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Abstract MiniZinc arose as a response to the extended discussion at CP2006 of the

need for a standard modelling language for CP. This is a challenging problem, and we

believe MiniZinc makes a good attempt to handle the most obvious obstacle: there

are hundreds of potential global constraints, most handled by few or no systems. A

standard input language for solvers gives us the capability to compare different solvers.

Hence, every year since 2008 we have run the MiniZinc Challenge comparing different

solvers that support MiniZinc. In this report we discuss the philosophy behind the

challenge, why we do it, how we do it, and why we do it that way.

1 Why have a MiniZinc Challenge

MiniZinc [1,2] was our response to the call for a standard CP modelling language.

MiniZinc is high-level enough to express most CP problems easily and in a largely

solver-independent way; for example, it supports sets, arrays, and user-defined predi-

cates, some overloading, and some automatic coercions. However, MiniZinc is low-level

enough that it can be mapped easily onto many solvers. For example, it is first-order,

and it only supports decision variable types that are supported by most existing CP

solvers: integers, floats, Booleans and sets of integers. Other MiniZinc features include:

it allows separation of a model from it’s data; it provides a library containing declar-

ative definitions of many global constraints; and it also has a system of annotations

which allows non-declarative information (such as search strategies) and solver-specific

information (such as variable representations) to be layered on top of declarative mod-

els.

Crucially for a standard to become realised it must be as simple as possible for

solver writers to support the standard. This is the fundamental design goal of Mini-

Zinc. MiniZinc models are translated to FlatZinc, a low-level solver input language

that is the target language for MiniZinc. FlatZinc is designed to be easy to translate
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into the form required by a CP solver. We provide many features in order to make

this translation specializable for a particular solver: including a modifiable library of

global constraint definitions, facilities to rewrite the base FlatZinc constraints, and

annotations to transport information from the model to the solver.

Currently MiniZinc is supported by a number of solvers developed by the G12

research team as well as: Gecode [3], ECLiPSe [4], SICStus Prolog [5], JaCoP [6],

fzntini [7] and SCIP [8]. From discussions with members of the CP community we

expect a number of new solvers to support MiniZinc in 2010.

Every year since 2008 we have run the MiniZinc challenge, where we compare

different solvers on a number of MiniZinc instances. Since it is a substantial effort to

run the challenge, one may ask why we do it?

1.1 Comparing Constraint Programming Systems

We should begin by admitting that comparing constraint programming systems is

fraught with difficulty and in reality an impossible task. The reason is that there are

so many components to a modern CP system, only some of which are implemented by

some systems. To claim that one CP system is “better” than another is a bold claim,

since there is almost certainly some problem for which the “worse” system allows a

stronger model, or a better search, and performs better.

Even the system gathering least points in the 2009 Challenge, Eclipse [4], is a

fantastic tool for solving hard combinatorial optimization problems. Witness its use in

the best application paper for CP2009 [9] which substantially advances the state of the

art in routing and wavelength assignment problems. A solver competition on common

benchmarks cannot measure features of systems like: ease of use, ease of constructing

hybrid solutions, and ability to program interesting search strategies; all of which are

important in solving real problems. The effect of such features may be comparable in

different kinds of competitions such as the Constraint Modelling Challenge 2005 [10],

and as a community we should encourage more of these kinds of competitions.

Still we think it is beneficial to compare systems on common benchmarks, in par-

ticular so that solver implementers can examine the detailed results and determine

the strengths and weaknesses of their system, and problem modellers can judge which

system might be preferable for their problem.

The benefits of competition, which illustrate the strengths and weaknesses of dif-

ferent technological approaches to constraint programming, and hence allows the field

to improve itself more rapidly, should be balanced against the possible negative effects.

Competition will tend to drive the evolution of solvers down one narrow path (this

complaint has certainly been made about SAT competitions), and perhaps the com-

munity will miss crucial advances since new ideas implemented in non-state of the art

solvers will not be recognized as the important advances that they are.

The ancillary benefits of competition: creating suites of standard benchmarks in a

common input format, and forcing different solvers to accept a common input format,

are in reality more important than any other benefits of the competition. We should

remember that a constraint programming solver is (unlike a SAT solver) a substan-

tial software undertaking, so modifying it to accept a common input format is also

a substantial investment in time. We have tried to design and evolve MiniZinc and

FlatZinc to make this investment as small as possible, and make the maintenance as

simple as possible.



3

1.2 The MiniZinc Challenge

The first MiniZinc challenge [11] was in 2008, the same year as the 3rd International

CSP solving competition [12]. A question that has been asked by quite a few people in

the community is why we should have two solving competitions. The main reason we set

up the MiniZinc challenge was because as solver developers the existing competition

did not test features of constraint programming systems we thought are important.

The main problems we saw were that it did not address search or optimization.

Programmable search is one of the key features of constraint programming that dif-

ferentiate it from other approaches to combinatorial optimization. For a hard problem

almost all CP developers will spend a significant part of the time in developing a CP so-

lution in devising a good search strategy in order to find good solutions quickly. Indeed

for most realistic problems tackled by CP technology optimal solutions are out of reach,

and so we rely on good search strategies to generate good solutions, since a complete

search of the space is impractical. We acknowledge that completely autonomous search

is very attractive, and as our understanding of it extends, it is increasingly competitive.

But in our experience there are plenty of hard problems that are completely unsolv-

able (or orders of magnitude slower) using any autonomous search approach currently

available, where programmed search can find good (and even optimal) solutions.

Another important reason to include search is simply to be able to compare the

propagation engines of different systems. If we have no fixed search strategy then

because different search strategies can examine orders of magnitude different amounts

of the search tree, when comparing solvers we end up mostly comparing the strength

of the autonomous search. As solver developers we are also interested in the raw speed

of propagation, or the strength of the propagators available in the system.

Optimization problems are the important problems tackled by constraint program-

ming, almost no realistic problem is simply a satisfaction problem. For this reason

restricting to satisfaction problems seems completely unacceptable. One might argue

that most CP systems implement optimization by repeated search for satisfaction, but

the truth is encoding this in a competition means we have to know the optimal value

in order to encode the difficulty of the optimization problem as a satisfaction problem.

It also means we automatically favor CP style technology, which concentrates on sat-

isfaction, above other combinatorial optimization approaches such as MIP and local

search, which concentrate on optimization. Since optimization problems are the real

questions of interest we should not be favoring our technology. In the longer term we

believe it is vital to compare CP technology versus other combinatorial optimization

technology on the same models.

These two important omissions from the existing CSP competition motivated our

belief in the need for a different comparison of solvers.

There are a number of other motivations for us in running the MiniZinc challenge.

We believe that the challenge encourages solver developers to support MiniZinc

with their system, since by their nature academics are highly competitive and hence

motivated by a competitive challenge. While we believe supporting MiniZinc should

be sufficient motivation in itself, since it provides a standard way for users to interact

with the solver, the challenge gives extra motivation to update the support to the latest

version used in the competition, and carefully think about the modelling of global

constraints appropriate to each system to make them as competitive as possible.

The challenge also gives us a tool to encourage the development of interesting

benchmark suites in MiniZinc, and indeed the challenge rules are structured to make
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this advantageous to entrants. A large set of interesting models and instances is a

valuable resource for the community; and we believe models in MiniZinc are much

more valuable than instances defined in the much more verbose XCSP 2.1 format [13],

because they can be easily comprehended, extended and modified.

The challenge has also been a useful exercise for us in further developing Mini-

Zinc and FlatZinc tools. The challenge pushed us to dramatically simplify output

in FlatZinc to make it easier to check the solutions returned by solvers, as well as

formalize the output of multiple solutions, and increasingly better solutions arising in

optimization problems.

2 The Structure of the MiniZinc Challenge

The MiniZinc Challenge is up front about the limitations of any comparison of CP

systems, but tries to provide a broad set of tests for systems that cover most of the im-

portant problem styles and features of CP systems. We have found that while the final

points tallies may be the main interest to people outside the challenge, for the system

developers the detailed comparative results provide valuable feedback on the perfor-

mance successes and bottlenecks of their system. What follows is how we structure the

challenge to give, we hope, meaningful feedback to developers.

2.1 Challenge Problems

The MiniZinc challenge compares systems on around 10–12 different models. We use

around 8-12 instances of each model for a total of around 100 instances. The models

are selected to be of different “kinds” to reflect some of the variety of problems in the

constraint programming domain.

The MiniZinc challenge attempts to use completely new models and instances for

each new challenge. This is to prevent any possibility of overfitting of solvers to a

limited set of benchmarks. Arguably the good results of the cpHydra portfolio solver in

the 3rd International CSP Solver Competition [12] could be attributed to the fact that

the majority of the instances used in the competition were publicly available before

the competition, and the portfolio solver could be over-trained.

This desire to use completely new models comes with a cost. Each year we need

to collect useful and representative new problems and instances for each competition.

A candidate model ideally comes with 10-20 instances of varying difficulty requiring

between 10 seconds to 30 minutes to solve. In reality this ideal situation almost never

occurs. We want a range of difficulties so we can see the scalability of solvers, and so

we can test on easy examples in the pre-competition phase in order to give feedback

to entrants.

We are not interested in sub-classes of constraint programming such as binary and

n-ary extensional problems which reflect a rather limited view on solving. Perhaps

this is our own bias, where we see constraint programming as essentially propagator

based, and find arc consistency algorithms and GAC algorithms uninteresting (except

where they are part of a table constraint propagator). A core feature of constraint

programming is the solving of structured problems taking advantage of the structure

in the solving process. Hence we believe models should be high level, and as much as

possible structure should be communicated to the solver.
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In order to ameliorate the difficulty of collecting a good set of candidates we en-

courage each competition entrant to submit two models each with a suite of instances

to be considered for inclusion in the challenge. There is an obvious self-interest in pro-

viding such models since they can be models which are particularly good for the solver

entered by the models’ authors. We readily accept this as part of the cost of generating

good new models for the challenge. It also has a side effect of generating a variety of

models, since they will be of the interest and/or strength of the solver implementers.

A set of candidate models and instances is put together by the challenge organiz-

ers. The candidates are selected to try and cover the broad spectrum of constraint

programming problems:

– industrial problems: which arise from real world problems

– mixed integer programming style problems: where the constraints are principally

linear

– artificial intelligence style problems: where the integers are principally placeholders

for enumerated types, and the bulk of the constraints are non-arithmetic like 6=,

alldifferent, etc.

– combinatorial problems: arising from mathematics which are typically very small

problems in size but very hard to solve or optimize.

We also make some attempt to cover the global constraints available in MiniZinc in the

candidate selection. We try to concentrate on the most important global constraints

(this is the list suggested for standardization by Nicolas Beldiceanu):

– alldifferent

– cumulative

– diffn (or preferably geost which is not expressible in MiniZinc since it is higher-

order)

– element although this is considered a basic constraint in MiniZinc

– global cardinality

– regular (table is a special case of regular)

But any global appearing in the MiniZinc library is eligible to appear in a candidate

model. Apart from those above we have favored globals such as sliding sum (sequence)

which have reasonably good decompositions. The reasoning here is that we don’t want

to just be testing whether a solver has the global defined natively or not. Finally we

also want a mix of satisfaction and optimization problems, some of which should be

unsatisfiable.

The candidate models and instances are given to our judging panel for consideration

and they initially commit to a set of models. We then reserve some of the easy instances

of each model for pre-competition phase. We test each entrant to the competition on

a large set of FlatZinc conformance benchmarks to verify what features of MiniZinc

they support and to check that their implementations agree with the standard, as well

as on the easy pre-competition instances. After the pre-competition feedback phase the

judges decide on the final set of instances to be used in the challenge (excluding those

used in pre-competition testing). So far the process of instance selection has not been

very formal, with lots of interaction between the organizers and the judges in reaching

a final set of instances.
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2.2 Stress Tests

In the 2008 and 2009 MiniZinc Challenges we used two artificial stress tests as two of

the models:

propagation stress These models perform a large amount of propagation of very

simple constraints. The intent is to measure the overhead of the propagation loop

in the solver.

search stress These models perform a very large amount of search with almost no

propagation per node. They have no solution. The intent is to measure the overhead

of the search mechanism of the solver.

We have decided in future challenges to exclude these from the points system, but still

to run them and make the comparative results available. We also plan to add another

stress test (suggested by Barry O’Sullivan).

initialization stress These models set up a very large model which is then al-

most immediately solved with no search and minimal propagation. The intent is to

measure the robustness of the solver in terms of handling large problem instances.

Why do we plan to omit these from the scoring system in the future? The problem

is such artificial benchmarks can give widely varying results dependent on different

features of the systems being tested. Hence they can be quite misleading.

The propagation stress benchmarks we used take O(n3) propagation steps for most

propagation queueing strategies, but its possible to take O(n2) if the queueing strategy

is lucky. Similarly the benchmarks used effectively solved at the root, and then sim-

ply required the remaining variables to be fixed to the lower bound. This drastically

penalized the Gecode copying solver since it needed to copy the entire problem many

times simply to set each remaining variable to its lower bound.

The search stress benchmarks are quite simple in terms of search, which makes

them amenable to solvers with learning. The g12 lazyfd solver is able to solve them

substantially easier than any solver without learning.

For this reason we have decided to omit them from the scoring system, even though

for most systems they do provide quite valuable data on the performance of individual

components of the system.

2.3 Challenge Classes

There are currently three classes in the challenge:

– FD search: where the solver must follow the given search specification in the model

– Free search: where the solver can ignore the search specification

– Multi-core: where a multiple core CPU is made available to the solver (and the

search is free).

The FD search class is the main class of interest to us as solver developers. We use

an extensive range of preliminary testing to check whether the entered solvers respect

the MiniZinc search annotations. If they pass all these tests we assume they act cor-

rectly. Note that it is difficult, if not impossible, to confirm dynamic search behaviour

on arbitrary instances since different solvers propagate differently which changes the

dynamic decisions made at search, thus completely changing the results.
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Comparing solvers on the same search strategy gives the fairest comparison of the

propagation engines and the individual propagators. At least some of the models chosen

use static search which means that we can be assured that the solvers are searching

the same underlying search tree.

Building tools and examples to check that the search annotations were followed

was instructive, it forced us to formalize the output of multiple solutions, and overall

has lead to significant improvement in output handling in FlatZinc.

The Free search class is principally there because we would like to compare against

solvers with very different underlying methodologies like MIP based solvers, SAT based

solvers and local search based solvers. Presently, since we still pass the search annota-

tion to the solver, most of the solvers simply act the same as in FD search. We have

considered adding a “No search” class where the search annotation is stripped from the

model so it is not available to the solvers, but this seems too similar to Free search and

also against our philosophy of taking advantage of structure (here search structure)

when available.

The Multi-core class was introduced for the first time in 2009, and we only had one

solver capable of taking advantage of multi-core execution, Gecode. In future challenges

we intend to automatically enter all solvers in this class, and those that don’t support

multi-core will simply run single threaded. Clearly given the changing architecture of

modern CPUs, constraint programming systems have to adapt to take advantage of

the resources available. By comparing all solvers in this class we can see the advantages

possible to a solver that has made the effort to take advantage of multi-core CPUs.

All systems are run on each instance with a 15 minute wall clock limit, when

they are killed by the operating system. This means that solver developers are not

responsible for accurate timing. For optimization problems the solvers output solutions

as they are found and the last complete output solution is used as the result for that

solver. Each solution produced is independently checked by two solvers to see that it

satisfies the problem constraints. We obviously can’t check unsatisfiability, or claims on

proof of optimality, but we do check that there is no contradiction across the solvers.

2.4 Scoring

Scoring in the International CSP solving competition [14] is, like many other competi-

tions, just based on the number of instances that could be solved within a fixed time

limit. This approach is feasible for satisfaction problems only but seems difficult to

extend to optimization problems. Even for satisfaction problems alone it does not dif-

ferentiate speed of solving. For problems with exponential time complexity this means

that it may not differentiate greatly. Imagine a set of instances each requiring 10 times

more search then the last. A system that is 5 times faster will solve at most one more

instance in a fixed time limit than the base system.

Scoring in the MiniZinc Challenge is based on a purse system. There is a purse of

points P given for each instance and this is spread about the systems that solve the

instance to some degree. It is based on the approach used by the 2005 and 2007 SAT

competitions [15]. It has the following features that we see as desirable:

– It gives more points for solving hard benchmarks than easy ones

– It gives more points for solving a benchmark fast

– It gives more points for finding a better solution within the time limit



8

– It gives more points for proving optimality.

For satisfaction problems the purse is split so that 50% of the points go for just

solving the problem, and the rest are divided so that systems solving it faster are

awarded more points. For optimization problems the purse is split so that some points

are awarded for the quality of solution found, and more points are awarded for proving

optimality, and in this case the solvers that prove optimality in less time are rewarded.

The rationale for this approach is that a solver should keep going to the time limit

if it is yet to prove optimality. For details of the scoring system see the competition

rules [11].

Note that in many competitions a wrong answer can be used to completely disqual-

ify a solver, or disqualify it from a category. We are lenient in this respect only awarding

no points for the erroneous instance. We believe this is justified since we don’t have

a huge number of entrants and the level of complexity of a constraint programming

solver is well beyond that of solvers in e.g. SAT competitions.

3 The Future of the MiniZinc Challenge

Comparing constraint programming systems is a much harder task than comparing

SAT solvers, because of the wide variety of features in a constraint programming sys-

tem. MiniZinc overcomes some of the obstacles by handling global constraints, and

defining a simple but expressive search language. Still any comparison of CP systems

is by definition incomplete. What lessons have we learned from the completed Chal-

lenges? The first, for those still is doubt, is verification that a copying approach to

solving (Gecode) is highly competitive. The second is probably that the results of

competitions are not that relevant to the ability of a system to solve hard real-world

problems!

We are seeing a slowly growing number of entrants in the challenge each year.

Clearly we would like to see this continue. We are keen to encourage participants from

outside the CP area to compete, so that we can see how good other technologies are at

tackling the problems we think of as our own. In 2010 we expect to have an entry from

the mixed integer programming optimization community, and it will be interesting to

see how well they perform, particularly on optimization problems.

MiniZinc and FlatZinc are fairly large languages so presently the challenge re-

stricts itself to the integer subset of the language, and restricts the kind of search

annotations that are allowed. We plan to add classes for problems including floats and

set constraints when we have sufficient entries that support them. We also plan to

extend the set of search annotations available in MiniZinc and those usable in the

challenge models, when a sufficiently large set of solvers support them.

MiniZinc and FlatZinc are also evolving. Some changes, like extending the Mini-

Zinc language and set of globals do not place additional burdens on the solver writers,

but others do. We have to manage the trade off of quickly evolving these languages

to be a more useful standard, versus overburdening solver implementers with many

features to add or modify.

We hope that the MiniZinc Challenge inspires solver developers to support Mini-

Zinc, inspires modellers to make a large publicly available suite of benchmarks available

to the community, and proves an effective stimulant to the development of powerful,

robust constraint programming technology.
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