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Linear equality and inequality constraints arise naturally in specifying many aspects of user inter-
faces, such as requiring that one window be to the left of another, requiring that a pane occupy
the leftmost third of a window, or preferring that an object be contained within a rectangle if
possible. Previous constraint solvers designed for user interface applications cannot handle simul-
taneous linear equations and inequalities eÆciently. This is a major limitation, as such systems
of constraints arise often in natural declarative speci�cations. We describe Cassowary|an incre-
mental algorithm based on the dual simplex method, which can solve such systems of constraints
eÆciently. We have implemented the algorithm as part of a constraint solving toolkit. We discuss
the implementation of the toolkit, its application programming interface, and its performance.

Categories and Subject Descriptors: D.1.6 [Software]: Logic Programming; D.2.2 [Software]: Tools and Tech-
niques; G.1.3 [Mathematics of Computing]: Numerical Linear Algebra; G.1.6 [Mathematics of Computing]:
Optimization

General Terms: Constraints, User Interface

Additional Key Words and Phrases: Cassowary, constraint-solving toolkit

1. INTRODUCTION

Linear equality and inequality constraints arise naturally in specifying many aspects of
user interfaces especially layout and other geometric relations. Inequality constraints, in
particular, are needed to express relationships such as “inside,” “above,” “below,” “left-of,”
“right-of,” and “overlaps.” For example, if we are designing a web document, we can ex-
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(a) (b) (c) (d)

Fig. 1. Demonstrating a theorem about quadrilaterals

press the requirement that figure1 be to the left of figure2 as the constraint figure1.rightSide� figure2.leftSide.
It is important to be able to express preferences as well as requirements in a constraint

system used for graphical layout. For example, we must be able to express a desire for
stability when moving parts of an image: things should stay where they were unless there is
some reason for them to move. A second use for preferred constraints is to cope gracefully
with invalid user inputs. For example, if the user tries to move a figure outside of its
bounding window, it is reasonable for the figure just to bump up against the side of the
window and stop, rather than causing an exception. A third use of non-required constraints
is to balance conflicting desires, for example in laying out a graph.

In this paper we describe Cassowary, an incremental constraint satisfaction algorithm,
that can solve such systems of constraints efficiently. A traditional demonstration of
constraint-based graphics is the Quadrilateral Theorem. Figure 1 shows four screen shots
from our Smalltalk implementation of Cassowary. In the demonstration, each side of the
quadrilateral is bisected, and lines are drawn between the midpoints. (These inner lines al-
ways form a parallelogram.) This is expressed as constraints that each midpoint lie halfway
between the endpoints of its line. In addition, all points are constrained to be at least 10
pixels from the sides of the window—these additional inequality constraints make this
collection of constraints beyond the scope of most interactive solvers.

In Figure 1a we have picked up one of the midpoints with the mouse and begun to
move it by temporarily adding an edit constraint equating the position of the midpoint
and the mouse. This constraint is strongly preferred but not required—we will violate it
if necessary. The remaining points are weakly constrained to stay where they are by stay
constraints. In Figure 1b the mouse has been moved to the right, and to keep the midpoint
constraint satisfied the right-most vertex has moved as well. We continue moving to the
right. In Figure 1c the right-most vertex has run into the imaginary wall resulting from the
constraint that it be at least 10 pixels from the window boundary, and can move no further,
so the bottom vertex has begun moving. Finally, in Figure 1d the mouse has moved beyond
the permitted region for the midpoint. The midpoint has moved as close to the mouse as
possible, thus causing the two endpoints of its line to be pressed against the boundary as
well.

Figure 2 illustrates a more complex application of Cassowary, namely SCWM, the Scheme
Constraints Window Manager [Badros et al. 2000]. In the screen shot, XTerm A is con-
strained to be to the left of XTerm B, and above XTerm C. Additionally, XTerm C is re-
quired to have a minimum width, and the XEmacs window’s southeast corner is anchored
at its current location. All of these constraints are maintained as the user manipulates the
windows. A button bar at the bottom of the screen provides a graphical interface for apply-
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Fig. 2. Screen shot from the Scheme Constraints Window Manager

ing constraints to windows. In addition, we have turned on the “constraint investigator,”
which provides a visual representation of the active constraints.

Efficient techniques are available for solving systems of linear constraints if the con-
straint network is acyclic. However, in trying to apply constraint solvers to real-world
problems, we found that the collection of constraints was often cyclic, and included both
equalities and inequalities. Cycles sometimes arise when the programmer added redun-
dant constraints—the cycles could have been avoided by careful analysis. However, the
analysis is an added burden on the programmer. Further, it is clearly contrary to the spirit
of the whole enterprise to require programmers to be constantly on guard to avoid cycles
and redundant constraints; after all, one of the goals in providing constraints is to allow
programmers to state what relations they want to hold in a declarative fashion, leaving it to
the underlying system to enforce these relations. For other applications, such as complex
layout problems with conflicting goals, cycles seem unavoidable. A solver that can handle
cycles of both equality and inequality constraints is thus highly desirable.

1.1 Constraint Hierarchies and Comparators

Since we want to be able to express preferences as well as requirements in the constraint
system, we need a specification for how conflicting preferences are to be traded off. Con-
straint hierarchies [Borning et al. 1992] provide a general theory for this. In a constraint
hierarchy each constraint has a strength. The required strength is special, in that required
constraints must be satisfied. The other strengths all label non-required constraints. A con-
straint of a given strength completely dominates any constraint with a weaker strength—the
strong constraint must be satisfied as well as possible before the weaker constraint can have
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any effect on the solution. In the theory, a comparator is used to compare different possible
solutions to the constraints and select among them. Given a constraint hierarchy, ideally
we would find one solution that is “better” than all others using this comparator. However,
in most cases there will be many equally good solutions, and any one of these will be a
correct answer.

A labelled primitive constraint is a primitive constraint labelled with a strength, writ-
ten sc, where s is a strength and c is a primitive constraint. Strengths are non-negative
integers; for clarity we give them symbolic names. Strength 0, with the symbolic name
required, is always reserved for required constraints. In the examples here, we use three
strengths: required, strong, and weak. However, the approach permits any finite number
of strengths.

Formally, a constraint hierarchy is a multiset of labelled primitive constraints. Given
a constraint hierarchy H, H0 denotes the multiset of required primitive constraints in H,
with their labels removed. In the same way, we define the multisets H1; H2; : : : ; Hn for
strengths 1; 2; : : : ; n.

A valuation is a mapping of variables to values, written fx1 7! d1; : : : ; xn 7! dngwhere
x1; : : : ; xn are distinct variables and d1; : : : ; dn are values (in this paper, real numbers).
The set S of solutions to the hierarchy is defined as follows. S0 is the set of valuations such
that all the H0 constraints hold; from this we form S by eliminating all potential valuations
that are worse than some other potential valuation using the comparator predicate better.

S0 = f� j 8c 2 H0 c� holdsg

S = f� j � 2 S0 ^ 8� 2 S0 :better(�; �;H)g

Within this framework a number of variations are possible. One decision is whether we
only compare solutions on a constraint-by-constraint basis (a local comparator), or whether
we take some aggregate measure of the unsatisfied constraints of a given strength (a global
comparator). A second choice is whether we are concerned only whether a constraint is
satisfied or not (a predicate comparator), or whether we also want to know how nearly
satisfied it is (a metric comparator). Constraints whose domain is a metric space, such
as constraints on the reals, can have an associated metric error function. The error in
satisfying such a constraint is 0 if and only if the constraint is satisfied, and becomes larger
the less nearly satisfied the constraint is.

For inequality constraints it is important to use a metric rather than a predicate com-
parator [Borning et al. 1996]. Thus, plausible comparators for use with linear equality
and inequality constraints are locally-error-better, weighted-sum-better, and least-squares-
better. For a given collection of constraints, Cassowary finds a weighted-sum-better solu-
tion. (Every weighted-sum-better solution is also a locally-error-better solution.)

We assume an error function e(c�) that returns a non-negative real number indicating
how nearly the primitive constraint c is satisfied for a valuation �. For a linear equation c
of the form l = 0 (l is a linear expression) the error function is e(c�) = jl�j, while for a
linear inequality c of the form l � 0 the error function is

e(c�) =

�
l� where l� > 0
0 otherwise

For the weighted-sum-better comparator, a solution � can be thought of as mapping a
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constraint hierarchy H to a tuple of errors defined by

[�c2H1
e(c�);�c2H2

e(c�); : : :�c2Hn
e(c�)]

Then one solution � is better than another solution � if the corresponding tuple of errors is
lexicographically smaller.

For example, consider the constraint hierarchy

required 2xm = xl + xr

strong xr = 90

weak xl = 50

weak xr = xm + 10

and consider the two solutions �1 � fxl 7! 50; xm 7! 60; xr 7! 70g and �2 � fxl 7!
50; xm 7! 70; xr 7! 90g. The corresponding error tuples are [20; 0] and [0; 10], so �2 is
weighted-sum-better than �1, since [0; 10] is lexicographically less than [20; 0].

In what follows we shall only consider non-required constraints of the form strength v =
d where v is a variable and d a value. Note that we can straightforwardly translate any
constraint hierarchy into an equivalent constraint hierarchy in this form by replacing a non-
required constraint strength l = 0 by required l = el, strength el = 0 and replacing a non-
required constraint strength l � 0 by required l�el � 0, required el � 0, strength el = 0.

1.2 Adapting the Simplex Algorithm

Linear programming is concerned with solving the following problem:

Consider a collection of n real-valued variables x1; : : : ; xn, each of which is
constrained to be non-negative: xi � 0 for 1 � i � n. Suppose there are m
linear equality or inequality constraints over the x i, each of the form:

a1x1 + : : :+ anxn = c,
a1x1 + : : :+ anxn � c, or
a1x1 + : : :+ anxn � c.

Given these constraints, find values for the xi that minimize (or maximize) the
value of the objective function

e+ d1x1 + : : :+ dnxn.

This problem has been heavily studied for the past fifty years. The most commonly
used technique for solving it is the simplex algorithm, developed by Dantzig in the 1940s.
There are now numerous variations of it, but unfortunately existing implementations of the
simplex algorithm are not readily usable for user interface applications.

The principal difficulty is incrementality. For interactive graphical applications, we need
to solve similar problems repeatedly, rather than solving a single problem once. To achieve
interactive response times, fast incremental algorithms that exploit prior computations are
needed. There are two common cases that algorithmic changes should try to improve.
First, when moving an object with a mouse or other input device, we typically represent
this interaction as a one-way constraint relating the mouse position to the desired x and y
coordinates of a part of the figure. For each screen refresh, we must re-satisfy the same
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collection of constraints while varying only the mouse location input. The second common
operation that incremental algorithms can optimize occurs when editing an object in a
complex system. Ideally, when adding or removing a small number of constraints, we
would like to avoid re-solving the entire system. Although the performance requirements
for this case are less stringent than for the first case, since it is a less frequent operation, we
still wish to increase performance by reusing as much of the previous solution as possible.

Another important issue when applying simplex to user interface applications is defining
a suitable objective function. We must accommodate non-required constraints of differ-
ent strengths, which is analogous to multi-objective linear programming problems. Also,
the objective function in the standard simplex algorithm must be a linear expression; but
the objective functions for the locally-error-better, weighted-sum-better, and least-squares-
better comparators are all non-linear. For Cassowary, we avoid the least-squares-better
comparator and use a quasi-linear objective function to implement the weighted-sum-better
comparator (see Section 2.3).

Finally, a minor issue is accommodating variables that may take on both positive and
negative values, which is generally the case in user interface applications. (The standard
simplex algorithm requires all variables to be non-negative.) Here we adopt efficient tech-
niques developed for implementing constraint logic programming languages (see Section
2.1).

1.3 Implementation Overview

The Cassowary algorithm has been implemented in Smalltalk, C++, and Java as part of our
Cassowary Constraint Solving Toolkit, and is freely available for download [Badros and
Borning 2001]. The library performs surprisingly well, and a summary of our performance
measurements is given in Section 3. A re-implementation of the algorithm based on this
paper is also reasonable, given a knowledge of the simplex algorithm. The electronic
appendix to this paper, available via the ACM Digital Library, provides additional details
regarding our implementations of the Cassowary algorithm.

1.4 Related Work

There is a long history of using constraints in user interfaces and interactive systems, be-
ginning with Ivan Sutherland’s pioneering Sketchpad system [Sutherland 1963]. Most of
the current systems use one-way constraints (e.g., [Hudson and Smith 1996; Myers 1996]),
or local propagation algorithms for acyclic collections of multi-way constraints (e.g., [San-
nella et al. 1993; Vander Zanden 1996]). Indigo [Borning et al. 1996] handles acyclic col-
lections of inequality constraints, but not cycles (simultaneous equations and inequalities).
User interface systems that handle simultaneous linear equations include DETAIL [Hosobe
et al. 1996] and Ultraviolet [Borning and Freeman-Benson 1998]. A number of researchers
(including the second author) have experimented with a straightforward use of a simplex
package in a UI constraint solver, but the speed was not satisfactory for interactive use.

Baraff [1994] describes a quadratic optimization algorithm for solving linear constraints
that arise in modeling physical systems. Finally, much of the work on constraint solvers
has been in the logic programming and constraint logic programming communities. Cur-
rent constraint logic programming languages such as CLP(R) [Jaffar et al. 1992] include
efficient solvers for linear equalities and inequalities. (See Marriott and Stuckey [1998]
for a survey.) However, these solvers use a refinement model of computation, in which the
values determined for variables are successively refined as the computation progresses, but
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there is no specific notion of state and change. As a result, these systems are not especially
well suited for building interactive graphical applications.

An earlier paper [Borning et al. 1997] describes both the original version of Cassowary
(in much less detail than in this paper), and also the related QOCA algorithm. (QOCA uses
much the same solving technique as Cassowary, but implements uses a least-squares-better
comparator, which strongly penalizes outlying values when comparing constraints of the
same strength.) The incremental constraint deletion procedure is described in Huynh and
Marriot [1995].

2. INCREMENTAL SIMPLEX

As you see, the subject of linear programming is surrounded by notational
and terminological thickets. Both of these thorny defenses are lovingly culti-
vated by a coterie of stern acolytes who have devoted themselves to the field.
Actually, the basic ideas of linear programming are quite simple. — Numerical
Recipes [Press et al. 1989, page 424].

We now describe an incremental version of the simplex algorithm, adapted for our Cas-
sowary algorithm for interactive graphical applications. In the description we use a running
example, illustrated by the diagram in Figure 3.

xm xrxl

0 10050�10

Fig. 3. Simple constrained picture

The constraints on the variables in Figure 3 are as follows: xm is constrained to be the
midpoint of the line from xl to xr , and xl is constrained to be at least 10 to the left of
xr. All variables must lie in the range -10 to 100. (To keep the presentation manageable,
we deal only with the x coordinates. Adding analogous constraints on the y coordinates
is straightforward but would double the number of constraints in our example.) Since
xl < xm < xr in any solution, we simplify the problem by removing the redundant bounds
constraints. However, even with these simplifications the resulting constraints have a cyclic
constraint graph and cannot be handled by methods such as Indigo [Borning et al. 1996].

With the simplifications, the constraints are

2xm = xl + xr
xl + 10 � xr

xl � �10
xr � 100

2.1 Augmented Simplex Form

Suppose we wish to minimize the distance between xm and xl, or in other words, minimize
xm � xl. (This simple objective function is just used as an initial example; an objective
function for an interactive manipulation problem is described in Section 2.3.)
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The basic simplex algorithm does not itself handle variables that may take negative
values (so-called unrestricted variables). It instead imposes an implicit constraint x � 0
on all variables occurring in its equations. Augmented simplex form allows us to handle
unrestricted variables efficiently and simply; it was developed for implementing constraint
logic programming languages [Marriott and Stuckey 1998], and we have adopted it here.
Conceptually it uses two tableaux rather than one. All of the unrestricted variables from
the original constraints C will be placed in CU , the unrestricted variable tableau. CS ,
the simplex tableau, contains only variables constrained to be non-negative (the restricted
variables).

Thus, an optimization problem is in augmented simplex form if the constraints C have
the form CU ^CS ^CI where CU and CS are conjunctions of linear arithmetic equations,
CI is

V
fx � 0 j x 2 vars(CS)g, and the objective function f is a linear expression over

variables in CS .
The simplex algorithm is used to determine an optimal solution for the equations in the

simplex tableau CS , ignoring the unrestricted variable tableau CU during the optimization
procedure. (CU need only be considered when finding the feasible region, prior to opti-
mization.) The equations in the CU are then used to determine values for the unrestricted
variables.

It is not difficult to re-write an arbitrary optimization problem over linear real equations
and inequalities into augmented simplex form. The first step is to convert inequalities to
equations. Each inequality of the form l � 0, where l is a linear real expression, can be
replaced with l = s ^ s � 0 where s is a newly-introduced non-negative slack variable.

For example, the constraints for Figure 3 can be rewritten as
minimize xm � xl subject to

2xm = xl + xr
xl + 10 + s1 = xr

xl � s2 = �10
xr + s3 = 100

0 � s1; s2; s3

We now separate the equalities into CU and CS . Initially all equations are in CS . We
move the unrestricted variables into CU using Gauss-Jordan elimination. To do this, we
select an equation in CS containing an unrestricted variable xu and remove the equation
from CS . We then solve the equation for xu, yielding a new equation xu = l for some
linear expression l. We then substitute l for all remaining occurrences of xu in CS , CU ,
and f , and place the equation xu = l in CU . The process is repeated until there are no
more unrestricted variables in CS . In our example, xr+s3 = 100 can be used to substitute
100� s3 for xr yielding:

minimize xm � xl subject to

xr = 100� s3 CU

2xm = xl + 100� s3 CS

xl + 10 + s1 = 100� s3
xl � s2 = �10

0 � s1; s2; s3 CI

Next, the first equation of CS can be used to substitute 50 + 1
2
xl �

1
2
s3 for xm, giving

To appear, ACM Transactions on Computer-Human Interaction, Vol. ?, No. ?, ? 2002.
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augmented-simplex-form(C ,f )
CI := ;; CU := ;;
for each inequality l � 0 in C

C := C � fl � 0g
let s be a new slack variable
C := C [ fl = sg
CI := CI [ fs � 0g

endfor
while exists variable y in vars(C) � vars(CI )

let y = l 2 C where y 62 vars(l)
C := C � fcg
replace y by l in CU [ C and in f
CU := CU [ fy = lg

endwhile
CS := C
return (CU ; CS ; CI ; f)

Fig. 4. Take an initial constraint C and objective function f and return an equivalent augmented simplex form
CU [ CS [ CI with f

minimize 50� 1
2
xl �

1
2
s3 subject to

xm = 50 + 1
2
xl �

1
2
s3

xr = 100� s3 CU

xl + 10 + s1 = 100� s3 CS

xl � s2 = �10

0 � s1; s2; s3 CI

Now we move xl to CU using xl = s2 � 10, giving

minimize 55� 1
2
s2 �

1
2
s3 subject to

xm = 45 + 1

2
s2 �

1

2
s3

xr = 100� s3
xl = s2 � 10 CU

s2 + s1 = 100� s3 CS

0 � s1; s2; s3 CI

The general algorithm is shown in Figure 4. Note that in this and subsequent algorithms
we treat constraints modulo logical equivalence, so that for example the constraint 2xm �
xl = xr is identical to the constraint xm = 1

2
xr +

1
2
xl, and use this implicitly in matching

the forms of constraints.
Hereafter, the labels forCU andCS will be omitted: constraints above the horizontal line

are in CU , and constraints below the line are in CS . Also, CI will be omitted entirely—any
variable occurring below the horizontal line is implicitly constrained to be non-negative.

The simplex method works by taking an optimization problem in “basic feasible solved
form” (a type of normal form) and repeatedly applying matrix operations to obtain new
basic feasible solved forms. Once we have split the equations into CU and CS we can
ignore CU for purposes of optimization.
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In the implementation, all variables that may be accessed from outside the solver are
unrestricted. Only error or slack variables are represented as restricted variables, and these
variables occur only within the solver. (See the Electronic Appendix for further details.)
The primary benefit of this simplification is that the programmer using the solver always
uses just the one kind of variable. A minor benefit is that only the external, unrestricted
variables actually store their values as a field in the variable object; the values of restricted
variables are just given by the tableau. A minor drawback is that the constraint x � 0 must
be represented explicitly for an external variable x. (In any case, x � b would need to be
represented explicitly for any other constant b 6= 0.)

In our running example, the constraints imply that x r is non-negative. However, since
xr is accessible from outside the solver, we represent it as unrestricted. This does not
change the solutions found. Also, we show the operations as modifying CU as well as
CS . It would be possible to modify just CS and leave CU unchanged, using CU only to
define values for the variables on the left hand side of its equations. This would speed
up pivoting, but it would make the incremental updates of the constants in edit constraints
slower (Section 2.4). Because the latter is a much more frequent operation, we do actually
modify both CU and CS in the implementation.

An augmented simplex form optimization problem is in basic feasible solved form if the
equations are of the form

x0 = c+ a1x1 + : : :+ anxn

where the variable x0 does not occur in any other equation or in the objective function. If
the equation is in CS , c must be non-negative. However, there is no such restriction on the
constants for the equations in CU . In either case the variable x0 is said to be basic and the
other variables in the equation are parameters. A problem in basic feasible solved form
defines a basic feasible solution, which is obtained by setting each parametric variable to
0 and each basic variable to the value of the constant in the right-hand side. Note that the
basic feasible solution may not be an optimal solution.

For instance, the following constraint is in basic feasible solved form and is equivalent
to the problem above.

minimize 55� 1
2
s2 �

1
2
s3 subject to

xl = �10 + s2
xm = 45 + 1

2
s2 �

1
2
s3

xr = 100� s3
s1 = 100� s2 � s3

The basic feasible solution corresponding to this basic feasible solved form is

fxl 7! �10; xm 7! 45; xr 7! 100; s1 7! 100; s2 7! 0; s3 7! 0g:

The value of the objective function with this solution is 55.

2.2 Simplex Optimization

We now describe how to find an optimum solution to a constraint in basic feasible solved
form. Except for the operations on the additional unrestricted variable tableau C U , the
material presented in this subsection is simply Phase II of the standard two-phase simplex
algorithm.
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The simplex algorithm finds the optimum by repeatedly looking for an “adjacent” basic
feasible solved form whose basic feasible solution decreases the value of the objective
function that we are minimizing. When no such adjacent basic feasible solved form can
be found, we have achieved an optimum. The underlying operation is called pivoting and
involves exchanging a basic and a parametric variable using matrix operations. Thus, by
“adjacent” we mean the new basic feasible solved form can be reached by performing a
single pivot.

In our example, increasing s2 from 0 will decrease the value of the objective function
we are minimizing. We must be careful: we cannot increase the value of s 2 indefinitely
as this may cause the value of some other basic non-negative variable to become negative.
We must examine the equations in CS . The equation s1 = 100 � s2 � s3 allows s2 to
take at most a value of 100, because if s2 becomes larger than this, then s1 would become
negative. The equations above the horizontal line do not restrict s 2, since whatever value
s2 takes the unrestricted variables xl and xm can take values to satisfy the equations. In
general, we choose the most restrictive equation in CS , and use it to eliminate s2. In the
case of ties we arbitrarily break the tie. In this example, the most restrictive equation (there
is only one) is s1 = 100�s2�s3. Writing s2 as the subject we obtain s2 = 100�s1�s3.
We replace s2 everywhere by 100� s1 � s3 and obtain

minimize 5 + 1

2
s1 subject to

xl = 90� s1 � s3
xm = 95� 1

2
s1 � s3

xr = 100� s3
s2 = 100� s1 � s3

We have just performed a pivot, having moved s 1 out of the set of basic variables and
replaced it by moving s2 into the basis.

We continue this process. Increasing the value of s1 would increase the value of the
objective function (which we are trying to minimize, so we don’t want to do this). Note
that decreasing s1 would decrease the objective function’s value, but as s1 is constrained
to be non-negative, it already takes its minimum value of 0 in the associated basic feasible
solution. Hence we are at an optimal solution.1

In general, the simplex algorithm applied to CS is described as follows. We are given a
problem in basic feasible solved form in which the variables x 1; : : : ; xn are basic and the
variables y1; : : : ; ym are parameters.

minimize e+
Pm

j=1 djyj subject to
Vn

i=1 xi = ci +
Pm

j=1 aijyj ^Vn
i=1 xi � 0 ^

Vm
j=1 yj � 0:

Select an entry variable yJ such that dJ < 0. (An entry variable is one that will enter
the basis, i.e., it is currently parametric and we want to make it basic.) Pivoting on such a
variable can only decrease the value of the objective function. If no such variable exists,
the optimum has been reached. Now determine the exit variable x I . We must choose this

1If we had an unrestricted variable in the objective function, the optimization would be unbounded. This possibil-
ity is not an issue for our algorithm because of the nature of the objective functions that arise from the hierarchical
constraints (see Section 2.3).

To appear, ACM Transactions on Computer-Human Interaction, Vol. ?, No. ?, ? 2002.



12 � Greg Badros et al.

simplex opt(CS ,f )
repeat

% Choose variable yJ to become basic
if for each j 2 f1; : : : ;mg dj � 0 then

return (CS ,f ) % an optimal solution has been found
endif
choose J 2 f1; : : : ;mg such that dJ < 0
% Choose variable xI to become non-basic
choose I 2 f1; : : : ; ng such that
�cI=aIJ = mini2f1;:::;ngf�ci=aiJ j aiJ < 0g

l := (xI � cI �
Pm

j=1;j 6=J
aIjyj)=aIJ

replace yJ by l in f
for each i 2 f1; : : : ; ng

if i 6= I then replace yJ by l in row i endif
endfor
replace the Ith row by yJ = l

endrepeat

Fig. 5. Simplex optimization of a system of equations CS with objective function f in basic-feasible solution
form

variable so that it maintains basic feasible solved form by ensuring that the new c i’s are
still positive after pivoting. That is, we must choose an xI so that �cI=aIJ is a minimum
element of the set

f�ci=aiJ j aiJ < 0 and 1 � i � ng:

If there were no i for which aiJ < 0 then we could stop since the optimization problem
would be unbounded and so would not have a minimum: we could choose y J to take an
arbitrarily large value and thus make the objective function arbitrarily small. However, this
is not an issue in our context since our optimization problems will always have a lower
bound of 0.

We proceed to choose xI , and pivot xI out and replace it with yJ to obtain the new basic
feasible solution. We continue this process until an optimum is reached. The algorithm is
specified in Figure 5 and takes as inputs the simplex tableau CS and the objective function
f .

Finally, we must consider the problem of cycling. A basic feasible solution is degenerate
if some of the basic variables take the value 0. If this is the case, we could perform a pivot
that does not decrease the value of the objective function and that does not change the
corresponding basic feasible solution. In such a case, there is a danger of pivoting back
to the original problem. In practice, such cycling does not occur very often, and in any
event there are simple methods to avoid it. One of these is Bland’s anti-cycling rule, which
we use in our implementations. We number the variables (either with their hash code or a
unique ID). When selecting a variable to enter the basis, we choose the lowest numbered
variable. (This is done in the line “choose J 2 f1; : : : ;mg such that dJ < 0” in Figure 5.)
Similarly, when selecting a variable to exit the basis, if a tie occurs (next line), we choose
the lowest numbered basic variable to break the tie.
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2.3 Handling Non-Required Constraints

Suppose the user wishes to edit xm in the diagram and have xl and xr weakly stay where
they are. This adds the non-required constraints edit xm, stay xl, and stay xr. Suppose
further that we are trying to move xm to position 50, and that xl and xr are currently at 30
and 60 respectively. We are thus imposing the constraints strong xm = 50, weak xl = 30,
and weak xr = 60.

To form an objective function for the weighted-sum-better comparator, we sum the errors
for the each constraint, weighting the errors so that satisfying any strong constraint is al-
ways more important than satisfying any combination of weaker constraints. To implement
this weighting, we might try using large coefficients, e.g. making the errors for strong con-
straints 1000 times larger than those for weak constraints. However, for sufficiently large
values for the constrained variables, we might nevertheless end up in a situation in which
weak constraints were satisfied in preference to strong ones.

Instead, to ensure that strong constraints are always satisfied in preference to weak ones,
Cassowary uses symbolic weights for the coefficients in the objective function, rather than
real numbers. These symbolic weights are represented as tuples and ordered lexicographi-
cally. In the presentation that follows, we will write these symbolic weights as pairs, such
as [1; 2], which represents the symbolic weight consisting of the unit weight for the strong
strength plus twice the unit weight for the weak strength.

For our example, the objective function is

[1; 0]� jxm � 50j+ [0; 1]� jxl � 30j+ [0; 1]� jxr � 60j

where [1; 0] is the weight (in lexicographic numbering) of a strong constraint and [0; 1]
is the weight of a weak constraint. Due to the absolute value operators, this objective
function is not linear, and hence the simplex method is not applicable directly. We now
show how we can solve the problem using quasi-linear optimization.

Both the edit and the stay constraints will be represented as equations of the form

v = �+ Æ+v � Æ�v

where Æ+v and Æ�v are non-negative variables representing the deviation of v from the de-
sired value �. If the constraint is satisfied both Æ+v and Æ�v will be 0. Otherwise Æ+v will
be positive and Æ�v will be 0 if v is too big, or vice versa if v is too small.2 Because we
want Æ+v and Æ�v to be 0 if possible, we make them part of the objective function, with
larger coefficients for the error variables of stronger constraints. (We need to use the pair
of variables to satisfy simplex’s non-negativity restriction, since these variables Æ+v and Æ�v
will be part of the objective function.)

Translating the constraints strong xm = 50, weak xl = 30, and weak xr = 60 which
arise from the edit and stay constraints we obtain:

xm = 50 + Æ+xm � Æ�xm
xl = 30 + Æ+xl � Æ�xl
xr = 60 + Æ+xr � Æ�xr
0 � Æ+xm ; Æ

�
xm

; Æ+xl ; Æ
�
xl
; Æ+xr ; Æ

�
xr

2Although the equation may be satisfied with both Æ+v and Æ�v non-zero, the simplex optimization itself forces at
least one of them to be zero (see Section 2.4).
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as well as the original constraints:

2xm = xl + xr
xl + 10 � xr

xl � �10
xr � 100

The objective function for our example can now be restated as:

minimize [1; 0]Æ+xm + [1; 0]Æ�xm + [0; 1]Æ+xl + [0; 1]Æ�xl + [0; 1]Æ+xr + [0; 1]Æ�xr

An optimal solution of this problem can now be found using the simplex algorithm. The
only point to notice in using symbolic weights as coefficients is that the comparison d J < 0
choosing an entry variable J is a lexicographic comparison. The optimization results in a
tableau

minimize [0; 10] + [1; 2]Æ+xm + [1;�2]Æ�xm + [0; 2]Æ�xl + [0; 2]Æ�xr subject to

xm = 50 +Æ+xm �Æ�xm
xl = 30 +Æ+xl �Æ

�
xl

xr = 70 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl
s1 = 30 +2Æ+xm �2Æ

�
xm
�2Æ+xl +2Æ�xl

s3 = 30 �2Æ+xm +2Æ�xm +Æ+xl �Æ
�
xl

Æ+xr = 10 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl +Æ�xr
s2 = 40 +Æ+xl �Æ

�
xl

This corresponds to the solution fxm 7! 50; xl 7! 30; xr 7! 70g illustrated in Figure 3.
Notice that the weak stay constraint on xr is not satisfied (Æ+xr is non-zero, read directly
from the second to last line of the above tableau).

In general the objective function corresponding to a constraint hierarchy H will be

[1; 0; : : : ; 0]�Æ12�1
Æ1 + [0; 1; : : : ; 0]�Æ22�2

Æ2 + � � � [0; 0; : : : ; 1]�Æn2�n
Æn

where �i is the set of error variables for constraints of strength i. Note that the minimum
of this function is clearly bounded below since all error variables are non-negative.

2.4 Incrementality: Resolving the Optimization Problem

Now suppose the user moves the mouse (which is editing xm) to x = 60. We wish to solve
a new problem, with constraints strong xm = 60, and weak xl = 30 and weak xr = 70
(so that xl and xr should stay where they are if possible).

There are two steps. First, we modify the tableau to reflect the new constraints we wish
to solve. Second, we resolve the optimization problem for this modified tableau.

Let us first examine how to modify the tableau to reflect the new values of the stay
constraints. This will not require re-optimizing the tableau, since we know that the new
stay constraints are satisfied exactly. Suppose the previous stay value for variable v was �,
and in the current solution v takes value �. The current tableau contains the information
that

v = �+ Æ+v � Æ�v

and we need to modify this so that instead

v = � + Æ+v � Æ�v
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There are two cases to consider: (a) both Æ+v and Æ�v are parameters, or (b) one of them is
basic.

In case (a) v must take the value � in the current solution since both Æ+v and Æ�v take the
value 0 and

v = �+ Æ+v � Æ�v

Hence � = � and no changes need to be made.
In case (b) assume without loss of generality that Æ+v is basic. Now, in the original equa-

tion representing the stay constraint, the coefficient for Æ+v is the negative of the coefficient
for Æ�v . Every constraint in the simplex tableau is simply a linear sum of the original con-
straints, since the only modifications to the tableau are by pivoting. Since the Æ+v and Æ�v
variables occur in no other constraints, this relation between the coefficients will continue
to hold as we perform pivots. In other words, Æ+v and Æ�v come in pairs: any equation that
contains Æ+v will also contain Æ�v (with the coefficient negated) and vice versa. Since Æ+v is
assumed to be basic, it occurs exactly once in an equation with constant c, and further this
equation also contains the only occurrence of Æ�v . In the current solution

fv 7! �; Æ+v 7! c; Æ�v 7! 0g

and since the equation

v = �+ Æ+v � Æ�v

holds, � = �+ c. To replace the equation

v = �+ Æ+v � Æ�v

by

v = � + Æ+v � Æ�v

we simply need to replace the constant c in the row for Æ+v by 0. Since there are no other
occurrences of Æ+v and Æ�v we have replaced the old equation with the new.

For our example, to update the tableau for the new values for the stay constraints on x l

and xr we simply set the constant of the second to last equation (the equation for Æ+xr ) to
0. The tableau is now:

minimize [0; 0] + [1; 2]Æ+xm + [1;�2]Æ�xm + [0; 2]Æ�xl + [0; 2]Æ�xr subject to

xm = 50 +Æ+xm �Æ�xm
xl = 30 +Æ+xl �Æ

�
xl

xr = 70 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl
s1 = 30 +2Æ+xm �2Æ

�
xm
�2Æ+xl +2Æ�xl

s3 = 30 �2Æ+xm +2Æ�xm +Æ+xl �Æ
�
xl

Æ+xr = 0 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl +Æ�xr
s2 = 40 +Æ+xl �Æ

�
xl

(For completeness we update the constant part of the objective function, as well as its other
terms, in our running example. However, the constant part of the objective function is
irrelevant for the algorithm, and our implementations ignore it.)

Now let us consider the edit constraints. Suppose the previous edit value for v was �,
and the new edit value for v is �. The current tableau contains the information that

v = �+ Æ+v � Æ�v
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and again we need to modify this so that instead

v = � + Æ+v � Æ�v

To do so we must replace every occurrence of

Æ+v � Æ�v

by

� � �+ Æ+v � Æ�v

taking proper account of the coefficients of Æ+v and Æ�v . (Again, remember that Æ+v and Æ�v
come in pairs.)

If either of Æ+v and Æ�v is basic, this simply involves appropriately modifying the equation
in which they are basic. Otherwise, if both are non-basic, then we need to change every
equation of the form

xi = ci + a0vÆ
+
v � a0vÆ

�
v + e

to

xi = ci + a0v(� � �) + a0vÆ
+
v � a0vÆ

�
v + e

Hence modifying the tableau to reflect the new values of edit and stay constraints involves
only changing the constant values in some equations. The modifications for stay constraints
always result in a tableau in basic feasible solved form, since it never makes a constant
become negative. In contrast the modifications for edit constraints may not.

To return to our example, suppose we pick up xm with the mouse and move it to 60.
Then we have that � = 50 and � = 60, so we need to add 10 times the coefficient of Æ+xm
to the constant part of every row. The modified tableau, after the updates for both the stays
and edits, is

minimize [0; 20] + [1; 2]Æ+xm + [1;�2]Æ�xm + [0; 2]Æ�xl + [0; 2]Æ�xr subject to

xm = 60 +Æ+xm �Æ�xm
xl = 30 +Æ+xl �Æ

�
xl

xr = 90 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl
s1 = 50 +2Æ+xm �2Æ

�
xm
�2Æ+xl +2Æ�xl

s3 = 10 �2Æ+xm +2Æ�xm +Æ+xl �Æ
�
xl

Æ+xr = 20 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl +Æ�xr
s2 = 40 +Æ+xl �Æ

�
xl

Clearly it is feasible and already in optimal form, and so we have incrementally resolved
the problem by simply modifying constants in the tableaux. The new tableaux give the
solution fxm 7! 60; xl 7! 30; xr 7! 90g. So sliding the midpoint rightwards has caused
the right point to slide rightwards as well, but twice as far. The resulting diagram is shown
at the top of Figure 6.

Suppose we now move xm from 60 to 90. The modified tableau is
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0 10050

0 10050

xl xrxm

xr

xl xm

�10

�10

Fig. 6. Resolving the constraints

minimize [0; 60] + [1; 2]Æ+xm + [1;�2]Æ�xm + [0; 2]Æ�xl + [0; 2]Æ�xr subject to

xm = 90 +Æ+xm �Æ�xm
xl = 30 +Æ+xl �Æ

�
xl

xr = 150 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl
s1 = 110 +2Æ+xm �2Æ

�
xm
�2Æ+xl +2Æ�xl

s3 = �50 �2Æ+xm +2Æ�xm +Æ+xl �Æ
�
xl

Æ+xr = 60 +2Æ+xm �2Æ
�
xm

�Æ+xl +Æ�xl +Æ�xr
s2 = 40 +Æ+xl �Æ

�
xl

The tableau is no longer in basic feasible solved form, since the constant of the row for
s3 is negative, even though s3 is supposed to be non-negative. (In this solution xr = 150,
so that the right endpoint has crashed through the x r � 100 barrier.)

Thus, in general, after updating the constants for the edit constraints, the simplex tableau
CS may no longer be in basic feasible solved form, since some of the constants may be
negative. However, the tableau is still in basic form, so we can still read a solution directly
from it as before. Also, because no coefficient has changed (in particular the optimization
function is the same), the resulting tableau reflects an optimal but not feasible solution.

We need to find a feasible and optimal solution. We could do so by adding artificial vari-
ables (as when adding a constraint—see Section 2.5), optimizing the sum of the artificial
variables to find an initial feasible solution, and then re-optimizing the original problem.

But we can do much better. The process of moving from an optimal and infeasible so-
lution to an optimal and feasible solution is exactly the dual of normal simplex algorithm,
where we progress from a feasible and non-optimal solution to feasible and optimal solu-
tion. Hence we can use the dual simplex algorithm to find a feasible solution while staying
optimal.

Solving the dual optimization problem starts from an infeasible optimal solved form
tableau

minimize e+�m
j=1djyj subject toVn

i=1 xi = ci +�m
j=iaijyj

where some ci may be negative for rows with non-negative basic variables (accounting for
the tableau’s infeasibility) and each dj is non-negative (so it is optimal).

The dual simplex algorithm selects an exit variable by finding a row I with non-negative
basic variable xI and negative constant cI . The entry variable is the variable yJ such that
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re optimize(CS ,f )
foreach stay : v 2 C

if Æ+v or Æ�v is basic in row i then ci := 0 endif
endfor
foreach edit : v 2 C

let � and � be the previous and current edit values for v
let Æ+v be yj
foreach i 2 f1; : : : ; ng

ci := ci + aij (� � �)
endfor

endfor
repeat

% Choose variable xI to become non-basic
choose I where cI < 0
if there is no such I

return true
endif
% Choose variable yJ to become basic
if for each j 2 f1; : : : ;mg aIj � 0 then

return false
endif
choose J 2 f1; : : : ;mg such that

dJ=aIJ = minj2f1;:::;mgfdj=aIj j aIj > 0g

l := (xI � cI �
Pm

j=1;j 6=J
aIjyj)=aIJ

replace yJ by l in f
for each i 2 f1; : : : ; ng

if i 6= I then replace yJ by l in row i endif
endfor
replace the Ith row by yJ = l

until false

Fig. 7. Dual simplex re-optimization of constraints CS with objective function f in infeasible optimal solved
form

the ratio dJ=aIJ is the minimum of all dj=aIj where aIj is positive.3 This selection criteria
ensures that when pivoting we stay at an optimal solution. The pivot replaces y j by

�1=aIj(�xI + cI +�m
j=1;j 6=JaIjyj)

and is performed as in the (primal) simplex algorithm. The algorithm is shown in Figure 7.
Continuing the example above, we select the exit variable s3—the only non-negative ba-

sic variable for a row with negative constant. We find that Æ+xl has the minimum ratio since
its coefficient in the optimization function is 0, so it will be the entry variable. Replacing
Æ+xl everywhere by 50 + s3 + 2Æ+xm � 2Æ�xm + Æ�xl we obtain the tableau

3Recall that the dj will be lexicographic coefficients, so this minimization is with respect to the lexicographic
order.
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minimize [0; 60] + [1; 2]Æ+xm + [1;�2]Æ�xm + [0; 2]Æ�xl + [0; 2]Æ�xr subject to

xm = 90 +Æ+xm �Æ�xm
xl = 80 +s3 +2Æ+xm �2Æ

�
xm

xr = 100 �s3
s1 = 10 �2s3 �2Æ

+
xm

+2Æ�xm
Æ+xl = 50 +s3 +2Æ+xm �2Æ

�
xm

+Æ�xl
Æ+xr = 10 �s3 +Æ�xr
s2 = 90 +s3 +2Æ+xm �2Æ

�
xm

The tableau is feasible (and of course still optimal) and represents the solution fxm 7!
90; xr 7! 100; xl 7! 80g. So by sliding the midpoint further right, the rightmost point hits
the wall and the left point slides right to satisfy the constraints. The resulting diagram is
shown at the bottom of Figure 6.

To summarize, incrementally finding a new solution for new input variables involves
updating the constants in the tableaux to reflect the updated stay constraints, then updating
the constants to reflect the updated edit constraints, and finally re-optimizing if needed.
In an interactive graphical application, this dual optimization method typically requires a
pivot only when one part of the figure first hits or first moves away from a barrier. The
intuition behind this is that when a constraint first becomes unsatisfied, the value of one
of its error variables will become non-zero, and hence the variable will have to enter the
basis; conversely, when a constraint first becomes satisfied, we can move one of its error
variables out of the basis.

In the example, pivoting occurred when the right point x r came up against a barrier.
Thus, if we picked up the midpoint xm with the mouse and smoothly slid it rightwards, 1
pixel every screen refresh, only one pivot would be required in moving from 50 to 95. This
behavior is why the dual optimization is well suited to this problem and leads to efficient
resolving of the hierarchical constraints.

2.5 Incrementality: Adding a Constraint

We now describe how to add a new constraint incrementally. This technique is also used
in our implementation to find an initial basic feasible solved form for the original simplex
problem, by starting from an empty constraint set and adding the constraints one at a time.

As an example, suppose we wish to require that the midpoint be centered, i.e. to add
a required constraint xm = 50 to the final tableau given in Section 2.2, page 11. For
reference, that tableau is:

xl = 90� s1 � s3
xm = 95� 1

2
s1 � s3

xr = 100� s3
s2 = 100� s1 � s3

If we substitute for each of the basic variables in xm = 50 (namely xm), we obtain the
equation 45� 1

2
s1�s3 = 0. In order to add this constraint straightforwardly to the tableau

we create a new non-negative variable a called an artificial variable. (This technique is
simply an incremental version of the operation used in Phase I of the two-phase simplex
algorithm.) We let a = 45� 1

2
s1 � s3 be added to the tableau (clearly this gives a tableau

in basic feasible solved form) and then minimize the value of a. If a takes the value 0 then
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we have obtained a solution to the problem with the added constraint, and we can then
eliminate the artificial variable altogether since it is a parameter (and hence takes the value
0). This is the case for our example; the resulting tableau is

xl = 0 + s3
xm = 50
xr = 100� s3
s1 = 90� 2s3
s2 = 10 + s3

In general, to add a new constraint to the tableau, if it is an inequality we first convert
it to an equation by adding a slack variable. Next, we use the current tableau to substitute
out all the basic variables. This gives an equation l = 0, where l is a linear expression. If
the constant part of l is negative, we multiply both sides of the equation l = 0 by �1 so
that the constant becomes non-negative. If l contains an unrestricted variable we use it to
substitute for that variable and add the equation to the tableau above the line (i.e., to C U ).
Otherwise we create a restricted artificial variable a, add the equation a = l to the tableau
below the line (i.e., to CS), and minimize a. If the resulting minimum is not zero then the
constraints are unsatisfiable. Otherwise a is either parametric or basic. If a is parametric,
the column for it can be simply removed from the tableau. If it is basic, the row must have
constant 0 (since we were able to achieve a value of 0 for our objective function, which is
equal to a). If the row is just a = 0, it can be removed. Otherwise, a = 0+ bx+ : : :, where
b 6= 0. We can then pivot x into the basis using this row and remove the column for a.

If the equation being added contains any unrestricted variables after substituting out all
the basic variables, as described above we do not need to use an artificial variable. Not
only that, we could not use an artificial variable, since we cannot put an equation in C S

that contains an unrestricted variable. In some other cases we can avoid using an artificial
variable for efficiency, even though it would be permissible to use one. We can avoid using
an artificial variable if we can choose a subject for the equation from among its current
variables.

Here are the rules for choosing a subject. (These are to be used after replacing any
basic variables with their defining expressions.) We are adding the constraint l = 0 to the
tableau. If necessary, normalize l by multiplying by �1 so that its constant part is non-
negative. We want to pick a variable in l to be the subject of an equation, so that we can
add the row v = l0, where l0 the result of solving l = 0 for v.

—If l contains any unrestricted variables, we must choose an unrestricted variable as the
subject.

—If the subject is new to the solver, we will not have to do any substitutions, so we prefer
new variables to ones that are currently noted as parametric.

—If l contains only restricted variables, if there is a variable v in l that has a negative
coefficient and that is new to the solver, we can pick v as the subject. (Adding the
equation v = l0 that is the result of solving l = 0 for v will result in a basic feasible
solved form, since the constant part of l 0 will be non-negative.)

—Otherwise use an artificial variable.

A consequence of these rules is that we can always add a non-required constraint to the
tableau without using an artificial variable, because the equation will contain a positive
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and a negative error or slack variable, both of which are new to the solver, and which occur
with opposite signs. (Constraints that are originally equations will have a positive and a
negative error variable, while constraints that are originally inequalities will have one error
variable and one slack variable, with opposite signs.) This observation is good news for
performance, since adding a non-required edit constraint is a common operation.

If the subject variable is a new error variable, or an artificial variable, we must reoptimize
the resulting system after the addition. Also, if the subject is an artificial variable, we must
remove it from the tableau CS before re-optimizing. (See Marriott and Stuckey [1998,
page 70] for details.)

2.6 Incrementality: Removing a Constraint

We also want a method for incrementally removing a constraint from the tableaux. After
a series of pivots have been performed, the information represented by the constraint may
not be contained in a single row, so we need a way to identify the constraint’s influence
in the tableaux. To do this, we use a “marker” variable that is originally present only in
the equation representing the constraint. We can then identify the constraint’s effect on
the tableaux by looking for occurrences of that marker variable. For inequality constraints,
the slack variable s that we added to make it an equality serves as the marker (because s
will originally occur only in that equation). For non-required equality constraints, either
of its two error variables can serve as a marker—see Section 2.3. For required equality
constraints, we add a “dummy” restricted variable to the original equation to serve as a
marker, which we never allow to enter the basis (so that it always has value 0). In our
running example, then, to allow the constraint 2xm = xl + xr to be deleted incrementally
we would have added a dummy variable d, resulting in 2xm = xl + xr + d. The simplex
optimization routine checks for these dummy variables in choosing an entry variable and
does not allow one to be selected. These dummy variables must be restricted, not unre-
stricted, because we might need to have some of them in the equations for restricted basic
variables. (We did not include the variable d in the tableaux presented earlier to simplify
the presentation.)

Consider removing the constraint that x l is 10 to the left of xr. The slack variable s1,
which we added to the inequality to make it an equation, records exactly how this equation
has been used to modify the tableau. We can remove the inequality by pivoting the tableau
until s1 is basic and then simply drop the row in which it is basic.

In the tableau in Section 2.5 (obtained after adding the required constraint xm = 50),
s1 is already basic, so removing it simply means dropping the row in which it is basic,
obtaining

xl = 0 +s3
xm = 50
xr = 100 �s3
s2 = 10 +s3

If we wanted to remove this constraint from the tableau before adding xm = 50 (i.e., the
final tableau given in Section 2.2, page 11), s1 is a parameter. We make s1 basic by treating
it as an entry variable and (as usual) determining the most restrictive equation, then using
that to pivot s1 into the basis before finally removing the row.

There is such a restrictive equation in this example. However, if the marker variable
does not occur in CS , or if its coefficients in CS are all non-negative, then no equation

To appear, ACM Transactions on Computer-Human Interaction, Vol. ?, No. ?, ? 2002.



22 � Greg Badros et al.

inc addition(CU ,CS ,CI ,f ,s c)
Cold
I

:= CI

if c is of the form l � 0
if s is required

c := l = s0 where s0 is a new slack variable
CI := CI [ fs

0 � 0g
else

c := l = s0 � Æc where Æc is a new error variable
CI := CI [ fs

0 � 0; Æc � 0g
f := f + sÆc

endif
else

let c be of the form l = 0 where the constant in l is � 0
if s is not required

c := l = Æ+c � Æ�c
CI := CI [ fÆ

+
c � 0; Æ�c � 0g

f := f + sÆ+c + sÆ�c
endif

endif
for each x = l in CU [ CS

replace x in c by l
endfor
if exists y 2 vars(c)� vars(CI )

let c be of the form y = l0

replace y by l0 everywhere in CU
CU := CU [ fy = l0g

elseif exists y 2 vars(c) � vars(Cold
I

)
where c is of the form y = l0 where the constant in l0 is � 0

CS := CS [ fy = l0g
replace y by l0 in f
(CS ; f) := simplex opt(CS ,f )

else %% c must be a required constraint
let c be of form l0 = 0 where the constant in l0 is � 0
CS := CS [ fa = l0g where a is a new artificial variable
(CS ; l

00) := simplex opt(CS ,l0)
if constant part of l00 is not zero then exception “unsatisfiable constraints”
remove variable a from CS (possibly pivoting)
(CS ; f) := simplex opt(CS ,f )

endif
return (CU ; CS ; CI ; f)

Fig. 8. Incremental addition and reoptimization of a constraint c with strength s to the system CU [ CS [ CI

with objective function f

restricts the value of the marker variable. If the marker variable does occur in one or more
equations inCS , always with a positive coefficient, pick the equation with the smallest ratio
of the constant to the marker variable’s coefficient. (The row with the marker variable will
become infeasible after the pivot, but all the other rows will still be feasible, and we will be
dropping the row with the marker variable. In effect we are removing the non-negativity
restriction on the marker variable.) Finally, if the marker variable occurs only in equations
for unrestricted variables, we can choose any equation in which it occurs.

In the final tableau in Section 2.2, page 11, the row s2 = 100 � s1 � s3 is the most
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constraining equation. Pivoting to let s1 enter the basis and then removing the row in
which it is basic, we obtain

xl = �10 + s2
xm = 45 + 1

2
s2 �

1
2
s3

xr = 100� s3

In the preceding example the marker variable had a negative coefficient. Here is an
example that only has positive coefficients. The original constraints are:

x � 10
x � 20
x � 30

In basic feasible solved form, this is:

x = 30 +s3
s1 = 20 +s3
s2 = 10 +s3

where s1, s2, and s3 are the marker (and slack) variables for x � 10, x � 20, and x � 30
respectively. This gives a solution for x of x = 30, which of course satisfies all of the
original inequalities.

Suppose we want to remove the x � 30 constraint. We need to pivot to make s 3 basic.
The equation that gives the smallest ratio is s2 = 10 + s3, so the entry variable is s3 and
the exit variable is s2, giving:

x = 20 +s2
s1 = 10 +s2
s3 = �10 +s2

This tableau is now infeasible, but we drop the row with s3 giving

x = 20 +s2
s1 = 10 +s2

which is of course feasible.
A beneficial result of using marker variables is that redundant constraints can be repre-

sented and manipulated. Consider:

x � 10
x � 10

When converted to basic feasible solved form, each x � 10 constraint gets a separate slack
variable, which is used as the marker variable for that constraint.

x = 10 +s1
s2 = 0 +s1

To delete the second x � 10 constraint we would simply drop the s 2 = 0 + s1 row. To
delete the first x � 10 constraint we would pivot, making s1 basic and s2 parametric:
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x = 10 +s2
s1 = 0 +s2

and then drop the s1 = 0 + s2 row.
A consequence of directly representing redundant constraints is that they must all be

removed to eliminate their effect. (This seems to be a more desirable behavior for the solver
than removing redundant constraints automatically, although if the latter were desired the
solver could be modified to do this.) Another consequence is that when adding a new
constraint, we would never decide that it was redundant and not add it to the tableau.

Before we remove the constraint, there may be some stay constraints that were unsatis-
fied previously. If we just removed the constraint these could come into play, so instead,
we reset all of the stays so that all variables are constrained to stay at their current values.

Also, if the constraint being removed is not required, we need to remove the error vari-
ables for it from the objective function. To do this we add the following to the expression
for the objective function:

�1� l � s� w

where l is the error variable if it is parametric, or else l is its defining expression if it is
basic, s is the unit symbolic weight for the constraint’s strength, and w is its weight at the
given strength.

If we allow non-required constraints other than stays and edits, we must also re-optimize
after deleting a constraint, since a non-required constraint might have become satisfiable
(or more nearly satisfiable). The complete algorithm is shown in Figure 9.

2.7 Strict Inequalities

Cassowary supports linear equations and non-strict inequalities, but not strict inequalities.
It would be straightforward to add support for strict inequalities, but doing this would
have some consequences that users might not expect, and so we believe it is not a good
idea. The issue is that if strict inequalities were allowed, it would be easy to construct
constraint hierarchies such that there were no solutions to the hierarchy, even though the
required constraints could be satisfied. For example, consider the constraint hierarchy
frequired x > 0;weak x = 0g. For any candidate solution fx 7! �g, the solution fx 7!
�=2gmore nearly satisfies the weak constraint—and so there is no solution to the hierarchy.
(An analogous problem occurs with the simplex algorithm itself—consider minimizing x
subject to x > 0.)

If strict inequalities were nevertheless desired, they could be supported in the same man-
ner as described by either Jaffar et al. [1992] or Van Hentenryck and Graf [1990]. The
algorithm would additionally check for error variables in the objective function with in-
finitesimal values; and if one were found, raise a “no solution to constraints” exception.

2.8 Algorithm Summary

The Cassowary algorithm supports three basic operations:

—incremental addition of a new constraint, and re-optimization to find a weighted-sum-
better solution;

—incremental deletion of a previous constraint (using its marker variable), and re-optimization
to find a weighted-sum-better solution; and
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inc deletion(CU ,CS ,CI ,f ,v)
foreach stay : c 2 C

if Æ+c or Æ�c is basic in row i then ci := 0 endif
endfor
if v is parametric variable yJ

if yJ 2 vars(CS)
choose I 2 f1; : : : ; ng such that
�cI=aIJ = mini2f1;:::;ngf�ci=aiJ j aiJ < 0g

remove row I from CS

else
choose arbitrary row yJ = l in CU

remove the row from CU
replace yJ by l in f
for each row in CU [ CS

replace yJ by l in row i endif
endfor

endif
endif
� := error variables of constraint c for which v is marker
f := f with coefficients of � variables set to 0
(CS ; f) := simplex opt(CS ,f )
return (CU ; CS ; CI ; f)

Fig. 9. Incremental deletion and reoptimization for a constraint with marker variable v deleted fromCU[CS[CI

with objective function f

—incremental resolving to find a weighted-sum-better solution after modification of edit
constraints, including special treatment of stay constraints may change after every re-
solve.

The third operation is the most crucial in terms of performance since it occurs in real-time
as the user moves the mouse.

While we have used only three constraint strengths in the examples in this paper, both
the algorithm and implementation are general, and can be used with an arbitrary number
of strengths.

3. EMPIRICAL EVALUATION

Cassowary has been implemented in Smalltalk, C++, and Java. In this section, we first
describe timings for a large, real application (SCWM, the Scheme Constraints Window
Manager), and then a set of benchmarks, including two graphical examples and some com-
parisons between Cassowary and a local propagation solver.

The C++ and Java tests were performed on an 800 MHz Pentium machine running Red-
Hat/Linux 7.0, using G++-2.96-69 and the Sun HotSpot JVM 1.3.0, respectively. All the
Smalltalk tests were run using OTI Smalltalk R4.0, on an 800 MHz Pentium machine run-
ning Windows 2000. (Cassowary has also been ported to the Squeak dialect of Smalltalk.)

3.1 SCWM Performance

For these tests, SCWM was running on a 2560x1024 Xinerma-enable XFree86 4.0 dis-
play. SCWM is written in C and Guile/Scheme and embeds the C++ implementation of
Cassowary using a hand-written Guile/Scheme wrapper that was instrumented to support
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Fig. 10. A Binary Tree of Height 7

recording the time spent inside the various constraint operations.
Adding 25 new XTerm windows and their implicit stay constraints required 3.6 ms per

window to add the 8 initial constraints and 0.14 ms for each of 72 re-solves. Moving ar-
bitrary windows around the desktop without any constraints relating the windows required
about 0.48 ms for each re-solve.

We then made a 2� 2 window tiling of four windows and constrained a fifth window to
be to the left of that tiled collection and a sixth to be to the right of it. Adding each of those
constraints took 0.9 ms on average. Subsequently, we moved those six related windows
around the screen a bit and measured that each resolve took only 0.66 ms.

3.2 Graphical Benchmarks

Both of the examples in this subsection were implemented in Smalltalk.
For the bounded quadrilateral demonstration shown in Figure 1, it took an average of

14.97 msec to re-solve the constraints and refresh the display for a new mouse position.
There were an average of 0.2 pivots per refresh (the mouse was being moved quickly, so
that there were a relatively large number of collisions with the sides of the windows). Of
the 14.97 msec, 1.4% was spent in the constraint solver—in other words, almost all of the
time was taken by graphics refresh and input handling.

Figure 10 shows a binary tree of height 7, which exercises the constraint solver more
vigorously. Each node in the tree has a weak stay, and is required to lie within the confines
of the window. Also, the y values of the two children of each parent are required to be
equal, and to be at least 10 pixels below the parent’s y value. The x value of the parent
node is required to be halfway between the x values of its children. There are a total of
1015 constraints for the height 7 tree. When the user moved the root node of the tree, it
took an average of 41.4 msec to re-solve the constraints and refresh the display for a new
mouse position, of which 33% was spent in the constraint solver. There were an average
of 5.9 pivots per refresh (so many more collisions than with the quadrilateral—as with the
quadrilateral, the mouse was being moved very quickly).

3.3 Local Propagation Comparisons

Efficient incremental algorithms have been developed that solve systems of constraints us-
ing multi-way local propagation, e.g. DeltaBlue [Sannella et al. 1993], SkyBlue [Sannella
1994], and QuickPlan [Vander Zanden 1996]. In this section, we compare the performance
of DeltaBlue and Cassowary on the same constraint problems. DeltaBlue is much more
efficient—but it only handles equality constraints, not inequalities, and requires that the
constraint graph be acyclic. We report the results for three benchmarks: the chain, the tree,
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and the star. These have all been used in previously published descriptions of local propa-
gation algorithms. In each case the times are for Smalltalk implementations of DeltaBlue
and Cassowary, both running on the same 800 MHz machine, to allow a head-to-head
comparison.

3.3.1 Chain Benchmark. In the chain benchmark, we construct a long chain of re-
quired equality constraints x1 = x2 = : : : = x1000. There is a weak stay on x1000. In
DeltaBlue, there is implicitly also a weakest stay on every variable; in Cassowary, the other
variables have no additional constraints. In DeltaBlue, the equality constraints are satisfied
using the methods x999  x1000; x998  x999; : : : ; x1  x2; in other words, the values
of x1; x2; : : : ; x999 are all ultimately determined by x1000. In Cassowary, the error vari-
ables Æ+x1000 and Æ�x1000 for the weak stay on x1000 are parametric, and x1; : : : ; x1000 are
basic.

We then add a strong edit constraint to x1. In DeltaBlue, this causes each of the 999
equality constraints to flip and select the other satisfaction method: x2  x1; x3  
x2; : : : ; x1000  x999. In Cassowary, the error variables Æ+x1 and Æ�x1 for the edit con-
straint become basic, and one of the error variables for the stay becomes parametric—so
that each row for x1; : : : ; x1000 must be changed. Thus, adding the edit constraint is a pes-
simal case for both solvers, in that every constraint must be touched. We then repeatedly
change the value of x1 using the edit constraint. The results are shown in Figure 11.

Action DeltaBlue Cassowary
build chain with 1000 variables (total time) 70.6 38004.0
add strong edit constraint 5.4 61.0
initial solution 4.5 12528.0
change value of x1 one time 0.4 5.9

Fig. 11. Chain Benchmark for chain of length 1000. All times are in msec.

3.3.2 Star Benchmark. In the Star benchmark, there are n input variables x i, n output
variables yi, and a single offset z. These variables are related by n required constraints
xi + z = yi. Each input variable xi has a medium stay, and each output variable y i has a
weak stay. We then add a strong edit constraint to the offset. (In DeltaBlue, this forces the
solver to choose a different method for each of the required offset constraints.) Then, as the
value of the offset is edited, each output variable changes as well to satisfy the constraints.
The results are shown in Figure 12. (In the original benchmark, each input variable is
multiplied by a scaling factor, rather than being added to an offset—but these constraints
would be nonlinear. DeltaBlue’s performance is not affected by this change.)

Action DeltaBlue Cassowary
build star with n = 100 (total time) 26.3 1483.0
add strong edit constraint to offset 0.7 < 1:0
initial solution 0.6 2003.0
change value of offset one time 0.1 1.5

Fig. 12. Star Benchmark for n = 100. All times are in msec.
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3.3.3 Tree Benchmark. In the Tree benchmark, a binary tree of depth n is constructed.
The value at each interior node is constrained to be the sum of the values of its children.
There is also a weak stay constraint on each leaf. We then add a strong edit constraint
to the root. This benchmark is a particularly favorable case for DeltaBlue, but not for
Cassowary: in DeltaBlue adding the strong edit constraint requires touching only logn of
the constraints, while in Cassowary it requires only one pivot, but on a constraint of size n.
The results are shown in Figure 13.

Action DeltaBlue Cassowary
build tree of depth 10 (total time) 231.5 2413.0
add strong edit constraint to root 0.3 241.0
initial solution 0.1 891.0
change value of root one time 0.01 6.4

Fig. 13. Tree Benchmark for n = 10. All times are in msec.

3.4 Remarks

In all of our interactive graphical applications, during manipulation the time to refresh the
picture and handle input dominated the constraint satisfaction time. Interaction times re-
main satisfactory for diagrams with 1000 constraints. Cassowary is much slower than a
local propagation solver when run on the same problem—an order of magnitude for re-
solve time, and slower still for finding the initial solution. In many situations this will
not matter, since the constraint satisfaction time in either case will be a small portion of
the overall time. In situations where this is an issue, however, these results indicate that a
hybrid solver architecture would be beneficial, in which there are cooperating subsolvers,
including one to handle local propagation constraints and another to handle linear equal-
ities and inequalities. Then, when possible, constraints would be allocated to the more
efficient local propagation solver. A cooperating-subsolver architecture is used in Ultravi-
olet, but some adaptations would be needed to use it efficiently with Cassowary [Borning
and Freeman-Benson 1998].

4. APPLICATIONS

The various implementations of Cassowary are actively being used. A Scheme wrapping
of the C++ implementation is used in the Scheme Constraints Window Manager. We have
also embedded the C++ implementation in a prototype web browser that supports Con-
straint Cascading Style Sheets (CCSS) [Badros et al. 1999], our constraint-based exten-
sion to Cascading Style Sheets. CCSS allows both the designer and the viewer to place
constraints on the appearance of a web page, for example, on page width or font size.
Some of these constraints can be requirements, and others preferences. As a result, the
final appearance of the page is in effect the result of an arbitration between the desires of
the designer and the viewer, where this arbitration is carried out by solving the combined
sets of constraints. An earlier, related system is described in Borning et al. [1997; 2000].
Just as CCSS extends Cascading Style Sheets with constraints, so CSVG, the Constraint
Structured Vector Graphics standard [Badros et al. 2001], extends SVG with constraints.
A SVG viewer, augmented with Cassowary, allows diagrams to be laid out in different
ways depending on the constraints from the author and from the viewer. In other work, a
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demonstration Constraint Drawing Application using the Java implementation was written
by Michael Noth and is included with the Cassowary toolkit. Cassowary has also been
used in a non-interactive application to perform consistency checks in a planning applica-
tion [Wolfman and Weld 1999].

5. CONCLUSION

The Cassowary algorithm is an efficient constraint solver for interactive user interface ap-
plications, which handles simultaneous linear equations and inequalities. Because of the
minimal update of the tableau which is performed, it is (perhaps surprisingly) fast on the
operation of incrementally resolving the system. That operation’s efficiency is crucial for
interactive redrawing diagrams during editing.

Additionally, because Cassowary handles cycles in the constraint graph without diffi-
culty, users of the Cassowary implementations can concentrate on exploiting the additional
expressiveness that the library provides; the declarative nature of constraints is not under-
mined by a need to reformulate the problem to avoid cycles. Cassowary has proven to be
efficient and expressive enough to be used in many applications.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library by vis-
iting the following URL: http://www.acm.org/pubs/citations/journals/TOCHI/2002-
?-?/p1-Badros.
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A. IMPLEMENTATION DETAILS

A.1 Principal Classes

The principal classes in our implementations are as follows. All the classes start with “Cl”
for “Constraint Library” and are, of course, direct or indirect subclasses of Object in the
Smalltalk and Java implementations.

Object
ClAbstractVariable

ClDummyVariable
ClObjectiveVariable
ClSlackVariable
ClVariable

ClConstraint
ClEditOrStayConstraint

ClEditConstraint
ClStayConstraint

ClLinearConstraint
ClLinearEqualityConstraint
ClLinearInequalityConstraint

ClLinearExpression
ClTableau

ClSimplexSolver
ClStrength
ClSymbolicWeight
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Some of these classes make use of the Dictionary (or map) abstract data type: dictio-
naries have keys and values and permit efficiently finding the value for a given key, and
adding or deleting key/value pairs. One can also iterate through all keys, all values, or all
key/value pairs.

A.2 Solver Protocol

The solver itself is represented as an instance of ClSimplexSolver. Its public message
protocol is as follows.

addConstraint(ClConstraint cn).
Incrementally add the linear constraint cn to the tableau. The constraint object contains its
strength.

removeConstraint(ClConstraint cn).
Remove the constraint cn from the tableau. Also remove any error variables associated
with cn from the objective function.

addEditVar(ClVariable v, ClStrength s).
Add an edit constraint of strength s on variable v to the tableau so that suggestValue (see
below) can be used on that variable after a beginEdit().

removeEditVar(ClVariable v).
Remove the previously added edit constraint on variable v. The endEdit message auto-
matically removes all the edit variables as part of terminating an edit manipulation.

beginEdit().
Prepare the tableau for new values to be given to the currently-edited variables. The
addEditVar message should be used before calling beginEdit, and suggestValue and
resolve should be used only after beginEdit has been invoked, but before the required
matching endEdit.

suggestValue(ClVariable v, double n).
Specify a new desired value n for the variable v. Before this call, v needs to have been
added as a variable of an edit constraint (either by addConstraint of a hand-built Edit-
Constraint object or more simply using addEditVar).

endEdit().
Denote the end of an edit manipulation, thus removing all edit constraints from the tableau.
Each beginEdit call must be matched with a corresponding endEdit invocation, and the
calls may be nested properly.

resolve().
Try to re-solve the tableau given the newly specified desired values. Calls to resolve should
be sandwiched between a beginEdit() and an endEdit(), and should occur after new values
for edit variables are set using suggestValue.

addPointStays(Vector points).
This method is a bit of a kludge, and addresses the desire to satisfy the stays on both the
x and y components of a given point rather than on the x component of one point and
the y component of another. The argument points is an array of points, whose x and y
components are constrainable variables. This method adds a weak stay constraint to the x
and y variables of each point. The weights for the x and y components of a given point are
the same. However, the weights for successive points are each smaller than those for the
previous point (1/2 of the previous weight). The effect of this is to encourage the solver to
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satisfy the stays on both the x and y of a given point rather than the x stay on one point and
the y stay on another. See Borning and Badros [2000] for more discussion of this issue,
and a proposal for a cleaner solution.

setAutoSolve(boolean f).
Choose whether the solver should automatically optimize and set external variable val-
ues after each addConstraint or removeConstraint. By default, auto-solving is on, but
passing false to this method will turn it off (until later turned back on by passing true to
this method). When auto-solving is off, solve (below) or resolve must be invoked to see
changes to the ClVariables contained in the tableau.

isAutoSolving() returns boolean.
Return true if and only if the solver is auto-solving, false otherwise.

solve().
Optimize the tableau and set the external ClVariables contained in the tableau to their new
values. This method need only be invoked if auto-solving has been turned off. It never
needs to be called after a resolve method invocation.

reset().
Re-initialize the solver from the original constraints, thus getting rid of any accumulated
numerical problems. (It is not yet clear how often such problems arise, but we provide the
method just in case.)

A.2.1 Variables. ClAbstractVariable and its subclasses represent various kinds of
constrained variables. ClAbstractVariable is an abstract class, that is, it is just used as
a superclass of other classes; one does not make instances of ClAbstractVariable itself.
ClAbstractVariable defines the message protocol for constrainable variables. Its only in-
stance variable is name, which is a string name for the variable. (This field is used for
debugging and constraint understanding tasks.)

Instances of the concrete ClVariable subclass of ClAbstractVariable are what the user
of the solver sees (hence it was given a nicer class name). This class has an instance
variable value that holds the value of this variable. Users of the solver can send one of
these variables the message value to get its value.

The other subclasses of ClAbstractVariable are used only within the solver. They do
not hold their own values—rather, the value is just given by the current tableau. None of
them have any additional instance variables.

Instances of ClSlackVariable are restricted to be non-negative. They are used as the
slack variable when converting an inequality constraint to an equation and for the error
variables to represent non-required constraints.

Instances of ClDummyVariable is used as a marker variable to allow required equality
constraints to be deleted. (For inequalities or non-required constraints, the slack or error
variable is used as the marker.) These dummy variables are never pivoted into the basis.

An instance of ClObjectiveVariable is used to index the objective row in the tableau.
(Conventionally this variable is named z.) This kind of variable is just for convenience—
the tableau is represented as a dictionary (with some additional cross-references). Each
row is represented as an entry in the dictionary; the key is a basic variable and the value is
an expression. So an instance of ClObjectiveVariable is the key for the objective row. The
objective row is unique in that the coefficients of its expression are ClSymbolicWeights
in the Smalltalk implementation, not just ordinary real numbers. However, the C++ and
Java implementations convert ClSymbolicWeights to real numbers to avoid dealing with
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ClLinearExpressions parameterized on the type of the coefficient—see Section A.2.5 for
more details.

All variables understand the following messages: isDummy, isExternal, isPivotable,
and isRestricted. They also understand messages to get and set the variable’s name.

Class isDummy isExternal isPivotable isRestricted

ClDummyVariable true false false true
ClVariable false true false false
ClSlackVariable false false true true
ClObjectiveVariable false false false false

Fig. 14. Subclasses of ClAbstractVariable

For isDummy, instances of ClDummyVariable return true and others return false.
The solver uses this message to test for dummy variables. It will not choose a dummy
variable as the subject for a new equation, unless all the variables in the equation are
dummy variables. (The solver also will not pivot on dummy variables, but this is handled
by the isPivotable message.)

For isExternal, instances of ClVariable return true and others return false. If a variable
responds true to this message, it means that it is known outside the solver, and so the solver
needs to give it a value after solving is complete.

For isPivotable, instances of ClSlackVariable return true and others return false. The
solver uses this message to decide whether it can pivot on a variable.

For isRestricted, instances of ClSlackVariable and of ClDummyVariable return true,
and instances of ClVariable and ClObjectiveVariable return false. Returning true means
that this variable is restricted to being non-negative.

A variable’s significance is largely just its identity (as mentioned above, variables have
little state: a name for debugging and a value for instances of ClVariable). The only
other messages that variables understand are some messages to ClVariable for creating
constraints—see Section A.2.4.

A.2.2 Linear Expressions. Instances of the class ClLinearExpression hold a linear
expression and are used in building and representing constraints and in representing the
tableau. A linear expression holds a dictionary of variables and coefficients (the keys are
variables and the values are the corresponding coefficients). Only variables with non-
zero coefficients are included in the dictionary; if a variable is not in this dictionary its
coefficient is assumed to be zero. The other instance variable is a constant. So to represent
the linear expression a1x1 + � � � + anxn + c, the dictionary would hold the key x1 with
value a1, etc., and the constant c.

Linear expressions understand a large number of messages. Some of these are for con-
straint creation (see Section A.2.4). The others are to substitute an expression for a variable
in the constraint, to add an expression, to find the coefficient for a variable, and so forth.

A.2.3 Constraints. There is an abstract class ClConstraint that serves as the super-
class for other concrete classes. It defines two instance variables: strength and weight.
The variable strength is the strength of this constraint in the constraint hierarchy (and
should be an instance of ClStrength), while weight is a float indicating the actual weight
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of the constraint at its indicated strength, or nil/null if it does not have a weight. (Weights
are only relevant for weighted-sum-better comparators, not for locally-error-better ones.)

Constraints understand various messages that return true or false regarding some aspect
of the constraint, such as isRequired, isEditConstraint, isStayConstraint, and isInequal-
ity.

ClLinearConstraint is an abstract subclass of ClConstraint. It adds an instance vari-
able expression, which holds an instance of ClLinearExpression. It has two concrete
subclasses. An instance of ClLinearEquation represents the linear equality constraint

expression = 0.

An instance of ClLinearInequality represents the constraint

expression � 0.

The other part of the constraint class hierarchy is for edit and stay constraints (both of
which are represented explicitly). ClEditOrStayConstraint has an instance field variable,
which is the ClVariable with the edit or stay. Otherwise all that the two concrete subclasses
do is respond appropriately to the messages isEditConstraint and isStayConstraint.

This constraint hierarchy is also intended to allow extension to include local propagation
constraints (which would be another subclass of ClConstraint)—otherwise we could have
made everything be a linear constraint, and eliminated the abstract class ClConstraint
entirely.

A.2.4 Constraint Creation. This subsection describes a mechanism to allow constraints
to be defined easily by programmers. The convenience afforded by our toolkit varies
among languages. Smalltalk’s dynamic nature makes it the most expressive. C++’s op-
erator overloading still permits using natural infix notation. Java, however, requires using
ordinary methods, and leaves us with the single option of prefix expressions when building
constraints.

In Smalltalk, the messages +, -, *, and / are defined for ClVariable and ClLinearEx-
pression to allow convenient creation of constraints by programmers. Also, ClVariable
and ClLinearExpression, as well as Number, define cnEqual:, cnGEQ:, and cnLEQ: to
return linear equality or inequality constraints. Thus, the Smalltalk expression

3*x+5 cnLEQ: y

returns an instance of ClLinearEquality representing the constraint 3x + 5 � y. The
expression is evaluated as follows: the number 3 gets the message * x. Since x is not a
number, 3 sends the message * 3 to x. x is an instance of ClVariable, which understands *
to return a new linear expression with a single term, namely itself times the argument. (If
the argument is not a number it raises an exception that the expression is non-linear.) The
linear expression representing 3x gets the message + with the argument 5, and returns a
new linear expression representing 3x+5. This linear expression gets the message cnLEQ:
with the argument y. It computes a new linear expression representing y � 3x � 5, and
then returns an instance of ClLinearInequality with this expression.

(It is tempting to make this nicer by using the =, <=, and >= messages, so that one
could write

3*x+5 <= y
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instead but because the rest of Smalltalk expects =, <=, and >= to perform a test and
return a boolean, rather than to return a constraint, this would not be a good idea.)

Similarly, in C++ the arithmetic operators are overloaded to build ClLinearExpressions
from ClVariables and other ClLinearExpressions. Actual constraints are built using var-
ious constructors for ClLinearEquation or ClLinearInequality. An enumeration defines
the symbolic constants cnLEQ and cnGEQ to approximate the Smalltalk interface. For
example:

ClLinearInequality cn(3*x+5, cnLEQ, y); // C++

build the constraint cn representing 3x + 5 � y. In Java, the same constraint would be
built as follows:

ClLinearInequality cn =
new ClLinearInequality(CL.Plus(CL.Times(x,3),5), CL.LEQ, y);

Although the Java implementation makes it more difficult to express programmer-written
constraints, this inconvenience is relatively unimportant when the solver is used in conjunc-
tion with graphical user interfaces for specifying the constraints.

A.2.5 Symbolic Weights and Strengths. The constraint hierarchy theory allows an ar-
bitrary, finite, number of strengths of constraint. In practice, however, programmers use a
small number of strengths in a stylized way. The implementation therefore includes a small
number of pre-defined strengths, and for efficiency the maximum number of strengths is
defined as a compile-time constant. (This constant can be easily changed, but we have not
found it necessary to do so in practice.)

The strengths provided in the current release are:

required. Required constraints must be satisfied and should be used only for rela-
tionships that make no sense unless they are exactly met. The most common use of a
required constraint is to give a shorthand name to an expression such as: win:right =
win:left + win:width

strong. This strength is conventionally used for edit constraints.
medium. This strength can be used for strong stays constraints; for example, we might

put medium strength stay constraints on the width and height of an object and weak stay
constraints on its position to represent our preference that the object move instead of
change size when either is possible to maintain the stronger constraints.

weak. This strength is used for stay constraints.

Each strength category is represented as an instance of ClStrength.
A related class is ClSymbolicWeight. As mentioned in Section 2.3, the objective func-

tion is formed as the weighted sum of the positive and negative errors for the non-required
constraints. The weights should be such that the stronger constraints totally dominate the
weaker ones. In general to pick a real number for the weight we need to know how big the
values of the variables can be. To avoid this problem altogether, in the Smalltalk and C++
implementations we use symbolic weights and a lexicographic ordering for the weights
rather than real numbers, which ensures that strong constraints are always satisfied in pref-
erence to weak ones.

Instances of ClSymbolicWeight are used to represent these symbolic weights. These
instances have an array of floating point numbers, whose length is the number of non-
required strengths (so 3 at the moment). Each element of the array represents the value
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at that strength, so [1:0; 0:0; 10:0] represents a weight of 1.0 strong, 0.0 medium, and
10.0 weak. (In Smalltalk ClSymbolicWeight is a variable length subclass; we could have
had an instance variable with an array of length 3 instead.) Symbolic weights understand
various arithmetic messages (or operator overloading in C++) as follows:

+ w.
w is also a symbolic weight. Return the result of adding w to self (or this in C++).

– w.
w is also a symbolic weight. Return the result of subtracting w from self.

* n.
n is a number. Return the result of multiplying self by n.

/ n.
n is a number. Return the result of dividing self by n.

<= n, >= n, < n, > n, = n.
w is a symbolic weight. Return true if self is related to n as the operator normally queries.

negative.
Return true if this symbolic weight is negative (i.e., it does not consist of all zeros and the
first non-zero number is negative).

Instances of ClStrength represent a strength in the constraint hierarchy. The instance
variables are name (for printing purposes) and symbolicWeight, which is the unit sym-
bolic weight for this strength. Thus, with the 3 strengths as above, strong is [1:0; 0:0; 0:0],
medium is [0:0; 1:0; 0:0], and weak is [0:0; 0:0; 1:0].

The above arithmetic messages let the Smalltalk implementation of the solver use sym-
bolic weights just like numbers in expressions. This interface is important because the ob-
jective row in the tableau has coefficients which are ClSymbolicWeights but are subject
to the same manipulations as the other tableau rows whose expressions have coefficients
that are just real numbers.

In both C++ and Java, an additional message asDouble() is understood by ClSymbol-
icWeights. This converts the representation to a real number that approximates the total
ordering suggested by the more general vector of real numbers. It is these real numbers
that are used as the coefficients in the objective row of the tableau instead of ClSymbol-
icWeights (which the coefficients conceptually are). This kludge avoids the complexities
that such genericity introduces to the static type systems of C++ and Java.

Also, since Java lacks operator overloading, the above operations are invoked using
suggestive alphabetic method names such as add, subtract, times, and lessThan.

A.3 ClSimplexSolver Implementation

Here are the instance variables of ClSimplexSolver (some fields are inherited from ClTableau,
the base class of ClSimplexSolver which provides the basic sparse-matrix interface—see
Section A.3.1).

rows.
A dictionary with keys ClAbstractVariable and values ClLinearExpression. This holds
the tableau. Note that the keys can be either restricted or unrestricted variables, i.e., both
CU and CS are actually merged into one tableau. This simplified the code considerably,
since most operations are applied to both restricted and unrestricted rows.
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columns.
A dictionary with keys ClAbstractVariable and values Set of ClAbstractVariable. These
are the column cross-indices. Each parametric variable p should be a key in this dictio-
nary. The corresponding set should include exactly those basic variables whose linear
expression includes p (p will of course have a non-zero coefficient). The keys can be
either unrestricted or restricted variables.

objective.
An instance of ClObjectiveVariable (named z) that is the key for the objective row in the
tableau.

infeasibleRows.
A set of basic variables that have infeasible rows. (This field is used when re-optimizing
with the dual simplex method.)

prevEditConstants.
An array of constants (floats) for the edit constraints on the previous iteration. The elements
in this array must be in the same order as editPlusErrorVars and editMinusErrorVars,
and the argument to the public resolve: message.

stayPlusErrorVars, stayMinusErrorVars.
An array of plus/minus error variables (instances of ClSlackVariable) for the stay con-
straints. The corresponding negative/positive error variable must have the same index in
stayMinusErrorVars/stayPlusErrorVars.

editPlusErrorVars, editMinusErrorVars.
An array of plus/minus error variables (instances of ClSlackVariable) for the edit con-
straints. The corresponding negative/positive error variable must have the same index in
editMinusErrorVars/editPlusErrorVars.

markerVars.
A dictionary whose keys are constraints and whose values are instances of a subclass of
ClAbstractVariable. This dictionary is used to find the marker variable for a constraint
when deleting that constraint. A secondary use is that iterating through the keys will give
all of the original constraints (useful for the reset method).

errorVars.
A dictionary whose keys are constraints and whose values are arrays of ClSlackVariable.
This dictionary gives the error variable (or variables) for a given non-required constraint.
We need this if the constraint is deleted because the corresponding error variables must be
deleted from the objective function.

A.3.1 ClTableau (Sparse Matrix) Operations. The basic requirements for the tableau
representation are that one should be able to perform the following operations efficiently:

—determine whether a variable is basic or parametric

—find the corresponding expression for a basic variable
—iterate through all the parametric variables with non-zero coefficients in a given row
—find all the rows that contain a given parametric variable with a non-zero coefficient
—add/remove a row
—remove a parametric variable

—substitute out a variable (i.e., replace all occurrences of a variable with an expression,
updating the tableau as appropriate).
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The representation of the tableau as a dictionary of rows, with column cross-indices, sup-
ports these operations. Keeping the cross indices up-to-date and consistent with the row
dictionary is error-prone. Thus, the solver actually accesses the rows and columns only via
the below interface of ClTableau.

addRow(ClAbstractVariable var, ClLinearExpression expr).
Add the constraint var=expr to the tableau. var will become a basic variable. Update the
column cross indices.

noteAddedVariable(ClAbstractVariable var, ClAbstractVariable subject).
Variable var has been added to the linear expression for subject. Update the column cross
indices.

noteRemovedVariable(ClAbstractVariable var, ClAbstractVariable subject).
Variable var has been removed from the linear expression for subject. Update the column
cross indices.

removeColumn(ClAbstractVariable var).
Remove the parametric variable var from the tableau. This operation involves removing
the column cross index for var and removing var from every expression in rows in which
it occurs.

removeRow(ClAbstractVariable var).
Remove the basic variable var from the tableau. Because var is basic, there should be a
row var=expr. Remove this row, and also update the column cross indices.

substituteOut(ClAbstractVariable var, ClLinearExpression expr).
Replace all occurrences of var with expr and update the column cross indices.
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