3 where

the number of variables and constraints for each of the models is presented.

The model with combined integer variables always uses less variables and con-

straints, but the effect is less marked for the upper year levels. However any

reduction should reduce the search space, and the reductions in problem size

should reduce LP solve time.

The models presented in Section 3 were implemented in the modeling lan-

guage AMPL, and solved using the ILOG package Cplex 8.0 on a XP900 Al-

phastation (667Mhz CPU). In setting the reward/penalty values for use in the

PBILP model objective functions, it was deemed more important for a class to

have a teacher than for a student to not be allowed to take a subject from their

program, and consequently forced to change one of their subjects (the school’s

37

policy for infeasible solutions). It was deemed equally important for class ca-

pacity to be exceeded by one student as for one student to have one subject

unallocated. It was thus decided that for this problem appropriate values for α,

β, γ and ω were α = 1, β = 100, γ = 1 and ω = 1. As was stated previously,

because these data sets were known to have a feasible solution, any positive

values for these parameters should produce a feasible (i.e., optimal) solution.

As expected, a feasible solution to the CBPP problem was found for all

models on all data sets, with every student and teacher allocated to a class for

all subjects in their program. The times taken by Cplex to find the optimal

solutions for all the combined student PBILP models are presented in Table 4

(the ‘Combined’ columns). The data sets with a smaller number of subjects

and blocks (years 9 and 10) were noticeably faster for Cplex to find the optimal

solution than the later year levels with more subjects and blocks. Of particular

note is that the third model is noticeably faster on three of the four data sets.

The separate student PBILP models were also implemented in AMPL and

tested on the same data sets. The results are presented in Table 4 under the

columns labelled ‘Separate’. The results are somewhat unclear, and unexpected.

Each approach (combined integer variables versus separate binary variables)

produces the fastest solution in half the cases. Although it is clear that the

introduction of the general integer variables should dramatically reduce the

symmetry in the model, we do not see dramatic improvements in the run times

for Cplex. We suggest three reasons for this.

(i) Cutting planes for general integer problems have been less well explored

in the literature, whereas a great deal of effort has gone into developing good

cutting planes for binary problems. Of the 7 types of cutting planes automati-

cally generated and reported by Cplex for the PBILP models, only two apply in

general integer problems (mixed integer rounding cuts and Gomory cuts). For

each year level, Cplex generated more clique constraints (which are typically

strong) for individual variables than for combined variables (this is especially

marked in years 9 and 10). However the types of cut listed by Cplex are not

the only cuts used by this program5. It is unknown how many other types of

cut are made or their number and the impact this would have on the separate
5For example, for the year 11 data for PBILP1 with separate binary variables, Cplex

reports 664 cuts at the root node. However, it only lists 426 cuts under the 7 reported types

of cut for all nodes.

38

Table 4: Results for Xavier College data for the three PBILP models

with and without combined variables. For each of the four year levels, we

present the run time in seconds and the number of branch and bound nodes

with or without the use of combined student variables. The fastest run times

for a given year level are shown in boldface type.

Combined Separate

Year Nodes Time Nodes Time

PBILP1

9 7 0.3 12 1.7

10 15 0.9 20 3.6

11 580 83.3 347 79.0

12 610 118.4 244 56.1

PBILP2

9 14 0.3 8 1.0

10 20 0.6 0 0.3

11 610 117.9 150 54.0

12 300 38.6 130 38.6

PBILP3

9 10 0.2 0 0.2

10 42 0.5 20 1.0

11 460 42.1 8050 344.9

12 1478 66.0 240 44.5

or combined variables.

(ii) Cplex has some inbuilt capacity for dealing with symmetry and for au-

tomatically reducing the negative effects of symmetry (Robert Bixby, personal

communication, 2004).

(iii) As we will see below, fully integer solutions can be obtained on these

data sets without requiring the ypsb, or vnsb variables, respectively, to be integer.

The symmetry reduction is only important for branch-and-bound; if not much

branching is required on these variables, the effect of symmetry reduction will

be marginal.

In other words, it is conjectured that Cplex does a much better job of solv-

ing binary integer models, as opposed to general integer models, even when

the former are relatively poor. This may be less marked for other solvers, and

39

as the field of general integer programming matures, this difference may well

disappear. Furthermore, when little branching is required on the student vari-

ables, little difference will be observed. This may be less marked for other data

sets. Furthermore, as we see below, the combined variables have a considerable

advantage when integrality is relaxed, as they induce smaller LPs.

As we discussed in Section 3, in the PBILP models the variables for stu-

dent allocation (ypsb) and teacher allocation (ztsb) are integer variables, but are

based on a network structure; if the xsb variables are determined, then the re-

maining problem consists of separate network flow problems, with joint capacity

constraints (like multi-commodity flow). This observation motivated us to see

if priority branching on the xsb variables would speed up solution times. As a

first step, we relaxed the integrality of the ypsb (vnsb) and ztsb variables, and

solved each of the data sets. The results are presented in Table 5, and should

be compared to the equivalent results in Table 4. No single student or teacher

allocation variable has a non-integer value in any of the solutions generated by

any model on all eight data sets.

There are three interesting points in these results. The first is that the

relaxed problems almost always require less time and fewer branch and bound

nodes in order to be solved to optimality than the integer or binary problems.

This would be expected as the problems are relaxations. Interestingly, the

second model (with combined variables) is noticeably faster than the others,

and by far the superior model. Another important result is that the separate

variables for each student do not seem to benefit as much from the relaxation

as the combined variables. All models with combined variables provide faster

solutions than the models with separate variables on all data sets. This is quite

understandable: there is essentially no difference in their integer structure, but

the combined variable model has smaller LPs, that will be faster to solve.

6 Conclusion

We have demonstrated that, with the models presented in this paper, standard

integer programming techniques can solve pure blocking CBPPs generated by

a local high school, with the best model and priority branching combination

solving for every year level in under 4 seconds, without the need for branching.

In real high school timetabling, the assumptions of pure blocking do not

40

Table 5: Results for Xavier College data for the three PBILP models

with and without combined variables, when the integrality of the

student and teacher allocation variables (ypsb vnsb, ztsb) is relaxed. For

each of the four year levels, we present the run time in seconds and the number of

branch and bound nodes with or without the use of combined student variables.

The fastest run times for a given year level are shown in boldface type.

Combined Separate

Year Nodes Time Nodes Time

PBILP1

9 0 0.1 0 0.3

10 18 0.5 0 0.9

11 380 85.2 300 57.6

12 93 34.9 90 30.4

PBILP2

9 0 0.0 0 0.2

10 0 0.1 0 0.4

11 0 2.8 0 7.1

12 0 3.9 0 4.1

PBILP3

9 0 0.0 0 0.1

10 0 0.3 20 0.7

11 420 41.6 720 47.9

12 90 21.4 90 30.3

hold. However the models we have presented here can readily be modified, and

applied to elements of a more complex problem. As is shown by Merlot [12], in

conjunction with a suite of other, related, models, all the complexities of real

world timetabling can be accommodated.

In future work, we would like to consider relaxing some of the pure block-

ing assumptions, and adapting these ideas for use in much larger, university

timetabling problems. In such problems, the number of blocks may not be

known in advance, and the symmetry of blocks may introduce further difficul-

ties. However column generation with respect to blocks may offer the solution

41

to both these problems, and is a direction of further research.

Acknowledgement

The authors thank Xavier College for the supply of the data used to illustrate

the methods developed in this paper.

References

[1] R. Alvarez-Valdes, E. Crespo and J.M. Tamarit. Assigning Students to

Course Sections using Tabu Search. Annals of Operations Research 2000;

96; 1–16.

[2] R. Alvarez-Valdes, E. Crespo and J.M. Tamarit. Design and Implementa-

tion of a Course Scheduling System using Tabu Search. European Journal of

Operational Research 2002; 137; 512–523.

[3] J. Aubin and J.A. Ferland. A Large Scale Timetabling Problem. Computers

and Operations Research 1989; 16; 67–77.

[4] D. Banks, P. van Beek, and A. Meisels. A Heuristic Incremental Modelling

Approach to Course Timetabling. Proceedings of the 12th Canadian Confer-

ence on Artificial Intelligence, 1998, pp. 16–29,

[5] J. Bondy and U. Murty. Graph Theory with Applications. London: Macmil-

lan, 1977.

[6] M. Carter. A Comprehensive Course Timetabling and Student Scheduling

System at the University of Waterloo. In: Burke E.; Erben W. (eds.): Practice

and Theory of Automated Timetabling III Third International Conference,

PATAT 2000, Konstanz, Germany, August 16–18, 2000. Selected Papers. Lec-

ture Notes in Computer Science 2079, Springer-Verlag, Berlin Heidelberg New

York, 64–82, 2001.

[7] J.A. Ferland and C. Fleurent. SAPHIR: A Decision Support System for

Course Scheduling. Interfaces 1994; 24(2); 105–115.

[8] P. Hall. On Representation of Subsets. Journal of the London Mathematical

Society 1935; 10; 26–30.

42

[9] A. Hertz. Tabu Search for Large Scale Timetabling Problems. European

Journal of Operational Research 1991; 54; 39–47.

[10] A. Hertz and V. Robert. Constructing a Course Schedule by Solving a Series

of Assignment Type Problems. European Journal of Operational Research

1998; 108; 585–603.

[11] G. Lewandowski. Practical Implementations and Applications of Graph

Coloring. PhD Thesis, University of Wisconsin–Madison, USA, 1994.

[12] L.T.G. Merlot. Techniques for Academic Timetabling. PhD Thesis, Uni-

versity of Melbourne, Australia, 2005.

[13] V. Robert and A. Hertz. How to Decompose Constrained Course Schedul-

ing Problems into Easier Assignment Type Subproblems. In: Burke, E.; Ross,

P. (eds.): Practice and Theory of Automated Timetabling, First International

Conference, Edinburgh, U.K., August/September 1995. Selected Papers. Lec-

ture Notes in Computer Science 1153, Springer-Verlag, Berlin Heidelberg New

York, 364–373, 1996.

[14] H. Rudova and L. Matyska. Constraint-Based Timetabling with Student

Schedules. In: Burke E.; Erben W. (eds.): Proceedings of Practice and Theory

of Automated Timetabling III Third International Conference, PATAT 2000,

Konstanz, Germany, August 16–18, 109–123, 2000.

[15] S.E. Sampson, J.R. Freeland, and E.N. Weiss. Class Scheduling to Maxi-

mize Participant Satisfaction. Interfaces 1995; 25(3); 30–41.

[16] A. Tripathy. Computerised Decision Aid for Timetabling — A Case Anal-

ysis. Discrete Applied Mathematics 1992; 35; 313–323.

[17] B. van Kesteren. The Clustering Problem in Dutch High Schools: Changing

Metrics in Search Space. Masters Thesis, Leiden University, The Netherlands,

1999.

[18] R.J. Willemen. School Timetable Construction: Algorithms and Complex-

ity. PhD Thesis, Technische Universiteit Eindhoven, The Netherlands, 2002.

[19] J. Wood and D. Whitaker. Student Centered School Timetabling. Journal

of the Operational Research Society 1998; 49; 1146–1152.

43

