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Abstract

In interval propagation approaches to solving nonlinear constraints
over reals it is common to build stronger propagators from systems of
linear equations. This, as far as we are aware, is not pursued for integer
finite domain propagation. In this paper we show how we use interval
Gauss-Jordan elimination to build stronger propagators for an integer
propagation solver. In a similar fashion we present an interval Fourier
elimination preconditioning technique to generate redundant linear con-
straints from a system of linear inequalities. We show how to convert
the resulting interval propagators into integer propagators. This allows
us to use existing integer solvers. We give experiments that show how
these preconditioning techniques can improve propagation performance
on dense systems.

1 Introduction

Linear equations and inequalities are one of the most important con-
straints in any integer finite domain propagation system. Efficient bounds
propagation of individual linear constraints is well understood [8] and
available in all constraint programming systems. But in other solving
approaches systems of linear constraints are not treated individually but
together as a system.

Example 1 Consider the linear equations x1 + x3 − x4 = 3 ∧ x1 + x2 +
2x3 − x4 = 4 with initial domains [0, 4] then individually no propagation
is possible, but the equivalent system x1 + x3 − x4 = 3 ∧ x2 + x3 = 1 can
reduce the domains of all variables. Clearly if we can treat the system
together there is more scope for propagation

In linear programming the real relaxation of all integer linear equations
and inequalities is treated together by the linear programming algorithm.
Even though linear programming based propagators [13] are available in
constraint programming toolkits (for example OPL [12] and ECLiPSe [3]),
the linear programming propagator does not provide new bounds infor-
mation for the integer variables involved, rather it is used to bound the
objective function (and possibly to do reduced cost variable fixing).
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Alternatively one can also use linear programming to build propagators
that take into account all linear constraints simultaneously by minimizing
and maximizing every variable in turn, and rounding the resulting bounds
to integers [14]. Unfortunately this requires repeatedly performing 2n LP
optimizations, where n is the number of variables, to propagate the linear
constraints. This is very expensive compared to the cost of treating the
constraints as integer linear propagators.

In this paper we propose preconditioning techniques, based on a whole
system of linear constraints, to generate strong linear propagators.

In nonlinear interval solvers, systems of linear equations are treated
together as propagators using Gauss-Seidel iteration. A preconditioning
step is typically applied first and involves computing a inverse matrix,
using Gauss-Jordan elimination or an equivalent procedure [7]. While it is
possible to define Gauss-Jordan elimination over integer linear equations,
in practice the integer coefficients typically quickly explode making it
impractical.

In this paper we explore using a real interval hybrid approach to prop-
agate systems of integer linear equations. Preconditioning of the linear
equations is performed using interval arithmetic, and the resulting in-
terval arithmetic propagator is applied to variables (taking into account
their integrality). This requires a hybrid interval and integer finite domain
solver.

Example 2 Consider the following constraints which are almost collinear
to those of Example 1: 100x1+99x3−101x4 = 301∧101x1+99x2+199x3−
100x4 = 399, and initial domains [0,4]. Again no propagation is possible.
The integer Gauss-Jordan elimination yields 100 × 99x2 + (100 × 199 −
101×99)x3−(100×100−101×101)x4 = 100×399−101×301, illustrating
the increase in coefficients. The interval version of the elimination yields

x2 + 9̂901

9900
x3 − 2̂01

9900
x4 = 9̂499

9900
where ã represents a “tight” floating point

interval around a. Both the integer and interval propagators resulting from
Gauss-Jordan elimination detect that there is no solution.

In a similar fashion we present a Fourier elimination scheme using
interval arithmetic, which, given an original system of inequalities, allows
us to generate safe redundant inequalities. We use it to generate interval
arithmetic propagators. Given the exponential behavior of the original
Fourier algorithm, we use a partial algorithm of polynomial complexity,
generating a linear number of inequalities that propagates well.

We show how we can remove the requirement for using a hybrid solver
by weakening the interval linear equations and inequalities produced by
the above preconditioning techniques to integer linear inequalities, as il-
lustrated in example 3 below.

Example 3 The floating point interval equation resulting in Example 2
can be weakened to the integer inequalities 9899x2+9900x3−202x4 ≤ 9500
and 9901x2 + 9902x3 − 200x4 ≥ 9498. This is at least strong enough to
reduce the domains of x2 and x3 to [0,1], and with the original equation
x1 obtains [1,4] and x4 obtains [0,2].

Note that x4 is almost irrelevant in these equations since its coefficient
is much smaller than the other coefficients. We can remove it altogether,
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using its bounds, to simplify the inequalities without losing much propaga-
tion. We obtain 9899x2 + 9900x3 ≤ 10308 and 9901x2 + 9902x3 ≥ 9498.
We lose no initial propagation with this simplification.

This paper examines the uses of interval Gauss-Jordan elimination and
interval Fourier elimination preconditioning techniques for integer linear
equations and inequalities. We show how to achieve this using a hybrid
interval and integer propagation solver or even how to map back to a full
integer problem. Our experiments show that these techniques can lead to
substantial improvements in propagation efficiency. A preliminary version
of this paper examining only Gauss-Jordan elimination appeared as [4]

The remainder of the paper is organized as follows. In the Section 2
we introduce notation, and the necessary background for understanding
linear constraint propagation, and interval reasoning methods. Section 3
presents an interval scheme for integer systems of equality while the Sec-
tion 4 presents a similar scheme for system of inequalities. In Section 5
we give experimental results, and conclude in Section 6.

2 Background

2.1 Interval arithmetic

Let R be the set of real numbers with {−∞,+∞}, and let F be the subset
of R of the representable floating-point numbers in a given format. Given
a real number r, we will use ↓ (r), ↑ (r) and nearest(r) to represent the
downward rounding, upward rounding and rounding to the nearest, on F.

An interval has the form x = [x, x] where x and x are two real numbers
and x ≤ x. We will use IR to represent the set of intervals over reals, and
IF to represent the set of intervals with endpoints from F. Both are closed
under intersection.

Given an interval x = [x, x] then inf x = x and supx = x define
the lower and upper bound of x respectively, while the absolute value is
defined as |x| = max{|a|, |b|}.

Given an interval x = [x, x], let floor(x) = ⌊ x ⌋ be the largest
integer bounding x from below and ceil(x) = ⌈ x ⌉ be the smallest integer
bounding x from above.

Given an interval x = [x, x] let mid x be the approximated midpoint
of x:

mid x = nearest(
x + x

2
)

Note that for unbounded intervals, any value in the interval can be used
as an approximate midpoint. The functions ceil and floor are not defined
for unbounded intervals, however we will only use them on bounded in-
tervals in the rest of the paper.

Given two intervals x and y the float interval operator ⋄ associated to
the real operator ⋄ is defined by:

x ⋄ y =
\

z∈IF

{z | ∀x ∈ x, ∀y ∈ x, x ⋄ y ∈ z}
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As an example, the multiplication operator is defined by:

[x, x] ×
ˆ
y, y

˜
=

ˆ
↓ min{xy, xy, xy, xy}, ↑ max{xy, xy, xy, xy}

˜

We will use ∩ and ∪ to represent respectively the union and intersec-
tion of two intervals.

A box d is a pair [d, d] consisting of two real column vectors d and d
of length n with d ≤ d. A box is indentified with the (nonempty) set of
points it contains d = {d ∈ Rn | d ≤ d ≤ d}. A thin box [d, d] contains a
unique point d and we can extend operators to apply to mixes of intervals
and scalars by identifying the scalar d with the thin box [d, d] and using
the interval operator.

Example 4 Let x be the interval [−1, 1], let y be the scalar 10, and let z

be x/y. Then:

z = x/y = [−1, 1] / [10, 10] = [↓ −0.1, ↑ 0.1]

inf z = z =↓ −0.1

floor(z) = ⌊ ↓ −0.1⌋ = −1

mid (z) = nearest(
↓ −0.1+ ↑ 0.1

2
) = 0

Interval arithmetic [10] was designed to tackle two problems of nu-
merical analysis: uncertainty of data and roundoff error. It has the ad-
vantage of being a sound approximation of problems over R, and interval
analysis methods, based on iterative contraction of intervals, are easily
implemented in a constraint programming framework.

The following standard result gives the basis of interval arithmetic.

Theorem 1 (Fundamental Theorem of Interval Arithmetic [10])
Given an arithmetic expression f, and an interval vector x, for all real
vector v ∈ x, the real evaluation of f at v is contained in the interval
evaluation f(x).

2.2 Gauss-Jordan elimination

Gauss-Jordan elimination is a version of Gaussian elimination which solves
a system of equations AX = B by applying elementary row operations in
order to transform the coefficients matrix to a reduced row echelon form.
Elementary row operations are linear transformations on a matrix that do
not change its solution set (neglecting rounding errors). If applied on a
square matrix A, it can be used to compute its inverse A−1: a sequence of
transformation T1, . . . , Tn is applied to the system AX = I to transform
the coefficient matrix into the identity matrix: IX = T1 . . . TnI

Each step of the elimination process (or equivalently each transfor-
mation matrix Ti), transforms a column ci into a zeroed column, except
the diagonal element which is equal to 1. This pivot operation can be
decomposed into three operations:

• swapping two rows to ensure than the diagonal element aii is not
zero.

• multiplying the row ci by 1/aii so that aii = 1.
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• for each row j 6= i, subtracting aji times the row i so that aij is now
zeroed.

Swapping rows to ensure that the eliminated coefficient aii is the
largest possible provides good numerical stability compared to a more
naive swapping. Columns swapping can also be used with/in place of
row swapping to choose the next pivot. However, while row swapping
corresponds to interchanging equations, column swapping corresponds to
interchanging variables. Thus the computed matrix will be the inverse of
A scrambled by column. The original order can be restored with minimal
bookkeeping.

2.3 Gauss-Seidel

Gauss-Seidel is an iterative method to solve linear system of equations.
Given a system Ax = b, where A is an n × n matrix, the Gauss-Seidel
algorithm starts from an initial guess of values for x, x(0). In iteration k
the algorithm It then repeatedly computes a new value x

(k)
1 , . . . , x

(k)
n for

each variable in x in term using the most up to date values available using
the following formula:

x
(k)
i :=

b −
P

j<i
aijx

(k)
j −

P
j>i

aijx
(k−1)
j

aii

The algorithm continues until convergence or some iteration limit is reached.
In order to improve or accelerate the convergence of the algorithm, a trans-
formation is usually applied to the system before beginning the iterations.
This is generally done by multiplying the original system Ax = b by a
suitable matrix, or preconditioner, P . to obtain the system PAx = Pb.
A preconditioner aims to make the matrix diagonally dominant, that is
where ∀i∀j.|(PA)ii| > (PA)ij and ∀i∀j.|(PA)ii| > (PA)ji.

The Interval Gauss-Seidel method solves interval system of equations
Ax = b using the same algorithm as Gauss-Siedel but with interval arith-
metic. Hence starting from initial (large) intervals x(0) the iterative pro-
cess computes

x
(k)
i := x

(k−1)
i ∩

b −
P

j<i
aijx

(k)
j −

P
j>i

aijx
(k−1)
j

aii

(1)

Note that this equation does nothing when 0 ∈ aii since the left hand side
of the intersection is the widest possible interval.

In infinite precision, Interval Gauss-Seidel would converge to the hull of
solutions on a linear system with a diagonally dominant matrix [11], while
in practice a slightly larger hull is obtained due to outward rounding. As
in the non-interval case a preconditioner is used to improve convergence on
general systems. The most widely used preconditioner, often considered
optimal, is the midpoint inverse of A [7]:

Ã
−1

= (mid(aij))
−1

Ã
−1

can be computed approximatively using floating-point inversion al-
gorithms, such as Gauss-Jordan elimination or LU decomposition. Pre-
conditioning involves O(n3) interval multiplications, thus the resulting
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system will have a wider hull than the original one. An inconsistent sys-
tem of equation may become consistent after preconditioning due to the
widening, however completeness is guaranteed: all solutions of the original
system are solutions of the preconditioned one (comes from Definition 1).

The coefficient matrix Ã
−1

A resulting from this preconditioning is
a matrix whose diagonal elements are centered around one, while non-
diagonal elements are centered around zero. When the initial coefficient
matrix A is a floating-point matrix, the width of the coefficients after
preconditioning results from rounding during computations. We may then
expect these intervals to be tight and we will refer to them as quasi-zeros
for non-diagonal coefficients and quasi-ones for diagonal coefficients. We
will refer to the resulting matrix as a quasi-identity matrix.

2.4 Linear constraint propagators

Constraint propagation engines maintain a domain of possible values for
each variable, and apply propagators to narrow the domain of possible
values. Propagators are functions from domains of possible values to
domains of possible values. Propagators for linear constraints in finite
domain solvers typically perform bounds(R) propagation [2]. This relies
only on the bounds of the variables, and furthermore does not make use
of integrality, since doing so, bounds(Z) propagation, is NP-hard. Since
propagation only relies on bounds we can represent a domain of possible
value for each variable x1, . . . , xn as a box d = d1 × · · · × dn where
xi ∈ di. In this framework a propagator for a constraint c is a function
c :: IR

n → IR
n.

The bounds(R) propagator for c ≡ a1x1 + · · · anxn ≤ a0 is defined as
c(d) = d′ where

d′
i :=

h
inf di, min{sup di, sup(

a0−
P

j 6=i ajdddj

ai
)}

i
if ai > 0

d′
i :=

h
max{inf di, inf(

a0−
P

j 6=i ajdddj

ai
)}, supdi

i
if ai < 0

d′
i := di if ai = 0

Bounds(R) propagation for the equality c ≡ a1x1 + · · · anxn = a0 just
combines the propagators for c≤ ≡ a1x1+· · · anxn ≤ a0 and c≥ ≡ −a1x1−
· · · anxn ≤ −a0. The propagator for c is defined as c(d) = c≤(d)∩ c≥(d),
or equivalently (for ai 6= 0)

d
′
i := di ∩

a0 −
P

j 6=i ajdj

ai

(2)

We can extend bounds(R) to interval constraints a1x1+ · · ·anxn ≤ a0

and a1x1 + · · ·anxn = a0 in the natural way. Note that the interval
bounds(R) propagator is completely analogous to that shown in Equa-
tion 1, where d takes the role of x. Hence bounds(R) propagation of
equalities can be considered as a form of interval Gauss-Seidel computa-
tion. The differences arise in the freedom that bounds propagation has
in picking which propagator to run next, wherease Gauss-Seidel executes
them in a particular order.
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In this paper we will be interested in the case of bound(R) propa-
gation over integer linear constraints. This only requires a small addi-
tion. After each bounds propagation, the endpoints of each domain of
an integer variable xi are rounded inward to the nearest integer: hence
di := [⌈inf di⌉, ⌊supdi⌋] for each integer xi.

A domain d is a fixpoint for constraint c if c(d) = d. A domain is a
fixpoint for a set of constraints C if it is a fixpoint for all of them.

Example 5 Consider the integer variables x1, x2, x3, with the domains
d1 = d2 = d3 = [−10, 10], and the following linear constraints:

C1 :

2
4

5 3 4
−1 2 −2

1 −1 2

3
5

2
4

x1

x2

x3

3
5 =

2
4

0
7

−2

3
5

Applying the propagator for c≤ ≡ 5x1 + 3x2 + 4x3 ≤ 0 we determine
sup((a0 −

P
j 6=i

ajdj)/ai) is (0 − 3 ×−10 − 4 × −10)/5 = 70/5 = 14 for
i = 1, (0 − 5 × −10 − 4 × −10)/3 = 90/3 = 30 for i = 2, and (0 − 5 ×
−10 − 3 ×−10)/4 = 80/4 = 20 for i = 3. Since these bounds are smaller
than the current value 10 there is no change. Applying the propagator for
c≥ ≡ −5x1 − 3x2 − 4x3 ≤ 0 we determine inf((a0 −

P
j 6=i

ajdj)/ai) is
(0 − (−3) × 10− (−4) × 10)/ − 5 = 70/ − 5 = −14 for i = 1, (0− (−5) ×
10 − (−4) × 10)/ − 3 = 90/ − 3 = −30 for i = 2, and (0 − (−5) × 10 −
(−3)×10)/−4 = 80/−4 = −20 for i = 3. Again none of these bounds are
greater than the current bound −10 so there is no change. Propagation
for the other equations likewise does not change the domain d. Hence d

is a fixpoint of C1.
Applying the midpoint inverse preconditioner yields the interval con-

straint system:

C′
1 :

2
4

b1 b0 b0
b0 b1 b0
b0 b0 b1

3
5

2
4

x1

x2

x3

3
5 =

2
4

−b7
b5
b5

3
5

In double precision floating-point arithmetic, each interval ba of this system
has a width smaller than 10−10. Given any reasonable domains, these
constraints fix the values of x1, x2 and x3 during the first iteration to −7,
5 and 5 respectively.

3 Gauss-Jordan elimination

We can use Gauss-Jordan elimination to precondition systems of linear
integer equalities to improve the propagation strength. Note that the
use of interval arithmetic is required here because using integer/rational
arithmetic causes the coefficients to explode.

3.1 Rectangular systems

Many constraint programming problems contain linear equalities, however
the number of linear constraints may be less than the number of variables
involved in these constraints. In this case only a partial Gauss-Jordan
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elimination [1] is performed, which may still lead to better propagation.
That partial elimination consists of eliminating as many variables as pos-
sible by applying a square pseudo inverse to the system (see Example
6).

Given an m×n matrix A, with m the number of equations and n ≥ m
the number of variables, the result of the preconditioning of a system
Ax = b is a system (Im A′)x = b′, where Im is a quasi-identity matrix.
This is a set of interval equations which can be posted to the constraint
system as new propagators. Note these constraints never eliminate a
solution of the original system Ax = b, but may admit more solutions
than the original system due to inaccuracies in floating point arithmetic.
Hence we add these new interval propagators in addition to the original
propagators.

Example 6 Consider the preconditioning of the last two equations of the
constraint C1:

C2 :

»
−1 2 −2

1 −1 2

– 2
4

x1

x2

x3

3
5 =

»
7

−2

–

Let us compute the pseudo inverse of the coefficient matrix:

»
−1 2 −2

1 −1 2

– 2
4

x11 x12

x21 x22

x31 x32

3
5 =

»
1 0
0 1

–

we pick a1,3 as the first pivot, so we do a column permutation:

»
−2 2 −1

2 −1 1

– 2
4

x31 x32

x21 x22

x11 x12

3
5 =

»
1 0
0 1

–

we scale the first row by 1/a11 = −1/2:

»
1 −1 0.5
2 −1 1

– 2
4

x31 x32

x21 x22

x11 x12

3
5 =

»
−0.5 0

0 1

–

we subtract a12 = 2 times the first row from the second:

»
1 −1 0.5
0 1 0

– 2
4

x31 x32

x21 x22

x11 x12

3
5 =

»
−0.5 0

1 1

–

we now pivot on a22 = 1. Since it is already on the diagonal and equal to
1, we just subtract a12 = −1 times the second row from the first.

»
1 0 0.5
0 1 0

– 2
4

x31 x32

x21 x22

x11 x12

3
5 =

»
0.5 1

1 1

–

Note that we can perform all the above computation using floating point
arithmetic rather than safe interval arithmetic, since we are seeking only
a preconditioner, rather than an accurate inverse.
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We then apply the preconditioner to the system using interval arith-
metic to get a safe preconditioned system C′

2:

»
0.5 1

1 1

– »
−1 2 −2

1 −1 2

– 2
4

x3

x2

x1

3
5 =

»
0.5 1

1 1

– »
7

−2

–

» b1 b0 c0.5
b0 b1 b0

– 2
4

x3

x2

x1

3
5 =

» c1.5
b5

–

The original constraints will again not perform any pruning on the domain
d of Example 5 whereas the redundant constraints introduced by C′

2 will
create a fixpoint d′ where d′

1 = [−9, 9], the d3 = [−3, 6], and d2 = [5, 5].
Any further changes in the domain of x1 and x3 will strong propagate to
the other variable using the first interval equality.

Note however that partial Gauss-Jordan elimination can result in costly
propagators providing weak information if applied to a system of m equa-
tions and n variables where n ≫ m. In the worst case, performing a
partial Gauss-Jordan elimination on such a system results in a system of
m equations, each with (n−m) + 1 non quasi-zero coefficients. If n ≫ m
and if the original equations each involve on average k variables where
k ≪ n, it is unlikely that we will gain stronger information from precon-
ditioning, while each resulting propagator will have an execution cost in
O(n − m) as opposed to O(k) on average for the original propagators.

Example 7 Consider the system x1 + x2 + x3 = 0 ∧ x1 + x4 + x5 =
0 ∧ x5 + x6 + x7 = 0. Preconditioning this system results in the system
x1 + x2 + x3 = 0∧ x4 + x5 − x2 − x3 = 0∧x6 + x7 − x4 + x2 + x3 = 0. No
information is gained from the resulting, more expensive, propagators.

Finally we should discuss the possibility of overconstrained systems.
If n < m then preconditioning the system Ax = b results in a system„

In

Z

«
x = b′, where In is a quasi-identity matrix and Z is matrix of

quasi-zeros. This may either immediately result in unsatisfiability being
detected or if the original system was linearly dependent results in interval
equations of the form b0x1 + · · · + b0xn = b0. No useful propagation is ever
likely to occur from such constraints so they can be omitted.

3.2 Gauss-Jordan elimination and inequalities

Linear inequalities can be used during Gauss-Jordan elimination, since a
linear inequality can be written as an equality constraint by adding a slack
variable. However, this is usually less efficient as an inequality constraint
can be satisfied (and thrown away) before its variables are ground, which
is not true for an equality constraint. Furthermore, using an inequality
for pivoting makes the slack variable of this inequality appears in other
constraints, which will almost certainly provide very weak propagation.

However, it is still possible to efficiently apply Gauss-Jordan elimina-
tion to a system with linear equalities and inequalities as long as inequal-
ities are not chosen for pivoting.
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Let us consider a system Ax = b ∧ Cx ≤ d of mA equalities and mC

inequalities. We can rewrite this system by introducing mC slack variables
s:

„
ImC C
0 A

« „
s
x

«
=

„
d
b

«

where ImC is the mC × mC identity matrix. This system has the form
of a general system of equations after mC pivoting steps, and we can
start variable elimination at the mC + 1 row. The result of the next mA

eliminations is:
„

ImC Z C ′

0 ImA A′

« „
s
x

«
=

„
d′

b′

«

where ImA is a quasi-identity matrix and Z is a matrix of quasi-zeros. We
can then go back to a reduced system with both equalities and inequalities
by removing the unchanged slack variables coefficients submatrix.

(Z C ′)x ≤ d′ ∧ (ImA A′) x = b′.

Example 8 Consider the system C3 = C2 ∧ 5x1 + 3x2 + 4x3 ≤ 0. We
can transform this system into a system of linear equalities by adding a
slack variable s:

C4 :

2
4

1 5 3 4
0 −1 2 −2
0 1 −1 2

3
5

2
664

s
x1

x2

x3

3
775 =

2
4

0
7

−2

3
5

The preconditioner computed by following the sames steps as in Example 6
is: 2

4
1 −5 −7
0 0.5 1
0 1 1

3
5

A partial elimination performed on C4 gives us the system

C′
4 :

2
4

1 b0 b0 b3
0 b1 b0 c0.5

0 b0 b1 b0

3
5

2
664

s
x3

x2

x1

3
775 =

2
4

d−21
b3
b5

3
5

Note that since we don’t use the slack variables for pivoting they will ap-
pear in the same order as originally while other variables may have been
permuted. Since s is a non-negative slack variable, we replace the first
equality by an inequality, leading to the constraint C′′

4 = C′
2 ∧ b3x1 ≤ d−21.

Again this gives strong information, with the domain of x1 reduced to
[−9,−7], the domain of x3 reduced to [5, 6] and x2 fixed to 5.

3.3 Quasi-zeros elimination

The result of Gauss-Jordan elimination on a system of equations Ax = b
with m equations and n ≥ m variables is a system (Im A′) x = b′ where
Im is a m × m quasi-identity matrix. In the case of a floating-point

10



matrix A ∈ F
n×m, we may expect the quasi-zeros of Im to be very tight

intervals, as they are the result of outward roundings performed during
Gauss-Jordan elimination.

Given an interval equation c ≡
P

i=1...n
aixi = a0, let Q be the subset

of {1, . . . , n} such that {ai | i ∈ Q} are quasi-zeros.
Rewriting the propagator for the interval equation (Equation 2) to

separate out quasi-zeroes we obtain. The propagator for c is defined as
c(d) = d′ where (for i 6∈ Q)

d
′
i := di ∩

a0 −
P

j 6∈Q,j 6=i
ajdj −

P
j∈Q,j 6=i

ajdj

ai

(3)

Given the assumption that the quasi-zeros are tight and that we have
reasonable initial bounds for each variable, then:

˛̨
˛̨
P

k∈Q akdk

ai

˛̨
˛̨ ≪ 1.

Hence we can replace this expression by its initial value, v =
P

k∈Q akdinit

k

ai

where dinit is the original domain of variables. The result is the interval
equation

P
i=1...n,i6∈Q aixi = a0 − v. Thus the variables with quasi-zero

coefficients are eliminated.

3.4 Going back to integers

Using an external interval solver may be an issue for FD solvers, for effi-
ciency or portability considerations. Obviously, interval constraints need
to be available, at least for linear equality constraints. One also needs
a way to channel information between the finite domain and the interval
solvers. Secondly, whereas it is easy to write portable rounding functions
for the arithmetic operators used for the Gauss-Jordan elimination, this is
not true for other mathematical functions, making interval solvers more
hardware dependent than most FD solvers. And finally, integer opera-
tions and constraints are still faster than their floating-point or interval
counter-part. That is why we present in this paper a way to use Gauss-
Jordan elimination as a preprocessing step leading to posting redundant
integer constraints.

Given an interval linear equation c ≡
P

aixi = a0, where the variables
xi are n integers taking values in the box d = d1 × · · · × dn, and given
2n integers {a1, . . . , an} and {b1, . . . , bn}, the constraint a0 +

P
aixi ≤

a0∧
P

bixi ≥ b0 where a0 = ceil(a0+
P

(ai − ai)di) and b0 = floor(a0−P
(bi − ai)di) is a safe approximation of c. Indeed ∀x ∈ d,

P
aixi−a0 ≤P

aixi − a0 ≤
P

bixi − b0.
In order to get a tight approximation for the left inequality, the values

{a1, . . . , an} are chosen so that the difference diff l(x) =
P

aixi − a0 −
(
P

aixi − a0) is small for x ∈ d.

diff l(x) =
X

(ai − ai)xi − a0 + ceil(a0 +
X

(ai − ai)di)

≈ a0 − a0 +
X

((ai − ai)xi − ceil(ai − ai)di))

11



This last expression is minimized over d by choosing each ai as the
integer value k ∈ [⌊ai⌋, ⌈ai⌉] which minimizes

min(|(k − ai)di − ceil((k − ai)di)|).

In order to avoid overflow when going back to integers, we may need
to multiply the original equation

P
aixi = a0 by a suitable value β:

X
a
′
ixi = a

′
0 where a

′
i = βai, i ∈ 0, . . . , n

However, we choose the largest β which does not cause overflow, if
possible β ≫ 1, in order to lose as little information as possible when
rounding to integers values, as illustrated by the following example.

A similar reasoning is applied to choose the coefficients bi for the right
inequality

P
bixi ≥ b0 similarly.

Example 9 Consider the preconditioned system C′
2 of example 6, with

the initials domains [−10, 10]:

C′
2 :

» b1 b0 c0.5
b0 b1 b0

– 2
4

x3

x2

x1

3
5 =

» c1.5
b5

–

The equation c0.5x1 + b1x3 = c1.5 rounded to integers provides the inequali-
ties x1 +x3 ≥ −4 and x1 + x3 ≤ 7, which do not prune the domains of x1

and x3. If we first multiply the equality terms by, for example, 100, we get
the new equality c50x1 + d100x3 = d150. This equality provides the inequal-
ities 50x1 + 100x3 ≥ 149 and 50x1 + 100x3 ≤ 151. This information is
strong enough to get the same pruning as the original equation: at fixpoint
the domain of x1 is reduced to [−9, 9] while the domain of x3 is reduced to
[−3, 6]. In the same way, for the second equation we get x2 ≥ 4 ∧ x2 ≤ 6
with the original equation and 100x2 ≥ 499 ∧ 100x2 ≤ 501 (i.e. x2 = 5) if
we multiply the original equation by 100.

4 Partial Fourier elimination

Linear inequalities are even more common than linear equalities in FD
solving. So far, we have seen how to generate strong propagators from a
set of equalities using Gauss-Jordan elimination. Elimination schemes, for
example Fourier elimination [5] are also available for systems of inequal-
ities, and an interval arithmetic implementation of such a scheme allows
us to generate sound propagators, in a fashion similar to what we have
done with equalities.

While Gauss-Jordan elimination generates only m equalities given m
original constraints, Fourier elimination may lead to the generation of
an exponential number of inequalities on general systems. This makes it
unusable in practice, especially as we are trying to generate propagators,
which are going to run until the problem is solved. As our objective is not
to use the Fourier algorithm as a solver but only as a preconditioner that
provides valid redundant inequalities, we weaken it by keeping a finite
pool of constraint during generation.

12



4.1 Interval Fourier elimination

Given two inequalities c1 ≡
P

aixi ≤ a0 and c2 ≡
P

bixi ≤ b0, with
ak > 0 and bk < 0, the elimination of xk from these inequalities produces
the inequality c1×2,k ≡

P
i6=k

(ai + bi(−ak/bk))xi ≤ a0 + b0(−ak/bk).

Given a set of inequalities C, let C+
i be the subset of all inequalities with

a strictly positive i-th coefficient and C−
i the subset of all inequalities with

strictly negative i-th coefficient. C0
i is the subset of all inequalities of C

that do not contain xi. A Fourier elimination step consists of performing
elimination on all pairs from C+

i ×C−
i , for a given i, which generates a set

of new inequalities C+
i ⊗ C−

i .
The full Fourier elimination algorithm can then be defined as an iter-

ation over the n variables:

• C0 = C

• ∀i ∈ 1 . . . n, Ci = (Ci−1)
0 ∪ (Ci−1)

+
i ⊗ (Ci−1)

−
i

While the Fourier elimination algorithm is in general used to find solutions
to a system of inequalities we consider it as an inequality generator, from
which we extract good propagators.

The Fourier elimination algorithm performed using floating point arith-
metic is in practice neither sound nor complete rounding-errors during
elimination can produce systems of inequalities which reject some solu-
tions of the original system or accept values which violate the original
systems. Applying the same reasoning to a system of interval inequalities,
using interval arithmetic, produces on the other hand a complete system
of inequalities. Working with intervals, a variable may not be completely
eliminated anymore. Indeed applying a step similar to a Fourier elimina-
tion step but with interval arithmetic produces inequalities with one or
more coefficients containing zero (coefficients are now intervals). Whereas
in a Fourier elimination step, inequalities are split between positive, nega-
tive and zeros coefficients for a given variable, in a quasi-elimination step
inequalities are split between strictly positive, strictly negative and quasi-
zeros coefficients for that same variable. For a given constraint, no further
elimination is possible on variables with quasi-zeros coefficients.

Interval Fourier elimination leads to safe constraints (that are guaran-
teed to be logical consequences of the original system of inequalities). Just
as with Gauss-Jordan elimination, we can use quasi-zero elimination to
eliminate quasi-zeros and then convert these back to integer inequalities
in a manner analogous to that described in Section 3.4

Example 10 Consider the following inequalities where the domains of
the variables are [−10, 10]:

x +u ≤ 1
−3x +y +2z ≤ 3
−3x −v −2z ≤ 6

The interval Fourier elimination of x results in

d1/3y +d2/3z +u ≤ b2
−̂1/3v + −̂2/3z +u ≤ b3

13



The interval Fourier elimination of z result in

d1/3y + −̂1/3v +b0z +2u ≤ c5.0

Note that z is not actually eliminated!
We can use quasi-zero elimination to safely eliminate z obtaining:

d1/3y + −̂1/3v + 2u ≤ c5.0 − b0 × [−10, 10] where the right hand side
interval has been slightly weakened. This allow us to reduce the domain of
u to [−10, 5].

We can go back to integers by rounding eveything down to arrive at
0y − 1v + 2u ≤ 15, which only reduces the domain of u to [−10, 7]. Again
we can do better if we first multiply the coefficients by 1000, we obtain
333y − 334v + 2000u ≤ 5010, which reduces the domain of u to [−10, 5].

4.2 A partial Fourier-elimination

Fourier elimination is exponential in the number of generated inequalities
in general, in particular intermediate inequalities. In order to avoid this
behavior, we perform a Fourier-like elimination on a finite size pool of
inequalities. Given a set of inequality constraints C, and a variable xi, we
generate Ci by applying a normal Fourier elimination step. Then, we keep
at most k inequalities from C ∪ Ci as well as the original ones. We iterate
on all variables.

Using a greedy approach to generate linear propagators from a partial
Fourier elimination, we need a measure of the propagation effectiveness
of the generated inequalities. Recall that the effect of propagator for the
inequality c ≡

P
aixi ≤ a0 on xi is:

d′
i ≤ max(

a0 −
P

j 6=i
ajdj

ai

)

if ai > 0, and

d
′

i ≥ min(
a0 −

P
j 6=i

ajdj

ai

)

if ai < 0. We can measure the propagation strength of the c for the
variable xi by using the initial domains dinit of the variables. Hence the

propagation strength of c is max(
a0−

P

j 6=i ajd
init

j

ai
) if ai > 0 and similarly

min(
a0−

P

j 6=i ajd
init

j

ai
) if ai < 0.

Our heuristic for generating strong inequalities through Fourier elim-
ination is as follows. We begin with the initial g inequalities as the pool.
We measure the propagation strength og each inequality for each variable
xi and record the inequality and strength of the strongest inequality for
each variable in each direction (lower bounding and upper bounding).

We try eliminating each variable xi in turn by Fourier elimination
from the pool. For each generated constraint we measure the propagation
strength on each variable, and if better than the current recorded strength,
we replace the inequality and strength for this variable and direction.
After trying to eliminate each variable from the current pool, the pool
becomes the 2n inequalities that give the best propagation strength for
some variable and direction.
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The algorithm repeats until the pool stabilises.
Note that since we use the initial domain dinit to determine propaga-

tion strength, later in search when the domain has tightened considerably
the heuristically chosen propagators may not be that effective. Using the
generated constraints to reduce domains as we generate them introduced
an overhead while providing little to no pruning given the initial domains
and this was removed from the algorithm.

5 Experimental results

The finite domain solver and the interval solver used for the experiments
are implemented in Mercury [9]. The interval solver uses the Gaol [6]
interval library. Static search strategies with a fixed variable selection
strategy and fixed value selection strategy were used for all experiments
since the purpose is to compare propagation strength. All variations find
the same first solution. The tests were performed on a Pentium 4 1.60GHz
running Linux(Sarge).

5.1 Gauss-Jordan elimination

We use variations on well known benchmarks which have dense systems
of linear equalities. eq10 is a well known FD benchmark, involving 7 vari-
ables and 10 linear equalities. magic-square-n is a scalable arithmetic
puzzle involving 2n+2 linear equalities, n2 variables and an alldifferent

constraint. alpha, crypta, crypta-magic-sqr, and crypta-magic-sqr2

are cryptarithmetic puzzles instances involving an alldifferent con-
straint and respectively 20, 3, 7, and 8 linear equalities and 26, 10, 10,
and 11 variables. overlap-a is a problem consisting of 3 copies of alpha

sharing few variables. The problem is handled as a whole system of equa-
tions whereas in partial-overlap-a each alpha copy is pre-processed
separately. alpha-rev is the same as alpha but the labeling order of the
variables is the inverse of the original one. ineq-alpha-rev is the same
problem as alpha-rev with 3 redundant linear inequalities involving many
of the variables (9,9 and 8) added. In ineq-alpha-rev Gauss-Jordan elim-
ination is only performed on equalities whereas it is also performed on
inequalities for ineq-alpha-rev2.

We compare 5 versions of the problems: fd finite domain propagation
fd on the original constraints; ic finite domain propagation with the
addition of preconditioned interval constraints; ic-qz with the addition
of preconditioned interval constraints after quasi-zero elimnination; ii

finite domain propagaion with the addition of integer inequalities arising
from the preconditioned interval constraints; and ii-qz) with the addition
of integer inequalities arising from the preconditioned interval constraints
after quasi-zero elimination. Table 1 and Table 2 shows the comparative
times (including all preconditioning and transformation times) and the
number of failures for finding the first solution for each of the various
methods. We use a fixed labeling order to ensure that the searches are
only modified by better pruning. The entry +∞ indicates no solution in
15 minutes.
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Times(ms)
Problem fd ic ic-qz ii ii-qz

eq10 23 10 9 14 11
alpha 277 34 18 15 14
alpha-rev +∞ 79790 28600 5650 5500
ineq-alpha-rev +∞ 79320 29050 6020 5900
ineq-alpha-rev2 +∞ 7110 3390 450 430
overlap-a 2470 540 290 270 270
partial-overlap-a 2470 95 55 48 44
crypta 2 6 5 4.4 4
crypta-magic-sqr 78 4 4 2 3
crypta-magic-sqr2 39 4 4 4 4
magic-square-5 408 7250 930 440 450

Table 1: Gauss-Jordan elimination: comparative execution times

Failures
Problem fd ic ic-qz ii ii-qz

eq10 54 0 0 0 0
alpha 9726 4 4 4 4
alpha-rev +∞ 51639 54098 53709 53709
ineq-alpha-rev +∞ 51214 53914 52380 52380
ineq-alpha-rev2 +∞ 3705 6069 3705 3705
overlap-a 77980 4 4 4 4
partial-overlap-a 77981 4 4 4 4
crypta 85 81 81 81 81
crypta-magic-sqr 2946 9 9 9 9
crypta-magic-sqr2 1880 2 2 2 2
magic-square-5 8207 4339 8207 8207 8207

Table 2: Gauss-Jordan elimination: comparative numbers of failures
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One can see that the time is substantially reduced as soon as we use
add preconditioned interval constraints, and quasi-zero elimination can
also give dramatic improvements. The move to integer inequalities is al-
ways worthwhile, except for the smallest example eq10 where the overhead
of three propagators for one original constraint is not repaid. Note the
mapping to integer inequalities reduces the benefits of quasi-zeros elimina-
tion. ineq-alpha-rev2 shows that applying the approach to inequalities
is also beneficial. partial-overlap-a illustrates that handling dense sub-
systems independently can be worthwhile.

Our approach is advantageous when the system after preconditioning
has not too many more non-(quasi-)zero coefficients than the original sys-
tem. Then the better pruning can substantially reduce search. In the case
of non-dense systems such as magic-square-n, the resulting systems have
many more non-zero coefficients, and create weak propagators that gain
no benefit and may cost significantly.

5.2 Fourier elimination

We were unable to find standard FD problems with collections of dense
linear inequalities with both positive and negatice coefficients (which is
required for Fourier elimination). To test partial Fourier elimination we
use a set of dense problems with randomly generated coefficients. For
all problems, variables take values in the range [−10, 10]. s is the seed
value used to initialize the random number generator, n is the number
of variables, g the number of inequalities, [l, h] the range of the coeffi-
cients. [dl, dh] is the range of the distance between an inequality and a
randomly generated solution. Thus dl must be positive to guarantee than
the generated problem has a solution. For optimization problems, the
first sequence of coefficients represent the objective function rather than
a regular inequality.

5.2.1 Effect of Fourier elimination

We compare standard finite domain propagation on the original system
(fd) versus using the same solver on the system resulting by performing a
partial interval Fourier elimination to generate interval linear constraints
which are then transformed to finite domain linear constraints (fourier).

Table 3 compares times (all Fourier elimination preprocessing time is
included in the time reported for fourier) and failures with and without
Fourier preprocessing for instances with at least 1000 failures for the basic
finite domain propagator. Note that preprocessing can only reduce the
number of failures. Some of the generated problems were trivially solved
without preprocessing. For these cases, preprocessing generally does not
reduce the number of failures. On the other hand, the overhead of the
2n new inequalities slows down the system by a factor of around 2 to 4.
When the problems are hard enough, preprocessing the system is nearly
always beneficial for this set of problems. The stronger propagation caused
by the added inequality propagators reduces the search space enough to
compensate for the overhead of running 2n linear inequalities propagators
in addition to the g original ones.
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Times(ms) Failures
Problems fd fourier fd fourier

s7 n8 g4 l-1 h1 dl10 dh20 40 40 2567 1279
s5 n8 g8 l-1 h1 dl10 dh20 2720 2000 199256 74056
s9 n8 g8 l-1 h1 dl10 dh20 334510 10 24882113 18
s4 n12 g6 l-3 h3 dl20 dh40 2250 150 62266 2044
s6 n12 g6 l-3 h3 dl20 dh40 8440 7850 471987 256601
s7 n12 g6 l-3 h3 dl20 dh40 1950 1580 66457 23524
s8 n12 g6 l-3 h3 dl20 dh40 110 40 6394 1388
s9 n12 g6 l-3 h3 dl20 dh40 530 470 16752 4015
s1 n12 g6 l-1 h1 dl5 dh10 2300 670 168268 17979
s1 n12 g6 l-1 h1 dl5 dh20 80 190 5380 4499
s3 n12 g6 l-1 h1 dl5 dh10 50 20 2813 302
s3 n12 g6 l-1 h1 dl5 dh20 30 20 1099 406

Table 3: Fourier elimination: comparative times and failures

Failures
Problems random fourier

s7 n8 g4 l-1 h1 dl10 dh20 1279 1279
s5 n8 g8 l-1 h1 dl10 dh20 139574 74056
s9 n8 g8 l-1 h1 dl10 dh20 18 18
s4 n12 g6 l-3 h3 dl20 dh40 53930 2044
s6 n12 g6 l-3 h3 dl20 dh40 238688 256601
s7 n12 g6 l-3 h3 dl20 dh40 54294 23524
s8 n12 g6 l-3 h3 dl20 dh40 6394 1388
s9 n12 g6 l-3 h3 dl20 dh40 15294 4015

Table 4: Failures with our heuristic or a random one

5.2.2 Evaluating the heuristic

At each step of elimination, we keep at most 2n inequalities, by using our
heuristic for each bound of the n variables. The number of inequalities
kept may be less than 2n as the same inequality can be the best for two
different heuristics. In Table 4 we compare the number of failures between
using this heuristic (fourier) to select the inequalities versus selecting
an inequality randomly for each bound from those that can enforce the
bound (random). This random inequality is chosen among the inequalities
with positive i-th coefficient for the upper bound of the i-th variable and
negative coefficient for the lower bound of the i-th variable. The failures
alone are given since the times are tightly related to the failures, as the
number of constraints in each case is (almost) the same.

Clearly the heuristic achieves much better results in general than a
random choice. As it is only a heuristic, there are a few cases where a
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random choice may give better results.

6 Conclusion

We have shown how we can use Gauss-Jordan elimination and Fourier
elimination to improve the propagation of linear constraints. Our ap-
proach offers substantial benefits when propagating dense linear systems.
Correctness is guaranteed since we only generate safe redundant con-
straints. Mapping back to integer constraints allows to use our precondi-
tioning techniques with existing optimized finite domain solvers, while the
preconditioning only requires a small set of interval arithmetic operations
to be available.

There are a number of avenues of further work. Knowing when the
elimination approaches will lead to significant gain is an interesting ques-
tion. For Gauss-Jordan elimination this is sometimes clear by exam-
ining density, for Fourier elimination it is less obvious. The example
partial-overlap-a shows that it is worth finding independent dense sub-
systems, so detecting these efficiently is clearly of interest. Developing
good heuristics for choosing dense subsystems for elimination is clearly
an interesting topic for further research.

In this work we have restricted attention to the case when precondi-
tioning is applied once before search begins. Clearly as search progresses
the problem can change its neature drastically by fixing variables and re-
ducing domains of variables. It may well be worth preconditioning later in
the search, because the remainng constraints may ave become more dense
and/or the domains of variable may have shrunk so that the inequalities
that propagate most strongly could have changed substantially. This is
another avenue that coudl do with further investigation.
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