
Optimal Automatic Table Layout

Graeme Gange
Dept of CSSE

University of Melbourne
Vic. 3010, Australia
ggange@cs.mu.oz.au

Kim Marriott and
Peter Moulder

Clayton School of IT
Monash University
Vic. 3800, Australia

{kim.marriott,peter.moulder}@monash.edu

Peter Stuckey
Dept of CSSE

University of Melbourne
Vic. 3010, Australia

pjs@cs.mu.oz.au

ABSTRACT
Automatic layout of tables is useful in word processing ap-
plications and is required in on-line applications because of
the need to tailor the layout to the viewport width, choice
of font and dynamic content. However, if the table contains
text, minimizing the height of the table for a fixed maximum
width is a difficult combinatorial optimization problem. We
present three different approaches to finding the minimum
height layout based on standard approaches for combinato-
rial optimization. All are guaranteed to find the optimal
solution. The first is an A?-based approach that uses an
admissible heuristic based on the area of the cell content.
The second and third are constraint programming (CP) ap-
proaches using the same CP model. The second approach
uses traditional CP search, while the third approach uses a
hybrid CP/SAT approach, lazy clause generation, that uses
learning to reduce the search required. We provide a de-
tailed empirical evaluation of the three approaches and also
compare them with two mixed integer programming (MIP)
encodings due to Bilauca and Healy.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Format and notation, Photocomposition/typesetting

General Terms
Algorithms

Keywords
automatic table layout, constrained optimization, typography

1. INTRODUCTION
Tables are provided in virtually all document formatting

systems and are one of the most powerful and useful de-
sign elements in current web document standards such as
(X)HTML, CSS and XSL. For on-line presentation it is not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

practical to require the author to specify table column widths
at document authoring time since the layout needs to ad-
just to different width viewing environments and to different
sized text since, for instance, the viewer may choose a larger
font. Dynamic content is another reason that it can be im-
possible for the author to fully specify table column widths.
This is an issue for web pages and also for VDP in which
improvements in printer technology now allow companies to
cheaply print material which is customized to a particular re-
cipient. Good automatic layout of tables is therefore needed
for both on-line and VDP applications and is useful in many
other document processing applications since it reduces the
burden on the author of formatting tables.

However, automatic layout of tables that contain text is
computationally expensive. Anderson and Sobti [1] have
shown that table layout with text is NP-hard. The reason
is that if a cell contains text then this implicitly constrains
the cell to take one of a discrete number of possible config-
urations corresponding to different numbers of lines of text.
It is a difficult combinatorial optimization problem to find
which combination of these discrete configurations best sat-
isfies reasonable layout requirements such as minimizing ta-
ble height for a given width.

Table layout research is reviewed in Hurst, Li & Mar-
riott [7]. Starting with Beach [3], a number of authors
have investigated automatic table layout from a constrained
optimization viewpoint and a variety of approaches for ta-
ble layout have been developed. Almost all approaches use
heuristics and are not guaranteed to find the optimal solu-
tion. They include methods that use a desired width for
each column and scale this to the actual table width [17, 6,
2], methods that use a continuous linear or non-linear ap-
proximation to the constraint that a cell is large enough to
contain its contents [1, 4, 9, 8, 11], a greedy approach [9]
and an approach based on finding a minimum cut in a flow
graph [1].

In this paper we are concerned with complete techniques
that are guaranteed to find the optimal solution. While
these are necessarily non-polynomial in the worst case (un-
less P=NP) we are interested in finding out if they are prac-
tical for small and medium sized table layout. Even if the
complete techniques are too slow for practical use, it is still
worthwhile to develop complete methods because these pro-
vide a benchmark with which to compare the quality of lay-
out of heuristic techniques. For instance, as shown in Fig-
ure 1 we can use the minimal height layouts computed with
our algorithms to evaluate the quality of the automatic table
layout algorithm recommended for HTML.

Figure 1: Example table comparing layout using
Mozilla (on the left) with the minimal height lay-
outs (on the right).

We know of only two other papers that have looked at
complete methods for table layout with breakable text. The
first is a branch-and-bound algorithm described in [20], which
finds a layout satisfying linear designer constraints on the
column widths and row heights. However it is only com-
plete in the sense that it will find a feasible layout if one
exists and is not guaranteed to find an optimal layout that,
say, minimizes table height.1 The second is detailed in a
recent paper by Bilauca and Healy [5]. They give two MIP
based branch-and-bound based complete search for simple
tables.

The first contribution of this paper is to present three
new techniques for finding a minimal height table layout for
a fixed width. All three are based on generic approaches
for solving combinatorial optimization problems that have
proven to be useful in a wide variety of practical applica-
tions.

The first approach uses an A? based approach [18] that
chooses a width for each column in turn. Efficiency of the
A? algorithm crucially depends on having a good conser-
vative heuristic for estimating the minimum height for any
full table layout that extends the current layout. We use a
heuristic that treats the remaining unfixed columns in the
layout as if they are a single merged column each of whose
cells must be large enough to contain the contents of the
unfixed cells on that row. The other key to efficiency is to
prune layouts that are not column-minimal in a sense that
it is possible to reduce one of the fixed column widths with-
out violating a cell containment constraint while keeping the
same row heights.

The second and third approach are constraint program-
ming (CP) [13] approaches. We model the problem us-
ing constraint programming and apply two different solv-
ing technologies to the same model. The second approach
uses traditional CP search, while the third approach uses a
hybrid solving approach, lazy clause generation [16], which
combines CP and SAT technology. The advantages of the
hybrid approach is that during search it learns nogoods that
prevent it from repeating similar search later on, and it
tracks activity of decisions, and uses an automatic search
approach that concentrates on decision which are likely to
lead to early failure. Both these advantages can drastically
reduce the amount of search required.

The second contribution of this paper is to provide an ex-
tensive empirical evaluation of these three approaches as well
as the two MIP-based approaches of Bilauca and Healy [5].
We first compare the approaches on a large body of tables
collected from the web. This comprised more than 2000
tables that were hard to solve in the sense that the stan-
dard HTML table layout algorithm did not find the mini-
mal height layout. Most methods performed well on this set
of examples and solved almost all problems in less than 1
second. We then stress-tested the algorithms on some large
artificial table layout examples. In this case we found that

1Presumably one could minimize table height by repeatedly
searching for a feasible solution with a table height less than
the best solution so far.

the hybrid CP/SAT approach was the most robust approach.

2. BACKGROUND

2.1 The Table layout Problem
We assume throughout this paper that the table of interest

has n columns and m rows. A layout (w, h) for a table is an
assignment of widths, w, to the columns and heights, h, to
the rows where wc is the width of column c and hr the height
of row r. We make use of the width and height functions:

wdc1,c2(w) =
∑c2

c=c1
wc, wd(w) = wd1,n(w),

htr1,r2(h) =
∑r2

r=r1
hr, ht(h) = ht1,m(h)

where ht and wd give the overall table height and width
respectively.

The designer specifies how the grid elements of the table
are partitioned into logical elements or cells. We call this the
table structure. A simple cell spans a single row and column
of the table while a compound cell consists of multiple grid
elements forming a rectangle, i.e. the grid elements span
contiguous rows and columns.

If d is a cell we define rows(d) to be the rows in which d
occurs and cols(d) to be the set of columns spanned by d.
We let

bot(d) = max rows(d), top(d) = min rows(d),
left(d) = min cols(d), right(d) = max cols(d).

and, letting Cells be the set of cells in the table, for each
row r and column c we define

rcellsc = {d ∈ Cells | right(d) = c},
cellsc = {d ∈ Cells | c ∈ cols(d)},

bcellsr = {d ∈ Cells | bottom(d) = r}

Each cell d has a minimum width, minw(d), which is typ-
ically the length of the longest word in the cell, and a min-
imum height minh(d), which is typically the height of the
text in the cell.

The table’s structural constraints are that each cell is big
enough to contain its content and at least as wide as its
minimum width and as high as its minimum height.

The table layout style captures what is required in a good
layout. We shall focus on the minimum height layout style.
This finds a layout for the table that, in decreasing order
of importance, is no wider than the fixed maximium width,
minimizes table height, and minimizes table width.

The problem we are addressing is, given a table structure
and content for the table cells, to find an assignment to
the column widths and row heights such that the structural
constraints are satisfied and the minimum height layout style
is satisfied.

For simplicity, we assume that the minimum table width
is wide enough to allow the structural constraints to be sat-
isfied. Furthermore, we do not consider nested tables nor
do we consider designer constraints such as columns having
fixed ratio constraints between them.

2.2 Minimum configurations
The main decision in table layout is how to break the

lines of text in each cell. Different choices give rise to differ-
ent width/height cell configurations. Cells have a number
of minimal configurations where a minimal configuration is
a pair (w, h) s.t. the text in the cell can be laid out in a
rectangle with width w and height h but there is no smaller

rectangle for which this is true. That is, for all w′ ≤ w and
h′ ≤ h either h = h′ and w = w′, or the text does not fit in
a rectangle with width w′ and height h′. These minimum
configurations are anti-monotonic in the sense that if the
width increases then the height will never increase. For text
with uniform height with W words (or more exactly, W pos-
sible line breaks) there are up to W minimal configurations,
each of which has a different number of lines. In the case of
non-uniform height text there can be no more than O(W 2)
minimal configurations.

A number of algorithms have been developed for comput-
ing the minimum configurations of the text in a cell [7]. Here
we assume that these are pre-computed and that

configsd = [(w1, h1), ..., (wNd , hNd)]

gives the width/height pairs for the minimal configurations
of cell d sorted in increasing order of width. We will make
use of the function minheight(d,w) which gives the minimum
height h ≥ minh(d) that allows the cell contents to fit in
a rectangle of width w ≥ minw(d). This can be readily
computed from the list of configurations.

The mathematical model of the table layout problem can
be formalized as:

find w and h that minimize ht(h) subject to
∀d ∈ Cells. (cwd, chd) ∈ configsd ∧ (1)
∀d ∈ Cells. wdleft(d),right(d)(w) ≥ cwd ∧ (2)
∀d ∈ Cells. httop(d),bot(d)(h) ≥ chd ∧ (3)

wd(w) ≤W (4)

In essence, automatic table layout is the problem of find-
ing minimal configurations for a table: i.e. minimal width/height
combinations in which the table can be laid out. One ob-
vious necessary condition for a table layout (w, h) to be
a minimal configuration is that it is impossible to reduce
the width of any column c while leaving the other row and
column dimensions unchanged and still satisfy the struc-
tural constraints. We call a layout satisfying this condition
column-minimal.

We now detail three algorithms for solving the table layout
problem. All are guaranteed to find an optimal solution but
in the worst case may take exponential time.

3. A? ALGORITHM
The first approach uses an A? based approach [18] that

chooses a width for each column in turn. A partial layout
(w, c) for a table is a width w for the first c−1 columns. The
algorithm starts from the empty partial layout (c = 1) and
repeatedly chooses a partial layout to extend by choosing
possible widths for the next column.

Partial layouts also have a penalty p, which is a lower
bound on the height for any full table layout that extends
the current partial layout. The partial layouts are kept in
a priority queue and at each stage a partial layout with
the smallest penalty p is chosen for expansion. The algo-
rithm has found a minimum height layout when the chosen
minimal-penalty partial layout has c = n + 1 have at least
as great a penalty then all other partial layouts must lead
to at least as tall a layout. The code is given in function
complete-A?-search(W) where W is the maximum allowed
table width. For simplicity we assume W is greater than the
minimum table width. (The minimum table width can be
determined by assigning each column its minc width from
possible-col-widths, or can equivalently be derived from the

corresponding maximum positions also used in that func-
tion.)

Given widths w for columns 1, . . . , c − 1 and maximum
table width of W , the function possible-col-widths(c,w,W)
returns the possible widths for column c that correspond
to the width of a minimal configuration for a cell in c and
which satisfy the minimum width requirements for all the
cells in d and still satisfy the minimum width requirements
for columns c + 1, . . . , n and allow the table to have width
W .

Efficiency of an A? algorithm usually depends strongly
on how tight the lower bound on penalty is, i.e. how often
(and how early) the heuristic informs us that we can discard
a partial solution because all full table layouts that extend
that partial layout will either have a height greater than the
optimal height, or have height greater or equal to some other
layout that isn’t discarded.

We use a heuristic that treats the remaining unfixed columns
in the layout as if they are a single merged column each of
whose cells must be large enough to contain the contents
of the unfixed cells on that row. We approximate the con-
tents by a lower bound of their area. The function compute-
approx-row-heights(w,h,c,W) does this, returning the esti-
mated (lower bound) row heights after laying out the area of
the contents of columns c+1, . . . , n in a single column whose
width brings the table width to W . Compound cells that
span multiple rows, and positions in the table grid that have
no cell, use a very simple lower bound of zero. (A simple
refinement would be to use the product of the width require-
ment for the cell’s column span and the height requirement
for each row.)

A standard method of discarding partial solutions that
must lead to solutions no better than some other partial so-
lution is to use a closed set. However, for a standard closed
set, the key would include the height requirements of each
rowspan (including non-compound rowspans) encountered,
as well as certain column start positions. Implementers
might consider how useful such a closed set would be for
the inputs of interest to them. Our implementation doesn’t
use one.

We instead present the following more interesting method
for discarding partial solutions. Partial layouts which must
lead to a full layout which is not column minimal are not
considered. If the table has no compound cells spanning
multiple rows then any partial layout that is not column
minimal for the columns that have been fixed can be dis-
carded because row heights can only increase in the future
and so the layout can never lead to a column-minimal lay-
out. This no longer holds if the table contains cells spanning
multiple rows as row heights can decrease and so a partial
layout that is not column minimal can be extended to one
that is column minimal. However, it is true that if the cells
spanning multiple rows are ignored, i.e. assumed to have
zero content, when determining if the partial layout is col-
umn minimal then partial layouts that are not column min-
imal can be safely discarded. The function weakly-column-
minimal(w,c) does this by checking that none of the columns
1, . . . , c can be narrowed without increasing the height of a
row, ignoring compound cells spanning multiple rows.

In our implementation of complete-A*-search, the iter-
ation over possible widths works from maximum v down-
wards, stopping once the new partial solution is either known
not to be column minimal or (optionally) once the penalty

exceeds a certain maximum penalty which should be an up-
per bound on the minimum height. Our implementation
computes a maximum penalty at the start, by using a heuris-
tic search.

Creating a new partial layout is relatively expensive (see
below), so this early termination is more valuable than one
might otherwise expect. However, the cost of this choice is
that this test must be done before considering the height
lower bounds for future cells (the remaining-area penalty),
since the future penalty is at its highest for maximum v.

For the implementation of compute-approx-row-heights,
note that D2r, arear and the c′ bound in the sum don’t
depend on w or h0, and hence may be calculated once off in
advance; while w may be stored in cumulative form; so that
the loop body can run in constant time. (Our implementa-
tion uses this approach.)

Our implementation literally evaluates minheight once
per cell ending at c for each partial solution being added
to the queue, as Figure 2 depicts. One could instead com-
bine some of this work with finding the union of widths of
interest (the second half of possible-col-widths), by changing
the sorted list of configurations of interest for a cell to store
the increase in height for its rowspan, so that complete-A*-
search can update the height requirements for the current
column (and in turn update the height requirements for the
new partial solution) as it iterates over the combined list
of widths. How significant a saving this would be would
depend on how expensive the minheight implementation is
compared to preparing and storing the new partial solution’s
height requirements. For it to have a significant payoff might
require changing the representation of height requirements
to avoid copying the full set for each new partial solution.

For possible-col-widths, our current implementation of the
minc calculation literally iterates over all rcellsc, though
one could instead calculate in advance a single minw-like
value for each column span occurring in the table, and have
the minc calculation iterate over the set of column spans
ending at c (which would often be a singleton set) instead
of all the cells ending at c. One could similarly calculate in
advance a set of possible widths for each column span, and
have the widthsd calculation iterate over the set of column
spans ending at c instead of all cells ending at c. (Again,
our current implementation does not do this.)

Whereas for the maxc calculation, we do calculate in ad-
vance a single array of maximum positions (one per column),
so maxc is a simple lookup.

For weakly-column-minimal, each partial solution can be
annotated with a map from row span to (i) the minimum
height that the current assignment allows for that row span
(i.e. the maximum height among the cells occurring in that
rowspan and whose widths are fixed in that partial solu-
tion); and (ii) the height at which point the current as-
signment would cease to be column-minimal for that row
span (i.e. the minimum next height among those same cells).
Then weakly-column-minimal would be a loop over the row
spans in the table (or cells ending at column c if the earlier-
mentioned incremental update of row height requirements
were used) instead of over all cells placed so far. (Our im-
plementation does iterate over all cells placed so far.)

4. CONSTRAINT PROGRAMMING
Constraint programming (see e.g. [13]) is an approach to

combinatorial satisfaction problems which combines search

function possible-col-widths(c,w,W)
minc := max

d∈rcellsc
{minw(d)− wdleft(d),c−1(w)}

for c′ := n down to c+ 1 do
wc′ := max

d∈lcellsc′
{minw(d)− wdc′+1,right(d)(w)}

endfor
maxc := W − wd1,c−1(w)− wdc+1,n(w)
for d ∈ rcellsd do

widthsd := {wk − wdleft(d),c−1(w)|(wk, hk) ∈ configsd}
widthsd := {v ∈ widthsd | minc ≤ v ≤ maxc}

return (
⋃

d∈rcellsd
widthsd)

function weakly-column-minimal(w,c)
for r := 1 to m do

Dr := {d ∈ Cells | right(d) ≤ c and rows(d) = {r}}
hr := max

d∈Dr

{
minheight(d,wdleft(d),right(d)(w))

}
endfor
for c′ := 1 to c do

cm := false
for d ∈ rcellsc′ s.t. |rows(d)| = 1 do

if minheight(d,wdleft(d),c′(w)− ε) > hbot(d)

then cm := true; break
endfor
if not cm then return false

endfor
return true

function compute-approx-row-heights(w,h0,c,W)
for r := 1 to m do

D1r := {d ∈ Cells | right(d) = c and bot(d) = r}
if D1r = ∅ then h1 := 0
else h1 := max

d∈D1r
{ minheight(d,wdleft(d),right(d)(w))

− httop(d),r−1(h) }
endif
D2r := {d ∈ Cells | c < right(d) and rows(d) = {r}}
arear :=

∑
d∈D2r

area(d)

if arear = 0 then h2 := 0

else h2 := arear/

W − min({c}∪{left(d)|d∈D2r})∑
c′=1

wc′


endif
hr := max{h0r, h1, h2}

endfor
return h

function complete-A?-search(W)
create a new priority-queue q
add (0,−1, [c 7→ 0|c = 1..n], [r 7→ 0|r = 1..m]) to q
repeat

remove lowest priority state (p,−c, w, h) from q
if c = n+ 1 then return (w, h)
widthsc := possible-col-widths(c, w,W)
foreach v ∈ widthsc s.t.

weakly-column-minimal(w[c 7→ v], c) do
w′ := w[c 7→ v]
h′ := compute-approx-row-heights(w,h,c,W)
add (ht(h′),−(c+ 1), w′, h′) to q

endfor
forever

Figure 2: An A? algorithm for table layout.

and inference. The constraint model is defined in terms of a
domain of possible values for each variables, and propagators
for each constraint. The role of a propagator is to remove
values from the domains of the variables for that constraint
which cannot be part of a solution. Constraint program-
ming can implement combinatorial optimization search, by
solving a series of satisfaction problems, each time looking
for a better solution, until no better solution can be found
and the optimal is proved.

We consider constraint satisfaction problems, consisting
of a set of constraints C over n variables xi taking integer
values, each with a given finite domain Dorig(xi). A feasible
solution is a valuation to the variables such that each xi is
within its allowable domain and all constraints are satisfied
simultaneously.

A propagation solver maintains a domain restrictionD(xi) ⊆
Dorig(xi) for each variable and considers only solutions that
lie within D(x1)×D(x2)× . . .×D(xn). Propagators for the
constraints C determine given the current domain whether
we can remove values that cannot take part in any solution,
e.g. if x1 ∈ {1, 2, 3} and x2 ∈ {2, 3} and C = {x1 ≥ x2}
then the value x1 = 1 cannot be part of any solution, so it
can be eliminated. Propagation solving interleaves propaga-
tion, which repeatedly applies propagators to remove unsup-
ported values until no further domain reduction is detected,
and search which (typically) splits the domain of some vari-
able in two and considers both the resulting sub-problems.
This continues until all variables are fixed and a solution
found, or propagation detects failure (a variable with empty
domain) in which case execution backtracks and tries an-
other subproblem.

Lazy clause generation [16] is a hybrid approach to combi-
natorial optimization combining finite domain propagation
and Boolean satisfiability methods. A lazy clause generation
solver performs finite domain propagation just as in a stan-
dard CP solver, but records the reasons for all propagations.
When a failure is determined it determines a minimal set of
reasons that have caused this failure and records this as a
nogood in the solver. This nogood prevents the search from
examining similar sets of choices which lead to the same
inability to solve the problem.

Lazy clause generation is implemented by defining an al-
ternative model for the domains D(xi), which is maintained
simultaneously. Specifically, Boolean variables are intro-
duced for each potential value of a variable, named [[xi = j]]
and similarly [[xi ≥ j]]. Negating them gives the opposite,
[[xi 6= j]] and [[xi ≤ j − 1]]. Fixing such a literal modifies D
to makes the corresponding fact true inD(xi) and vice versa.
Hence these literals give an alternate Boolean representation
of the domain.

In a lazy clause generation solver, the actions of propa-
gators (and search) to change domains are recorded in an
implication graph over the literals. Whenever a propagator
f changes a domain it must explain how the change occurred
in terms of literals, that is, each literal l that is made true
must be explained by a clause L → l where L is a (set or)
conjunction of literals. When the propagator causes failure
it must explain the failure as a nogood, L → false, where
L is a conjunction of literals which cannot hold simultane-
ously. Note that each explanation and nogood is a clause.
The explanations of each literal and failure are recorded in
the implication graph with edges from each l′ ∈ L to l.

The implication graph is used to build a nogood that

records the reason for search failure. We explain the First
Unique Implication Point (1UIP) nogood [15], which is stan-
dard. Starting from the initial failure nogood, a literal l
(explained by L→ l) is replaced in the nogood by L by res-
olution. This continues until there is at most one literal in
the nogood made true after the last decision. The resulting
nogood is learnt, i.e. added as a clause to the constraints of
the problem. It will propagate to prevent search trying the
same subsearch in the future.

Lazy clause generation effectively imports Boolean satis-
fiability (SAT) methods for search reduction into a propa-
gation solver. The learnt nogoods can drastically reduce the
search space, depending on how often they are reused (i.e.
propagate). Lazy clause generation can also make use of
SAT search heuristics such as activity-based search [15]. In
activity-based search each literal seen in the conflict gener-
ation process has its activity bumped, and periodically all
activities are decayed. Search decides a literal with max-
imum activity, which tends to focus on literals that have
recently caused failure.

4.1 A CP model for table layout
A Zinc [12] model is given below. Each cell d has a configu-

ration variable f [d] which chooses the configuration (cw, ch)
from an array of tuples cf [d] of (width, height) configura-
tions defining configsd. Note that t.1 and t.2 return the first
and second element of a tuple respectively. The important
variables are: w, the width of each column, and h, the height
of each row. These are constrained to fit each cell, and so
that the maximum width is not violated.

int: n; % number of columns

int: m; % number of rows

int: W; % maximal width

set of int: Cells; % numbered cells

array[Cells] of 1..m: top;

array[Cells] of 1..m: bot;

array[Cells] of 1..n: left;

array[Cells] of 1..n: right;

array[Cells] of array[int] of tuple(int,int): cf;

array[Cells] of var int: f; % cell configurations

array[1..n] of var int: w; % column widths

array[1..m] of var int: h; % row heights

constraint forall(d in Cells)(

% constraint (2)

sum(c in left[d]..right[d])(w[c])>=cf[d][f[d]].1

/\ % constraint (3)

sum(r in top[d]..bot[d])(h[r])>=cf[d][f[d]].2

);

% constraint (4)

constraint sum(c in 1..n)(w[c]) <= W;

solve minimize sum(r in 1..m)(h[r]);

The Zinc model does not enforce column minimality of the
solutions, but solutions will be column minimal because of
the optimality condition.

The reason that we thought that lazy clause generation
might be so effective for the table layout problem is the
small number of key decisions that need to be made. While
there may be O(nm) cells each of which needs to have an
appropriate configuration determined for it, there are only
n widths and m heights to decide. These variables define all

communication between the cells. Hence if we learn nogoods
about combinations of column widths and row heights there
are only a few variables involved, and these nogoods are
likely to be highly reusable. We can see the benefit of nogood
learning by comparing the constraint programming model,
with and without learning.

Example 4.1. Consider laying out a table of the form
aa aa

aa aa aa
aa aa

aa aa
aa aa

aa aa
where each aa entry can have two configurations: wide two
characters wide and one line high, or high one character
wide and two lines high (so cf[d] = [(2,1),(1,2)]). As-
sume the remaining cells have unique configuration (1,1),
and there is a maximal table width of 9, and a maximal ta-
ble height of 9. Choosing the configuration of cell (1,1) as
wide (f[(1,1)] = 1) makes w1 ≥ 2, similarly if cell (1,3)
is wide then w3 ≥ 2. The effect of each decision in terms of
propagation is illustrated in the implication graph in Figure 3
Now choosing the configuration of cell (2,2) as wide makes
w2 ≥ 2 and then propagation on the sum of column widths
forces each of the remaining columns to be at most width
1: w4 ≤ 1, w5 ≤ 1, w6 ≤ 1. Then w4 ≤ 1 means h2 ≥ 2,
h3 ≥ 2, h4 ≥ 2 and h6 ≥ 2 since we must pick the second
configuration for each of the cells in column 4. These height
constraints together violate the maximal height constraint.
Finite domain propagation backtracks undoing the last deci-
sion and sets the configuration of (2,2) as high (f[(2,2)]
= 2), forcing h2 ≥ 2. Choosing the configuration of (2,5)
as wide makes w5 ≥ 2 and then propagation on the sum of
column widths forces each of the remaining columns to be at
most width 1: w2 ≤ 1, w4 ≤ 1, w5 ≤ 1. Again w4 ≤ 1 means
the maximal height constraint is violated. So search undoes
the last decision and sets the configuration of (2,5) as high.

Lets contrast this with lazy clause generation. After mak-
ing the first three decisions the implication graph is shown
in Figure 3. The double boxed decisions reflect making the
cells (1,1), (1,3) and (2,2) wide. The consequences of the
last decision are shown in dashed boxes. Lazy clause gen-
eration starts from the nogood h2 ≥ 2 ∧ h3 ≥ 2 ∧ h4 ≥
2∧h6 ≥ 2→ false and replaces h6 ≥ 2 using its explanation
f [(6, 4)] = 2 → h6 ≥ 2 to obtain h2 ≥ 2 ∧ h3 ≥ 2 ∧ h4 ≥
2 ∧ f [(6, 4)] = 2 → false. This process continues until it
arrives at the nogood w4 ≤ 1 → false which only has one
literal from the last decision level. This is the 1UIP nogood.
It will immediately backjump to the start of the search (since
the nogood does not depend on any other literals at higher
decision levels) and enforce that w4 ≥ 2. Search will again
make cell (1,1) wide, and on making cell (1,3) wide it will
determine w3 ≥ 2 and consequently that w2 ≤ 1, w5 ≤ 1 and
w6 ≤ 1 which again causes violation of the maximal height
constraint. The 1UIP nogood is w1 ≥ 2∧w3 ≥ 2→ fail, so
backjumping removes the last choice and infers that w3 ≤ 1
which makes h1 ≥ 2 and h3 ≥ 2.

Note that the lazy clause generation completely avoids con-
sidering the set of choices (1,1), (1,3) and (2,5) wide since
it already fails on setting (1,1) and (1,3) wide. This illus-
trates how lazy clause generation can reduce search. Also
notice that in the implication graph the consequences of a
configuration choice only propagate through width and height

variables, and hence configuration choices never appear in
nogoods.

5. MIXED INTEGER PROGRAMMING
Bilauca and Healy [5] consider using mixed integer pro-

gramming (MIP) to model the table layout problem. They
consider two models for the simple table layout problem and
do not consider compound cells, i.e. row and column spans.
Their basic model bmip uses 01 variables (cellSel) for each
possible configuration, to model the integer configuration
choice f used in the CP model. This basic model can be
straightforwardly extended to handle compound cells.

Their improved model adds redundant constraints on the
column widths to substantially improve MIP solving times
for harder examples. They compute the minimum width
(minW) for each column as the maximum of the minimum
widths of the cells in the column, and the minimum height
(minH) for each row analogously. They then compute the
set of possible column widths (colWSet) for each column
from those configurations in the column which have at least
width minW and height minH. Note this improvement relies on
the fact that there are no column spans. While in practice
this usually does provide the set of possible widths in any
column-minimal layout, in general we believe the “improved
model” is incorrect.

Example 5.1. Consider laying out a 2× 2 table with cell
configurations {(1, 3), (3, 1)} for the top left cell, and {(2, 2)}
for the remaining cells, with a width limit of 5. The minimal
height of the first row is 2. The minimal width of the first
column is 2. Hence none of the configurations of the top left
cell are both greater than the minimal height and minimal
width. The possible column widths for column 1 are then
computed as {2}. The only layout is then choosing configu-
ration (1, 3) for the top left cell, giving a total height of 5.
Choosing the other configuration leads to a total table height
of 4.

We can fix this model by including in the possible column
widths the smallest width configuration for each cell in that
column which is less than the minimum row height. For
the example above this means the possible columns widths
become {2, 3}. Bilauca and Healy [5] give an OPL model of
their “improved model”, to contrast it with the CP model
above we give a corresponding corrected Zinc model mip.

int: m; % number of rows

int: n; % number of columns

int: W; % maximal width

array[1..m,1..n] of set of tuple(int,int): cf;

array[1..n] of int: minW = [max(r in 1..m)

(min(t in cf[r,c])(t.1)) | c in 1..n];

array[1..m] of int: minH = [max(c in 1..n)

(min(t in cf[r,c])(t.2)) | r in 1..m];

array[1..n] of set of int: colWset =

[{ t.1 | r in 1..m, t in cf[r,c] where

t.1 >= minW[c] /\ (t.2 >= minH[r] \/

t.1 == min({ u.1 | u in cf[r,c] %FIX

where u.2 < minH[r] })) }

| c in 1..n];

array[1..n] of array[int] of var 0..1: colSel =

[[d:_ | d in colWset[c]] | c in 1..n];

f [(1, 1)] = 1

��

f [(1, 3)] = 1

��

f [(2, 2)] = 1

��

_ _ _�
�

�
�

_ _ _w4 ≤ 1 //

&&LLLLLLLLLL

��:::::::::::::::::

��111111111111111111111111

_ _ _ _ _�
�

�
�

_ _ _ _ _
f([2, 4)] = 2 //

_ _ _�
�

�
�

_ _ _h2 ≥ 2 //
_ _�
�

�
�

_ _false

w1 ≥ 2

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
77

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY w3 ≥ 2

33hhhhhhhhhhhhhhhhhhhhhhh ''

++VVVVVVVVVVVVVVVVVVVVVVV
_ _ _�
�

�
�

_ _ _w2 ≥ 2

88rrrrrrrrrrr
//

&&LLLLLLLLLLL
_ _ _�
�

�
�

_ _ _w5 ≤ 1
_ _ _ _ _�
�

�
�

_ _ _ _ _
f [(3, 4)] = 2 //

_ _ _�
�

�
�

_ _ _h3 ≥ 2

;;wwwwwwwww

_ _ _�
�

�
�

_ _ _w6 ≤ 1
_ _ _ _ _�
�

�
�

_ _ _ _ _
f [(4, 4)] = 2 //

_ _ _�
�

�
�

_ _ _h4 ≥ 2

DD

_ _ _ _ _�
�

�
�

_ _ _ _ _
f [(6, 4)] = 2 //

_ _ _�
�

�
�

_ _ _h6 ≥ 2

HH�����������������������

Figure 3: An implication graph for searching the layout problem of Example 4.1

array[1..n,1..m] of array[int,int] of var 0..1:

cellSel =

array2d(1..n,1..m,[[t:_ | t in cf[r,c]]

| r in 1..m, c in 1..n]);

array[1..n] of var int: w;

array[1..m] of var int: h;

constraint forall(r in 1..m, c in 1..n)(

sum(t in cf[r,c])(cellSel[r,c][t]) = 1 /\

sum(t in cf[r,c])(cellSel[r,c][t] * t.1) <= w[c] /\

sum(t in cf[r,c])(cellSel[r,c][t] * t.2) <= h[r]);

constraint forall(c in 1..n)(

sum(d in colWset[c])(colSel[c][d]) = 1 /\

w[c] = sum(d in colWset[c])(colSel[c][d] * d));

constraint sum(c in 1..n)(w[c]) <= W;

solve minimize sum(r in 1..m)(h[r]);

Note that Bilauca and Healy also consider a CP model
of the problem, but this is effectively equivalent to the MIP
model because they do not make use of variable array indices
(element constraints) that FD solvers support and which
allow stronger propagation than that of the 01 encoding.

6. EVALUATION
We compare different approaches to optimal table layout:

the A* algorithm of Section 3, the two constraint program-
ming models of Section 4 the basic CP implementation with-
out learning (cp-w) and the model using lazy clause genera-
tion to provide learning (cp), and bmip the basic MIP model
of [5], and mip the (corrected) improved model of [5] de-
scribed in Section 5. For the CP approaches both cp-w and
cpseq use a sequential search which chooses a cell which has
the smallest height configuration remaining of all unfixed
cells and tries to set it to that minimal height. For the lazy
clause solver CPvsids uses the default activity based search.

The A* algorithm is written in the high-level declarative
programming language Mercury [19]. For the constraint pro-
gramming approaches we used the Chuffed lazy clause gen-
eration solver (which can also be run without nogood gener-
ation). Chuffed is a state-of-the-art CP solver, which scored
the most points in all categories of the 2010 MiniZinc Chal-
lenge [14] which compares CP solvers. Since Chuffed does
not currently support Zinc, we created the model using the
C++ modelling capabilities of Chuffed. The resulting con-
straints are identical to that shown in the model.

For the MIP approach, we used a script to construct a

time (s) cp-w cpseq cpvsids bmip mip A?

≤ 0.01 1018 1097 1043 1009 774 972
≤ 0.10 1064 1252 1186 1160 1076 1168
≤ 1.00 1103 1271 1257 1221 1223 1262
≤ 10.00 1120 1271 1269 1261 1270 1269
> 10.00 151 0 2 10 1 2

Table 1: Number of instances from the web-simple
data-set solved within each time limit.

mixed integer programming model for each table, identical
to that created by the Zinc model (and the (corrected) orig-
inal OPL model of Bilauca and Healy), which was solved
using CPLEX 12.1.

We first evaluated the various approaches using a large
corpus of real-world tables. This was obtained by collecting
more than 10,000 HTML tables from the web. We then
removed nested tables since we currently do not support
these and tables for which HTML found the optimal layout
as these are easy to layout. This left 2063 tables in the
corpus. The table width was based on laying out the page
containing the table in a browser window of width 1000px.
We split the corpus into web-compound and web-simple
based on whether the table contained compound cells or not.

Table 1 shows the results of the different methods on the
web-simple examples. The table shows the number of ta-
bles laid out optimally for various time limits up to 10 sec-
onds. They show that in practice for simple tables all of the
methods are very good, and able to optimally layout almost
all tables very quickly. The worst method is CP-W and the
evaluation clearly shows the advantage of learning for con-
straint programming. We find, like [5], that the improved
MIP model mip while initially slower is more robust than ba-
sic model bmip. Overall cpseq is the most robust approach
never requiring more than 1 second on any example. How-
ever, the performance of the A? model is surprisingly good
given the relative simplicity of the approach in comparison to
the sophisticated CPlex and Chuffed implementations and
the use of Mercury rather than C or C++.

Table 2 shows the results of the different methods on the
web-compound examples. We compare all the previous
algorithms except for mip since it is not applicable when
there are compound cells. The results are similar to those
for simple tables. For these more complicated tables the A*
approach is slightly more robust, while cpseq is the fastest
for the easier tables.

Given the relatively similar performance of the approaches

time (s) cp-w cpseq cpvsids bmip A?

≤ 0.01 708 713 665 702 636
≤ 0.10 721 774 737 760 751
≤ 1.00 734 788 771 787 787
≤ 10.00 742 790 778 790 792
> 10.00 50 2 14 2 0

Table 2: Number of instances from the web-
compound data-set solved within each time limit.

s cpseq cpvsids bmip mip A?

10×10

0.00 0.00 0.00 0.00 0.00 0.02
0.25 3.29 0.02 0.16 0.97 0.06
0.50 0.3 0.01 0.22 0.56 0.03
0.75 0.07 0.02 0.55 1.18 0.09
1.00 0.00 0.00 0.01 0.01 0.00

20×20

0.00 0.02 0.01 0.01 0.04 0.19
0.25 — 0.86 27.18 28.65 37.04
0.50 — 0.07 188.27 163.86 11.44
0.75 — 0.28 43.83 40.07 62.03
1.00 0.02 0.01 0.04 0.08 0.00

30×30

0.00 0.04 0.03 0.04 0.07 1.53
0.25 — 254.47 — 253.08 —
0.50 — 0.38 — — —
0.75 — 9.4 — — —
1.00 0.04 0.04 0.10 0.18 0.00

40×40

0.00 0.09 0.06 0.07 0.20 3.55
0.25 — — — — —
0.50 — 1.11 — — —
0.75 — 216.67 — — —
1.00 0.09 0.05 0.19 0.34 0.02

Table 3: Results for artificially constructed tables.
Times are in seconds.

on the real-world tables we decided to “stress-test” the ap-
proaches on some harder artificially constructed examples.
We only used simple tables so that we could compare with
mip. Table 3 shows the results. We created tables of size
m × n each with k configurations by taking text from the
Gutenberg project edition of The Trial [10] k words at a
time, and assigning to a cell all the layouts for that k words
using fixed width fonts. For the experiments we used k = 6.
We compare different versions of the layout problem by com-
puting the minimum width minw of the table as the sum of
the minimal column widths, and the maximal width maxw
of the table as the sum of the column widths resulting when
we choose the minimal height for each row. The squeeze s
for table is defines as (W −minw)/maxW . We compare the
table layout for 5 different values of squeeze. Obviously with
a squeeze of 0.0 or 1.0 the problem is easy, the interesting
cases are in the middle.

The harder artificial tables illustrate the advantages of the
conflict directed search of cpvsids. On the web-simple and
web-compound corpora, the approaches with more naive
search strategies, cpseq and A∗, performed best. However,
they were unable to solve many of the harder tables from
the artificial corpus, where cpvsids solved all but one in-
stance, sometimes 2 orders of magnitude faster than any
other solver. Interestingly the mip approach wins for one
hard example, illustrating that the automatic MIP search
in CPLEX can also be competitive.

The difference in behavior between the real-world and ar-
tificial tables may be due to differences in the table struc-

ture. The tables in the web-simple and web-compound
corpora tend to be narrow and tall, with very few configura-
tions per cell – the widest table has 27 columns, compared
with 589 rows, and many cells have only one configuration.
On these tables, the greedy approach of picking the widest
(and shortest) configuration tends to quickly eliminate tall
layouts. The artificial corpus, having more columns and
more configurations, requires significantly more search to
prove optimality; in these cases, the learning and conflict-
directed search of cpvsids provides a significant advantage.

7. CONCLUSION
Treating table layout as a constrained optimization prob-

lem allows us to use powerful generic approaches to com-
binatorial optimization to tackle these problems. We have
given three new three new techniques for finding a minimal
height table layout for a fixed width: the first uses an A?

based approach while the second approach uses pure con-
straint programming (CP) and the third uses lazy clause
generation, a hybrid CP/SAT approach. We have compared
these with two MIP models previously proposed by Bilauca
and Healy.

An empirical evaluation using more than 2000 HTML ta-
ble collected from the web showed that all methods can pro-
duce optimal layout quickly. Given the relative simplicity of
the A? based approach this probably makes it the method of
choice. However, we found that when we tested the methods
on difficult artificial tables that the lazy clause generation
approach was significantly more effective than the other ap-
proaches which suggests that it is more robust and scalable.

All approaches can be easily extended to handle constraints
on table widths such as enforcing a fixed size or that two
columns must have the same width. Handling nested ta-
bles, especially in the case when cells can contain a mixture
of text and tables is more difficult, and is something we plan
to pursue.

8. ACKNOWLEDGEMENTS
The authors acknowledge the support of the ARC through

Discovery Project Grant DP0987168

9. REFERENCES
[1] R. J. Anderson and S. Sobti. The table layout

problem. In SCG ’99: Proceedings of the Fifteenth
Annual Symposium on Computational Geometry,
pages 115–123, New York, NY, USA, 1999. ACM
Press.

[2] G. J. Badros, A. Borning, K. Marriott, and
P. Stuckey. Constraint cascading style sheets for the
web. In Proceedings of the 1999 ACM Conference on
User Interface Software and Technology, pages 73–82,
New York, Nov. 1999. ACM.

[3] R. J. Beach. Setting tables and illustrations with style.
PhD thesis, University of Waterloo, 1985.

[4] N. Beaumont. Fitting a table to a page using
non-linear optimization. Asia-Pacific Journal of
Operational Research, 21(2):259–270, 2004.

[5] M. Bilauca and P. Healy. A new model for automated
table layout. In Proceedings of the 10th ACM
symposium on Document engineering, DocEng ’10,
pages 169–176. ACM, 2010.

[6] A. Borning, R. Lin, and K. Marriott. Constraint-based
document layout for the web. Multimedia Systems,
8(3):177–189, 2000.

[7] N. Hurst, W. Li, and K. Marriott. Review of
automatic document formatting. In Proceedings of the
9th ACM symposium on Document engineering, pages
99–108. ACM, 2009.

[8] N. Hurst, K. Marriott, and D. Albrecht. Solving the
simple continuous table layout problem. In DocEng
’06: Proceedings of the 2006 ACM symposium on
Document engineering, pages 28–30, New York, NY,
USA, 2006. ACM.

[9] N. Hurst, K. Marriott, and P. Moulder. Towards
tighter tables. In Proceedings of Document
Engineering, 2005, pages 74–83, New York, 2005.
ACM.

[10] F. Kafka. The Trial. Project Gutenberg, 1925, 2005.

[11] X. Lin. Active layout engine: Algorithms and
applications in variable data printing. Computer-Aided
Design, 38(5):444–456, 2006.

[12] K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey,
M. Garcia de la Banda, and M. Wallace. The design of
the Zinc modelling language. Constraints,
13(3):229–267, 2008.

[13] K. Marriott and P. Stuckey. Programming with
Constraints: An Introduction. MIT Press, Cambridge,
Massachusetts, 1998.

[14] 2010 MiniZinc challenge.
http://www.g12.csse.unimelb.edu.au/

minizinc/challenge2010/results2010.html, 2010.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. In DAC ’01: Proceedings of the 38th conference
on Design automation, pages 530–535, 2001.

[16] O. Ohrimenko, P. Stuckey, and M. Codish.
Propagation via lazy clause generation. Constraints,
14(3):357–391, 2009.

[17] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01
Specification, section ‘Autolayout Algorithm’.
http://www.w3.org/TR/html4/appendix/notes.html#h-
B.5.2,
1999.

[18] S. Russell and P. Norvig. Artificial Intelligence: a
Modern Approach. Prentice Hall, 2nd edition, 2002.

[19] Z. Somogyi, F. Henderson, and T. Conway. The
execution algorithm of Mercury, an efficient purely
declarative logic programming language. J. Log.
Program., 29(1-3):17–64, 1996.

[20] X. Wang and D. Wood. Tabular formatting problems.
In PODP ’96: Proceedings of the Third International
Workshop on Principles of Document Processing,
pages 171–181, London, UK, 1997. Springer-Verlag.

