
IMPROVING GENET AND EGENET BY NEW VARIABLE

ORDERING STRATEGIES

VINCENT TAM

Department of Computer Science

University of Melbourne, 3052

Parkville, Australia.

E-mail: vtam@cs.mu.oz.au

http://www.cs.mu.oz.au/~vtam

PETER STUCKEY

Department of Computer Science

University of Melbourne, 3052

Parkville, Australia

E-mail: pjs@cs.mu.oz.au

Constraint satisfaction problems (CSPs) naturally occur in a number of

important industrial applications such as planning and scheduling defeating

many algorithmic search methods. GENET and it extended model,

EGENET, are probabilistic neural networks which had some remarkable

success in solving some hard instances of CSPs such as a set of hard graph

coloring problems. Both GENET or EGENET does not employ any variable

ordering strategy in its computation to guide the search. In this paper, we

proposed several new variable ordering strategies for improving GENET

and EGENET. We compared the efficiency of their improved versions using

the conventional or new variable ordering strategies against the original

GENET and EGENET on a number of randomly generated and hard

instances of binary CSPs. The improved versions with variable ordering

heuristics compares favorably with the original versions on these binary

CSPs. Our work shed lights on several directions for future exploration.

1 Introduction

Many important industrial applications such as planning and

scheduling can be formulated as constraint satisfaction problems (CSPs)

involving a set of variables, each with its domain (a set of possible

values), and a set of constraints (relations) defined on some subsets of

variables. The task is to assign a value to each variable from its

associated domain so that none of the constraints is violated. But there

exists no known general algorithm to solve a CSP, generally NP-

complete, in polynomial time.

There are two main approaches to solve CSPs. The complete search

methods such as the enumerative search method are algorithmic and

usually slow on most real-life applications. Thus, they need to be

improved with different techniques such as chronological backtracking,

conflict-directed back-jumping, consistency techniques such as AC-4,

variable ordering heuristics (VOHs) or their combinations. Among these

improving techniques, VOHs direct the search to a more promising

subtree by altering the order in which the variables are instantiated.

Besides, there are stochastic search methods, such as artificial neural

networks (ANNs), genetic algorithms (GAs) and simulated annealing,

which work by relaxation-based search to allow variable assignments

violating some constraints during the search. They cannot guarantee to

find a solution if one exists. Both GENET1 and EGENET2 are

probabilistic ANNs for solving general CSPs. They use a convergence

procedure based on min-conflict heuristic to find variable assignments

representing local minima in terms of constraint violation. If the local

minima are not solutions, a heuristic learning rule will then be used to

escape from them.

Complete search methods guarantee the finding of all solutions

while stochastic search methods are fast to find a single solution on hard

instances of CSPs. Thus, there were some recent works done on

integrating the techniques used in these two approaches. Stuckey and

Tam proposed different integration models5 to show how the two

different solvers can work together to improve the derivation steps in the

constraint logic programming systems. Also, they suggested a new kind of

lazy constraint consistency4 integrated into the EGENET computation to

detect inconsistent problems with minimal cost. Riff Rojac3 integrated

constraint propagation techniques into GAs for solving CSPs. In this

paper, we proposed several new variable ordering strategies suitable for

the GENET or EGENET computation. Also, we evaluated the advantages

gained from such improvement. Up to our knowledge, our work is the

first attempt to study the possible advantages of VOHs to stochastic

search methods in the context of GENET or EGENET computation.

This paper is organised as follows. Section 2 briefly describes the

original GENET and EGENET. Section 3 reviews some conventional

VOHs for complete search methods and the new VOHs for improving

GENET and EGENET. We discuss the preliminary experimental results

of the original and improved GENET and EGENET some hard instances

of CSPs in section 4. Lastly, we conclude our work in section 5.

2 GENET and EGENET

GENET is a neural network simulator based on min-conflict

heuristic to solve binary CSPs. In a GENET network, each variable in a

CSP is represented by a cluster of nodes. Each node denotes a value in

the domain of the variable , and has a state, on or off. When the state of

the node denoting the value in the domain of the variable is on, it

represents the assignment of the value to the variable . The assignment

of values to all the variables denotes a network state (X
1
 = v

1
 ,…, X

n
 = v

n
).

Each binary constraint involving exactly the variables X and Y is defined

as a set of illegal combinations, of the form illegal(X = v, Y = u). The

conjunction of constraints on X and Y gives an illegal constraint which is

the union of their illegal combinations.

In EGENET, each variable in a CSP is represented by a variable

node with its associated domain in the EGENET network. The state of a

variable node is defined to be its current value assignment. Every (binary

or non-binary) constraint in the CSP is denoted by a constraint node

with its own set of illegal combinations in the EGENET network. In both

GENET and EGENET network, every illegal combination illegal(X = v, Y

= u) is mapped to a positive penalty value, usually initialized to 1, by the

penalty() function. The penalty value for any legal combination of

variable assignments is always 0.

Initially, both GENET and EGENET randomly assign a value from

its associated domain to each variable in the network. Then, GENET or

EGENET executes the network convergence procedure in which each

variable will be updated in parallel and asynchronously until there is no

change in the value assigned to any variable (repair). In practice, a

random permutation of variables is used for updating. To update a

variable X, the input for each value v of X is calculated as the sum of

penalty values of all the illegal combinations (or constraint nodes)

involving variable X when X = v. The value with minimum input is the

new value to be assigned to X. In the case of ties, if the old value has

minimum input, then it remains to be assigned to X; otherwise one of the

values with minimum inputs is chosen randomly. When there is no repair

to any variable, the network state represents either a solution or local

minima. In the latter case, a heuristic learning rule is activated to help

the network escape from this local minima by penalizing the violated

combinations (or constraint nodes). The heuristic learning rule in

EGENET is left unspecified intentionally to allow the design of good

learning rules by domain-specific knowledge.

3 Variable Ordering Strategies

Many complete search methods employ different VOHs to improve

their efficiency on some real-life applications. The Minimal Width

Ordering (MWO) heuristic is an example which gives a total and fixed

ordering with minimum width for all the variables before the search

starts. An ordering is MWO if the width, that is the maximum number of

nodes adjacent and before to every node in a constraint graph, of that

ordering is the minimal width of all possible orderings for a constraint

graph. MWO works by ordering the less constrained variables to be

labelled last to reduce the needs for backtracking. Besides, the fail-first

principle (FFP), a dynamic ordering strategy, is a general heuristic to

identify the most likely failed branches early in the search by usually

sorting the variables in ascending order of their domain sizes. FFP is

usually used in conjunction with forward checking (FC), a partial

consistency techniques used to maintain the compatibility between the

labelled and unlabelled variables.

There are several specially designed VOHs for GENET and

EGENET. The max-degree-of-participation ordering (MDPO) sorts all the

variables according to a descending order of degrees of participation of

the variables. We define the degree of participation of a variable as the

number of variables which share inhibitory connections with that

particular variable in GENET, and the number of participating

constraints in EGENET. The MDPO in GENET is the same of MDO.

Another example is the max-expected-input ordering (MEIO). The

expected input of a variable is the sum of weighted penalty values of all

possible values for that variable. The weighting factor can be any

arbitrary cost of assigning a particular value to the concerned variable in

certain constraint. Besides, we propose the max-input ordering (MIO)

which dynamically orders all the variables in GENET or EGENET

according to a descendinga order of inputs for the current variable

assignment. Also, as an opposite to FFP, we proposed the success-first

principle (SFP) since GENET or EGENET computation aims at

successfully finding a solution by min-conflict heuristic. Our previous

work suggested a new kind of constraint reasoning techniques, the lazy

constraint consistency (LCC) techniques, most suitable for GENET or

EGENET computation. Obviously, both FFP and SFP can be used in

conjunction with LCC in GENET or EGENET computation.

a This is because we define positive penalty values for both GENET and EGENET.

4 Experimental results

For the graph-coloring problem, the task is to color each node of a

graph so that no two connected nodes share the same color. We compared

the original GENET against its improved versions on this problem.

Nodes Colors GENET FIX1 MEIO

125 17 954.45s 1182.25s 748.75s

125 18 11.9s 7.15s 4.0s

250 15 2.6s 2.6s 3.8s

250 29 2172.85s >10 hours 1916.8s

Table 1 : Original GENET versus improved GENETs with fixed random

ordering (FIX1) and MEIO on a set of hard graph-coloring problem.

In general, FIX1 slows down the GENET search since the fixed

random ordering does not exploit any domain-specific knowledge. The

GENET with MEIO betters the original GENET since the most

constrained variables possibly fixed up early in each convergence cycle to

avoid many possible un-promising branches of the search tree. Also, we

compared the original EGENET and its improved versions with MDPO,

MWO and MIO on two hard graph-coloring problems. In the harder case,

the improved EGENET with MIO required only about 1/4 of the solution

finding time of the original EGENET because input value used in the

GENET or EGENET computation can guide the search effectively.

The permutations generation problem is to construct all the

permutations of a given range that admit the given monotonies and

advances vectors. The benchmarks of the original and improved GENETs

are shown as follows.

Range Size GENET LCC LCC + FFP LCC + SFP

9 0.210s 0.210s 0.155s 0.140s

10 0.325s 0.355s 0.300s 0.285s

20 6.470s 7.035s 5.570s 4.945s

30 50.61s 52.77s 73.42s 44.61s

Table 2 : Original GENET versus improved GENETs with LCC, LCC with FFP

and LCC with SFP on permutations generation.

The GENET improved with LCC only performs worse than the

original GENET. But the improved GENET with LCC and SFP performs

the best among all the versions of GENET on these permutation

generation problems since SFP considers variables with larger domain

sizes after the possible pruning by LCC. Also, the improved version with

LCC and FFP betters the original GENET on all except the last cases

because relatively less values are removed by LCC on larger problems.

5 Conclusion

This paper represents the first attempt to study some useful VOHs

for improving the performance of stochastic search methods, and to

evaluate the possible advantages of specially designed VOHs for

stochastic search methods such as GENET and EGENET. We proposed

several new VOHs for GENET and EGENET, and built prototypes of the

original GENET and EGENET and their improved versions with

different VOHs to compare them on some hard binary CSPs. Our

preliminary benchmarking results show that the FFP and SFP with LCC

can drastically improve the GENET or EGENET on some instances of

hard binary CSPs such as the permutation generation problems. For a set

of hard graph-coloring problems, MEIO or MIO can significantly reduce

the timing required for the original stochastic solver to find a solution.

There are several directions for future work. First, it is interesting

to investigate the effects of those VOHs for GENET and EGENET on the

other stochastic solvers. Second, we can study how our proposed VOHs

for GENET and EGENET can be integrated in the different integration

models proposed Stuckey and Tam. Lastly, the proposal of more VOHs for

GENET or EGENET or other stochastic solvers will be interesting.

6 References

1. C. Wang and E. Tsang, 1991, “Solving satisfaction problems using

neural-networks”, in Proceedings of IEE Second International

Conference on Artificial Neural Networks.

2. J.H.M. Lee, H.F. Leung and H.W. Won, 1995, “Extending GENET for

non-binary CSP’s”, in Proceedings of 7th International Conference on

Tools with Artificial Intelligence.

3. María Cristina Riff Rojas, 1996, “From Quasi-Solutions to Solution:

An Evolutionary Algorithm to Solve CSP”, in Proceedings of

Principles and Practice of Constraint Programming (CP96), 367–381.

4. Peter Stuckey and Vincent Tam, 1997, “Extending E-GENET with

lazy constraint consistency”, (to appear) in Proceedings of 9th

International Conference on Tools with Artificial Intelligence.

5. Peter Stuckey and Vincent Tam, 1997, “Semantics for using

Stochastic Constraint Solvers in Constraint Logic Programming”, (to

appear) in Journal of Functional and Logic Programming.

