
Optimal Carpet Cutting

Andreas Schutt†, Peter J. Stuckey†, and Andrew R. Verden?

† National ICT Australia, Department of Computer Science & Software Engineering,
The University of Melbourne, Victoria 3010, Australia

{aschutt,pjs}@csse.unimelb.edu.au
? National ICT Australia, Kensington, NSW 2052, Australia

andrew.verden@nicta.com.au

Abstract. In this paper we present a model for the carpet cutting prob-
lem in which carpet shapes are cut from a rectangular carpet roll with a
fixed width and sufficiently long length. Our exact solution approaches
decompose the problem into smaller parts and minimise the needed car-
pet roll length for each part separately. The customers requirements are
to produce a cutting solution of the carpet within 3 minutes, in order
to be usable during the quotation process for estimating the amount of
carpet required. Our system can find and prove the optimal solution for
106 of the 150 real-world instances provided by the customer, and find
high quality solutions to the remainder within this time limit. In contrast
the existing solution developed some years ago finds (but does not prove)
optimal solutions for 30 instances. Our solutions reduce the wastage by
more than 35% on average compared to the existing approach.

1 Introduction

The carpet cutting problem is a two-dimensional cutting and packing problem
in which carpet shapes (also called items or objects) are cut from a rectangular
carpet roll with a fixed roll width and a sufficiently long roll length. The goal
is to find a non-overlapping placement of all carpet shapes on the carpet roll,
so that the waste is minimised or in other words the utilisation of used carpet
material is maximised while meeting all additional constraints. In our case the
objective is to minimise the carpet roll length.

In this paper the carpet shapes are rectilinear polygons of up to 12 sides that
can be made up of non-overlapping rectangles, that must be placed orthogonal
on the carpet roll, i.e., their edges must be parallel to the borders of the roll.
Before the placement of a carpet shape a rotation may be allowed by 90◦, 180◦,
or 270◦, i.e., it can be put onto the roll in one of four cardinal directions 0◦, 90◦,
180◦, or 270◦. But depending on the pile direction of the carpet there may be
restrictions on the which cardinal directions can be used: perhaps only 0◦, 90◦

or perhaps fixed to 0◦.
Normally, a carpet shape is cut as a single piece from the carpet roll, but

carpet shapes for covering stairs or filling up the remainder of a room are allowed
to be cut in several pieces provided that the partition of these carpet shapes

Fig. 1: Example of a carpet cutting instance.

satisfy additional constraints which are described later. The joint of carpets for
stairs that is then introduced between two adjacent pieces can be hidden between
the tread and the riser of the stairs once they are laid. The resulting seams of
carpets filling up a room are hidden at the edge of a room. Moreover, these
carpet shapes are simple rectangles.

Another complexity of the problem is that carpets have a pile direction that
may constrain the orientations of some carpet shapes to be dependent on one
or another. Clients may also prefer to have the pile direction fixed to ensure an
even colour of the carpet when laid relative to a window. Where two carpets
join, e.g. at a door way, the pile direction becomes visible if the two pieces are
not laid with a similar pile direction. Therefore, all carpet shapes that are joined
together must be arranged pile aligned in the plan. Carpet shapes for stairs must
be pile aligned with the pile direction being up the stairs, for safety reasons this
ensures that it is less easy to slip down the stairs.

Example 1. Figure 1 shows an example of a carpet cutting instance. On the left
side the five carpet shapes A, B, C, D, and E are shown and on the right side
their placement on the carpet roll (gray area). The roll is laid out from the left
to the right, i.e., its width is the vertical edge and its length the horizontal one.

On the left-hand side each object contains arrows displaying in which direc-
tion the object can be placed where an arrow pointing to the top, left, bottom,
or right stands for the direction 0◦, 90◦, 180◦, and 270◦ respectively. As shown
the object A, and B can placed in any direction, but not the objects C, D, and E
which must be pile aligned. Moreover, the object E is a carpet for covering four
stair steps. The vertical dotted line shows the edge between the tread and riser
of two steps. The object E can be split at those edges.

In the placement shown on the right-hand side the objects A and B are placed
in the 0◦ direction whereas the other objects are rotated by 180◦. The object E
is partitioned in four parts in order to minimise the needed roll length.

The carpet retailer uses a solution as a base of an on-site cost estimation
and ordering process, to submit an offer to customers. The offer should be made
in a timely manner and a three-minutes runtime limit is given to the cut-plan
optimisation process and a nice graphic is displayed during the computation.

The carpet cutting problem can be characterised as an extension of a two-
dimensional orthogonal strip packing (Osp) problem (referred to as a two-
dimensional orthogonal open dimension problem by [21]) with additional con-

straints in which a packing of rectangles with minimal waste is sought. The ex-
tensions are the placement constraints between rectangles belonging to the same
carpet shape and the partition constraints for carpet shapes covering stairs. The
side effect of the first constraints is that for those carpet shapes a rotation by
180◦ and 270◦ may be not symmetric to a rotation by 0◦ and 90◦ respectively.

For Osp and related cutting and packing problems different methods have
been applied, a survey can be found in [9]. The different methods can be roughly
categorised in these groups: (1) positional placement/reasoning and (2) rela-
tional placement/reasoning. The first category includes methods such as the
bottom-left rule [7,10] and the discretisation of the large rectangle [3]. The sec-
ond category includes methods that determines the relations (above, under, left,
and right) of each pair of rectangles [13] and the graph-theoretical models [5].
Our approach includes features of both categories.

A two-dimensional cutting and packing problem can be relaxed into two
scheduled problems, once the problem is projected on the length-axis of the large
rectangle and the other on the width-axis of the large rectangle. These relaxation
can be used in order to infer more about possible positions of the items to be
laid on the large rectangle and detect infeasibilities of partial solution earlier.

Constraint programming methods include the global constraints cumulative
[1] that models a cumulative scheduling problem, the sweep pruning technique for
k-dimensional objects [3] and the geost constraint [2] (modelling k-dimensional
objects that can take different shapes). Moreover, special pruning algorithms ex-
ists for the cumulative constraint in the case of non-overlapping rectangles [4].
The sweep algorithm and the geost constraint are specifically designed to model
non-overlapping object with at least 2-dimensions. These algorithms demon-
strate very good results if the slack (the unused space) is small. If the slack
is not small then the additional computational effort may not rewarded by the
reduction of the search space.

The existing fielded solution [19,20] uses a combination of heuristic search
and dynamic programming in a series of optimisation steps. The algorithm in-
crementally selects carpet shapes that are placed across the roll considering all
alternatives and reduces the overall length of material in a branch-and-bound
backtracking search. The algorithm is complex and can be subject to reduced
performance when certain rare combinations of heuristic choice lead to inefficien-
cies of placement. It is not exact and often uses the full 3 minutes of runtime but
considerably less for smaller problems. It was designed to run on 100MHz tablet
PCs with considerably less computing power available than todays processors.

We define two new exact approaches to the carpet cutting problems. The
first approach decomposes the problem into multiple instances where all the
carpets have fixed dimension and orientation. These subproblems are solved
sequentially maintaining the best solution found overall. Since all dimensions are
fixed the constraint propagation is strong. But a disadvantage is there may be
many instances for a single problem. The second approach models the orientation
of the carpet as a variable and hence reduces the number of instances required
for each problem. It can handle problems that the first approach cannot.

The subproblems are solved by the lazy clause generation (Lcg) [12] which
is a hybrid of a Boolean satisfiability (Sat) solving and finite domain (Fd)
solving. The Lcg lazily transforms an Fd problem into an Sat problem during
the progress of a search where the conflict analysis only takes the Sat part
into account. At the moment Lcg is one of the best exact solution approaches
for tackling the basic resource-constrained project scheduling problem [15] and
its extension with minimal and maximal time lags [16] in which an optimal
schedule minimising the project duration is demanded. These problems involve
an explaining version of the global constraint cumulative in their model which
is also used to solve carpet cutting.

2 The Carpet Cutting Problem

In the carpet cutting problem there are three different types of carpet shapes:
(i) room carpets that cover rooms which are made up of a number of rectangular
pieces which are constrained to align; (ii) stair carpets that cover stairs which
can be cut into regular pieces and are always rectangular; (iii) edge filler carpets
that cover the remainder of a room that is only slightly wider than the width of
the carpet. The remainder of the room is covered with multiple narrow pieces
cut at any point providing each piece is of a minimum length.

A room carpet is characterised by its set of (possible) orientations and offsets
from its origin to the origin of its rectangles for each orientation. The origin of a
room carpet is the bottom left corner of the smallest rectangle that encloses all
its rectangles in each orientation. Each rectangle has a width and a length which
are given for the 0◦ orientation. The carpet origin is the bottom left corner in
each orientation. Where a room is larger in both directions than the width of
the carpet, a choice of where the full roll width is aligned is made by the user in
advance of the placement optimisation.

Example 2. Figure 2a shows the room carpet laid out in each orientation. Its
smallest enclosing rectangle is displayed with a red-dotted line. The small black
squares in each rectangle indicates the origin for the carpet and its rectangles.
These pictures show how the offsets from the origin differ for each orientation.

Stair and edge filler carpets are characterised by their width and length. Each
of them may be allowed to be cut in several pieces. Stair carpets are cut with
regular breaks between the tread and the riser of two or more steps hence each
single piece must cover an integral number of steps.

Edge filler pieces may be cut arbitrarily with irregular length breaks. These
shapes can be divided at any position so long as their length is not smaller
than a minimal given length. The resulting seam(s) is hidden at the edge of
a room. Significant savings in material wastage occur for certain single room
carpet orders using this approach. For both kinds of breaks a maximal number
of pieces and minimal length of sub-pieces can be given.

Example 3. Figure 2b shows a stair carpet with 4 pieces and possible partitions,
with a maximum of three pieces allowed. Figure 2c shows possible partitions for

(a)

(b) (c)

Fig. 2: The origin of a room carpet and its rectangles in each orientation (a).
Possible partitions for a stair carpet (b) and an edge filler carpet (c).

Fig. 3: A solution (split into two parts) for Cc instance with 34 room carpets
(involving 74 rectangles) and 2 stair carpets (involving 7 rectangles). The roll
length is about 93m to a granularity of 1cm.

an edge filler carpet with length 200 units, with a minimal length of 50 units
(indicated by the bar in the bottom left corner) and a maximum of two cuts.

A formal specification of an instance I of the carpet cutting problem is de-
fined as follows. We are given 3 sets of disjoint objects: (i) Room is a set of room
carpets. Each c ∈ Room is defined by a set of rectangles c.rect. For each rectangle
r ∈ c.rect we have a length r.len and width r.wid (in the 0◦ orientation) together
with an offset (r.ox, r.oy) from the origin of the room carpet (in the 0◦ orien-
tation). Moreover, each c ∈ Room is also given a set of allowable orientations
c.ori ⊆ {0◦, 90◦, 180◦, 270◦}. (ii) Str is a set of stair carpets. For each c ∈ Str
we have a width c.wid, step length c.step and number of steps c.n as well as a
maximum number of pieces c.pcs and minimum steps per piece length c.min.
(iii) Edg is a set of edge filler carpets. For each c ∈ Edg we have a width c.wid,
length c.len as well as a maximum number of pieces c.pcs and minimum length
per piece length c.min. The remaining part of the model is a set Pile ⊆ Room
which determines which carpets must be pile aligned, i.e. c.ori = {0◦, 180◦} for
each c ∈ Pile, and a roll width RW . Hence, I = (Room,Str, Edg, P ile, RW).
Note that all stair and edge filler carpets must be pile aligned, but this constraint
can be neglected, since the pile orientations are symmetrical for rectangles as it
is for parts of these carpets.

The aim is to find an allowable partitioning c.part of each carpet c ∈ Str∪Edg
into rectangles, and position (x, y) and allowed orientation for each rectangle r
appearing in a room carpet such that: none of the rectangles overlap; each of the
rectangles in a room carpet are correctly offset from the origin of the carpet; all
pile aligned carpets are aligned in the same orientation, and the roll length RL
is minimised.

Figure 3 shows the best solution found by our method for a large instance.
It reduces the wastage by about 33% in comparison to the current method.

3 Static Model

The first model we present, the static model, splits the original problem into
instances where the orientations and dimensions of each of the rectangular pieces
are fixed in advance (statically known). This is achieved by fixing rotations of
room carpets and fixing the partitions for stair carpets. The advantage of the
static model is that it reduces the number of variables required to specify the
problem, and gives stronger initial propagation. It reduces the requirements of
the global constraints needed to model non-overlap, since dimensions are fixed.
It also improves the strength of preprocessing. The obvious disadvantage of the
static model is that the number of instances required to specify one original
problem may become prohibitive.

To apply the static model we wish to fix the orientation and dimensions
of all the rectangles in the problem. To do so we have to split the problem
into multiple instances. For many problems in the customer data the number of
instances required is not too large since they are often reasonably constrained.

3.1 Dealing with Orientations

Every carpet c ∈ Room \ Pile has an allowable set of orientations in {0◦, 90◦,
180◦, 270◦}. We can split an instance I to remove possibilities of different orien-
tations for a carpet c by creating the set of instances Io, o ∈ c.ori that are each
identical to I except that c.ori = {o}, and for room carpets we swap the length
r.len and width r.wid of the component rectangles if o ∈ {90◦, 270◦}, and update
the offsets (r.ox, r.oy) to reflect them from the new origin in this orientation.

If pile aligned carpets are involved in an instance then the instance is split in
two instances. In one instance all pile aligned carpets c are fixed to the orientation
0◦ and in the other to 180◦.

Note that before doing this we preprocess instances for reducing the possible
orientations of carpets: (i) For room carpets consisting of one rectangle the
orientations 0◦ and 180◦ (90◦ and 270◦) are symmetric. If both orientations are
given then one of them is removed. For square carpets the orientation is fixed to
0◦. (ii) Some room carpets are too wide for the carpet roll if they are placed in a
certain orientations. All those orientations are removed. (iii) Finally, if all room
carpets in one instance that are made of more than one rectangle must be pile
aligned then the pile-aligned constraint is removed from all of them and their

orientation is fixed to 0◦, since each solution for the direction 0◦ is a solution for
the direction 180◦ by rotating the carpet roll and all the placed objects by 180◦.

3.2 Stair carpets

Carpets for stairs play an important role for the difficulty of a problem because
they can be partitioned in many combinations and introduce symmetries if two
parts in the partition have the same length. We can ameliorate the difficulty
of stair carpets by avoiding considering all possible partitions by determining
“dominated” partitions.

Example 4. Suppose a stair carpet covers 15 steps and can be cut into an un-
limited number of pieces where each part must consists of at least two steps.
Possible partitions are {10, 5}, {10, 3, 2}, {5, 4, 3, 3}, etc. where each multiset
represents a partition and the elements express the size in steps of each piece.
The total number of possible partitions (incl. the partition {15}) is 41.

The partition problem is well studied in number theory. The (generating)
function that counts the number of different partitions for a sum n is called the
partition function [6]. This function grows exponentially as the value n increases.
For stair carpets an important simplification of the problem arises when we
realise that not all partitions need to be considered because some parts of a
partition can be broken into smaller pieces which can be laid out in a way
identical to the original coarser pieces.

Example 5. Consider a stair carpet with possible partitions {10, 5} and {10, 3, 2}.
Given a layout for the first partition, the piece of length 5 steps in the first par-
tition can be split into two parts in which one part covers three steps and the
other one two steps, thus giving a layout for the second partition. Hence we need
not consider laying out the first partition, the partition {10, 5} is dominated by
the partition {10, 3, 2}.

Definition 1. Let P1 and P2 be two different partitions of n (i.e
∑
P1 =

∑
P2 =

n). We say P1 = {p11, . . . , p1m} is dominated by P2 = {p21 . . . , p2k} iff there is
a mapping σ : 1..m → 1..k such that ∀i ∈ 1..k : p2i =

∑
j∈1..m where σ(j)=i p1j .

That is we can further partition P2 to obtain P1. Given a set of partitions P we
say P ∈ P is dominating if it is not dominated by any P ′ ∈ P− {P}.

It follows that only dominating partitions must be considered during the so-
lution process. We now construct a recursive definition of the number nd(n, p, k)
of dominating partitions for a stair carpet of length n steps with maximum num-
ber of pieces p and minimal step length k as follows:

nd(n, p, k) = nd(n, p, k, k)

nd(n, p, l, k) =

0 if 0 < n ∧ n < l or 0 ∧ p > 0 ∧ l ≥ 2k
1 if n = 0 ∧ p = 0 or n = 0 ∧ p > 0 ∧ l < 2k∑
l≤i≤n

nd(n− i, p− 1, i, k) otherwise.

Table 1: All dominating partitions for various lengths n where the minimal step
length k is 2, and maximal pieces is n (so effectively no limit on pieces).

n partitions n partitions n partitions n partitions

2 {2} 8 {3, 3, 2}, {2, 2, 2, 2} 12 {3, 3, 3, 3}, 14 {3, 3, 3, 3, 2},
3 {3} 9 {3, 3, 3}, {3, 2, 2, 2} {3, 3, 2, 2, 2}, {3, 3, 2, 2, 2, 2},
4 {2, 2} 10 {3, 3, 2, 2}, {2, 2, 2, 2, 2, 2} {2, 2, 2, 2, 2, 2, 2}
5 {3, 2} {2, 2, 2, 2, 2} 13 {3, 3, 3, 2, 2}, 15 {3, 3, 3, 3, 3},
6 {3, 3}, {2, 2, 2} 11 {3, 3, 3, 2}, {3, 2, 2, 2, 2, 2} {3, 3, 3, 2, 2, 2},
7 {3, 2, 2} {3, 2, 2, 2, 2} {3, 2, 2, 2, 2, 2, 2}

The function nd(n, p, l, k) returns the number of dominating partitions for a
carpet of length n, maximal pieces p, minimum length l and minimum original
length k. The definition captures the following reasoning. The first case is where
there is carpet left but it is smaller that the minimal required length, or there
is no carpet left but there are pieces remaining and one of the earlier pieces
(which is at least size l) could be split in two. The second case is where there is
no carpet and no pieces left, or there is no carpet left, and more pieces possible
but the longest piece is not big enough to split. The recursive case adds up the
possibilities of selecting a piece of size i in the range l to n from a carpet of
size n, and determine how many ways to partition the remaining carpet. The
remaining subproblem is for a carpet of length n− i, with one less piece possible,
and a minimum length of i (so we pick pieces in increasing order). The function
can be easily modified to return the dominating partitions.

In the customer data the parameter k is either 1 or 2 and the number of
steps n in a stair carpet ranges from 1 to 18 and 2 to 15 for k = 1 and k = 2
respectively. For most of the customer data the number of cuts constraint is not
constraining (≥ n when k = 1 and ≥ bn/2c when k = 2), and the total number
of dominating partitions is small. This means we can separate the problem into
different instances with different fixed (dominating) partitions. Table 1 shows the
dominating partitions for stair carpets up to 15 steps for k = 2. If k = 1 then
the partition with n parts “1”, i.e., {1, . . . , 1} is the only dominating partition
for stair carpets covering n steps.

We can split a carpet cutting instance I involving a stair carpet c as follows.
For a stair carpet c we determine the set of dominating partitions P of c and
create a new instance IP , P ∈ P where P = {p1, . . . , pm} which is identical
to I except that the partition function for carpet c is fixed so that c.part =
{r1, . . . , rm} and the rectangular pieces ri are constrained as follows: ri.wid =
c.wid, ri.len = pi × c.step.

Too many dominating partitions For some cases in the customer data, for
example n = 18, k = 1 and p = 7, there are 49 dominating partitions. Splitting
into different instances becomes prohibitive when we have to consider other
reasons for splitting such as multiple stair carpets, and different room carpet
orientations.

When the number of dominating partitions is too large, we modify the par-
titioning as follows. We consider the partitioning problem with no limit on the
number of pieces (or equivalently limit n). For the customer data, the maximal
number of dominating partitions that arise with this weakening is 3 (as illus-
trated by Tab. 1). We split into instances using these dominating partitions.
This model of course can create a carpet cutting with too many carpet pieces
for a regular carpet c. For each rectangle r ∈ c.part we add a Boolean variable
r.last to the model.

We constrain r.last to holds if the rectangle does not have another rectangle
r′ ∈ c.part directly to the right (1) and ensure that there are at most c.pcs last
parts (2). These constraints are posted for all carpets c ∈ Str:
∀r ∈ c.part : r.last↔ (∀r′ ∈ c.part \ {r} : r.x+ r.len 6= r′.x ∨ r.y 6= r′.y) (1)∑

r∈c.part
r.last ≤ c.pcs . (2)

3.3 The Model

After handling rotations and stair carpets our original instance I is transformed
into a set of static instances I in which all rectangles are fixed in orientation
and length and width. If the splitting process created too many instances I or
involved edge filler carpets then we will have to handle the original problem
using the dynamic model defined in the next section.

We can now model each static instance I ′ ∈ I reasonably straightforwardly.
Let a variable tuple (r.x, r.y) be defined for each rectangle in the instance Rect =
(
⋃
c∈Str c.part)∪(

⋃
c∈Room c.rect) which gives the position of the rectangle on the

roll, and variable tuples (c.x, c.y) for each room carpet c ∈ Room. We introduce
variable RL to hold the roll length. The constraints of the model are (1–2) if
required, together with:

Each rectangle must be on the roll

∀r ∈ Rect : 0 ≤ r.x ∧ r.x+ r.len ≤ RL ∧ 0 ≤ r.y ∧ r.y + r.wid ≤ RW . (3)

Each rectangle in a room carpet must be placed correctly relative to the carpet

∀c ∈ Room,∀r ∈ c.rect : r.x = c.x+ r.ox ∧ r.y = c.y + r.oy . (4)

No rectangles overlap.

diff2([r.x | r ∈ Rect], [r.y | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect]) (5)

For the solver we make use of there is no global definition of diff2, instead it
is decomposed into a disjunction of possibilities.

∀r1, r2 ∈ Rect s.t. r1 < r2 : r1.x+ r1.len ≤ r2.x ∨ r2.x+ r2.len ≤ r1.x
∨ r1.y + r1.wid ≤ r2.y ∨ r2.y + r2.wid ≤ r1.y . (6)

This decomposition is very weak, and only propagates if three inequalities are
unsatisfiable and the remaining one undecided. In order to get a stronger propa-
gation on the involved variables two global cumulative constraints are used, i.e.,
one for the roll length and the other one for the roll width. We hence enhance

the model with the redundant constraints

cumulative(([r.x | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect], RW) , (7)

cumulative(([r.y | r ∈ Rect], [r.wid | r ∈ Rect], [r.len | r ∈ Rect], RL) . (8)

The cumulative constraints are implemented as global constraints with explana-
tion [15]. They provide much stronger propagation than the decomposed diff2.
Equation (8) also provides strong lower bound reasoning on the objective RL.

In order to find the optimal solution to an original problem instance I using
the static model we must find the minimal roll length solution for any of the
instances I it was split into.

4 Dynamic Model

The static model splits the problem into multiple instances to fix the dimensions
of the rectangles. But this can be prohibitive when an original problem splits
into very many instances, and it does not give an approach to edge filler carpets.
The dynamic model models the problem more directly.

Orientation For each room carpet c we model its orientation with variable
c.vori which takes a value in c.ori. We introduce two Boolean variables c.0or180
which is true if the carpet is oriented at 0◦ or 180◦, and similarly c.0or90.

For each rectangle r we introduce a variable r.vlen to hold its length (after
orientation), and similarly a variable to hold its width r.vwid, and x offset r.vox
and y offset r.voy from the carpet origin. For each carpet c and rectangle r ∈
c.rect we precalculate two arrays of offsets of r from the carpet origin and each
orientation o ∈ {0◦, 90◦, 180◦, 270◦} given by oxc,r[o], and oyc,r[o].

The model includes the following constraints for each carpet c ∈ Room:

Enforcing agreement of the orientation and Boolean variables

c.0or180 = c.vori ∈ {0◦, 180◦} ∧ c.0or90 = c.vori ∈ {0◦, 90◦} . (9)

Setting length, width and offsets of each rectangle depending on orientation

∀r ∈ c.rect : r.vox = oxc,r[c.vori] ∧ r.voy = oyc,r[c.vori]

∧ r.vwid = r.len+ (r.wid− r.len)× c.0or180 (10)

∧ r.vlen = r.wid+ (r.len− r.wid)× c.0or180 . (11)

Note that the offset calculation constraints are examples of element constraints.

Edge filler carpets Given an edge filler carpet c ∈ Edg we model this with a
set of c.pcs different rectangles c.part (so |c.part| = c.pcs). We have to ensure
that these pieces either 0 length (and hence only really pseudo pieces) or reach
the minimal length.

∀c ∈ Edg, ∀r ∈ c.part : r.vwid = c.wid ∧ (r.vlen = 0 ∨ r.vlen ≥ c.min) (12)

And the sum of the lengths must equal the irregular break length

∀c ∈ Edg :
∑

r∈c.part
r.vlen = c.len . (13)

We can also reason about dominating partitions for irregular breaks. Any
partition with a piece r where r.vlen ≥ 2c.min and one piece of zero length will
be dominated by a partition where r is broken in two. Hence we can add

∀c ∈ Edg : (∃r ∈ c.part.r.vlen = 0)→ (∀r ∈ c.part. r.vlen < 2c.min) . (14)

If c.len ≥ 2(c.pcs− 1)× c.min then there can be no zero length pieces since
the right hand side of the implication in (14) cannot be satisfied at the same
time as (13), hence in this case we can simplify (12).

The Model The set of rectangles is Rect =
⋃
c∈Room r.rect∪

⋃
c∈Str∪Edg c.part.

We assume that for each stair piece r.vlen = r.len and r.vwid = r.wid. The
constraints of the model are: (1–2) if required, (3–8) with r.len replaced by
r.vlen and r.wid replaced with r.vwid, (9–11) and (12–14) if required.

5 Refining the Models

The basic model can be further enhanced in order to improve the propagation, re-
duce the model size, and strengthen the reasoning and the conflict-driven search
in the Lcg solver.

Variable views Variable views [14] are a form of variable aliasing. Suppose
y = ax+c where a and c are constants, then rather than creating a new variable
for y use a view to compute information about the (view) variable y from the
real variable x. This refinement (views) is particularly useful for Lcg solvers
since it improves learning. For a fixed orientation room carpet c we can replace
the variables r.x and r.y by views on c.x and c.y for all r ∈ c.rect using (4). For
non-fixed orientation carpets c we can use views to define r.vlen and r.vwid for
r ∈ c.rect using (10) and (11).

Disjunction and Better diff2 decomposition In all carpet cutting prob-
lems the roll width is narrow in comparison to some carpets, so that no other
carpet can be positioned below or above to those carpets. We say these carpets
are in disjunction. Carpets that are in disjunction with all others can be placed
at the beginning of the roll. We denote this as the disj refinement.

We can use disjunction to improve the diff2 decomposition (diff2). Assume
function not par(r1, r2) holds if r1 and r2 cannot overlap horizontally on the role.
For pairs r1, r2 with this holds we replace the body of (6) by r1.x + r1.len ≤
r2.x ∨ r2.x + r2.len ≤ r1.x. The simplest definition of not par just r1.wid +
r2.wid > RW , but it can be improved by considering the compulsory parts [8]
and possible y coordinates of r1 and r2 to determine if there is insufficient space
for them to overlap.

Symmetry breaking constraints In the model symmetries can occur be-
tween rectangles that have the same size, i.e., length and width. The most
common case for symmetries occurs for pieces of stair carpets. We assume a
function same(r, r′) which (statically) tests if two rectangles have the same di-
mensions, are not rotatable and are not part of a room carpet with more than one

rectangle. For refinement sym we add a lexicographic ordering on (r.y, r.x) for
rectangles that are the same. Symmetry breaking can also considerably simplify
the definition of r.last for stair carpets c ∈ Str since we only need to consider
the lexicographically least member of each symmetric group that appears in the
partition c.part. Finally we can enforce that the pieces of an edge filler carpet
are ordered in length.

Forbidden gaps Forbidden gaps [17] are areas between a rectangle and a long
edge (either from another rectangle or a boundary) that are too small to accom-
modate any part of other rectangles. In this paper, we forbid these gaps between
rectangles that have fixed orientation and do not belong to room carpets with
multiple rectangles, and the borders of the carpet roll as follows.

Let gap be the minimal width of any rectangle. In the y direction (fbg y) We
consider how many rectangles (multiples of gap) might fit between the considered
object edge and the border of the carpet roll: (i) none, (ii) one, and (iii) two
or more. In case (i) the y coordinate is set to 0. In case (ii) the object is aligned
with either the top or the bottom. In case (iii) constraints are added to forbid
placements of the object that creates a smaller gap than gap with either the top
or bottom of the roll. Similarly, we impose forbidden gaps (fbg x) for the left
and right border of the roll.

6 Search

To solve a carpet cutting problem instance I in our approaches we need to solve a
series of instances I determined by splitting. The generic algorithm first attempts
to find a good solution for each I ′ ∈ I and then uses the best solution found
as an upper bound on roll length, and searches for an optimal solution of each
I ′ ∈ I in the order of how good a first solution we found for them. During this
process the upper bound is always the best solution found so far.

The two phase approach has two benefits. First it means that domain sizes
of variables in the optimisation search are much smaller. Because lazy clause
generation generates a Boolean representation of the size of the initial domain
size this makes the optimisation search much more efficient. Second the first
phase ranks that split instances on likelihood of finding good solutions, so usually
later instances in the optimisation phase are quickly found to be unable to lead
to a better solution.

First solution generation The goal of the first search is to quickly generate
a first solution that gives a good upper bound on the carpet roll length. We
examine each split instance in I in turn. We order the split instances by the
partitions of regular stair carpets examining partitions with fewer pieces before
partitions with more pieces, and otherwise breaking ties arbitrarily.

We use a simple sequential search on each split instance. We treat the room
carpets first, in decreasing order of total area. First we assign a horizontal or
vertical orientation for all room carpets by fixing the c.0or180, which fixes the
dimensions of each rectangle. Then we fix the orientation by fixing c.0or90. We

then fix the lengths of edge filler carpets. We next determine c.x for all room
carpets c, and then determine each c.y again in decreasing area order. Finally
we place each stair carpet rectangles by fixing r.x and then r.y treating each
rectangle in input order.

Minimisation A hybrid sequential/activity based search is used to find optimal
solutions. We first fix the orientations of each room carpet as we did in the
first-solution search. Then we switch to the activity-based search (a variant of
Vsids [11]) which concentrates on variables which are involved in lots of recent
failures. Activity-based search is tightly tied to the learning solver we use, but
is acknowledged from the SAT community to be very effective.

For the activity-based search, we use a geometric restart policy on the number
of node failures in order to make the search more robust. The restart base and
factor are 128 failures and 2.0, respectively.

7 Experiments

The experiments were carried out on a 64-bit machine with Intel(R) Pentium(R)
D processing with 3.4 GHz clock and Ubuntu 9.04. For each original problem
instance I an overall 3 minutes runtime limit was imposed for calculating carpets
that are in disjunction with all other carpets if the refinement disj is used, finding
a first solution and minimising the roll length for all split instances I.

The G12/FDX solver from the G12 Constraint Programming Platform [18]
was used as the Lcg solver. We also experimented with the G12 Fd solver using
search more suitable for Fd (placement of the biggest carpets at first). It could
only optimally solve 7 instances compared to 76 for Lcg using the same search.
This shows that Lcg is vital for solving the problem to prune substantial parts
of the search space.

Dynamic versus static model Table 2 compares the static and dynamic
model as well as the current solution approach on the instances which the static
model can handle (126 of 150). It shows the number of instances solved optimally
(“opt.”), the sum of the best first solutions found for each instance (“init. ΣRL”),
the sum of the best solutions found for each instance (“ΣRL”) and the area
of wastage (“wast.”), i.e. for one instance RL × RW −

∑
c∈Rect c.len × c.wid,

relatively to the wastage created by the current method as well as the total
runtime to solve all instances (“Σrt.”). The static approach solves one more
problem and its first solutions are better than for the dynamic approach. In
total, a better first solution was generated for 55 instances. Where applicable
the static approach is preferable.

The existing method outperforms manual approaches using a manual grapical
editing tool. It finds, but does not prove, 27 optimal solutions. It was tested by
IF Computer GmbH on a Dell Latitude D820 with a Intel(R) Core(TM) Duo
processor T2400 processing with 1.86 Ghz clock. The times marked (†) for the
existing approach are the sum of times when the best solution was found. Since
it cannot prove optimality for the majority of instances the existing method uses

Table 2: Comparison between dynamic and static approach.
approach opt. init. ΣRL ΣRL wast. Σrt.

dynamic 92/126 171,645 160,536 66.5% 6,247s
static 93/126 168,270 160,399 65.9% 6,946s

Current method 27/126 - 167,668 100% 7,450s†

Table 3: Results of different refinements
disj views diff2 sym fbg x fbg y opt. init. ΣRL ΣRL wast. Σrt.

86/150 232,181 221,542 67.9% 12,721s
× 88/150 232,075 221,521 67.8% 12,360s

× 89/150 232,181 221,248 66.9% 11,999s
× 89/150 232,181 221,240 66.9% 11,980s

× 99/150 232,181 221,344 67.2% 9,933s
× 88/150 232,181 221,596 68.1% 12,295s

× 88/150 232,181 221,399 67.4% 12,302s
× × 89/150 232,181 221,060 66.3% 12,385s

× × × × × × 106/150 232,075 220,775 65.2% 9,290s

Current method 30/150 - 230,795 100% 8,988s†

the whole 3 minutes. The new approach results in an improvement of wastage
of over 33%.

Refinements Table 3 presents the impact of different refinements on the dy-
namic models. The entry × means that the refinement was used. We compare
the different refinements with the same features as before.

The change in number of optimally solved instances clearly illustrates the
important of symmetry breaking for proving optimality. Variable views and for-
bidden gaps have a minor impact on proving optimality.

We can see a tradeoff in the refinements. Most make it harder to find solu-
tions, but reduce the search space required to prove optimality. When applying
all refinements we solve the most instances, and generate solutions with minimal
total length, since the new optimal solutions make up for unsolved problems
where we found worse solutions.

8 Conclusion

We have created an approach to carpet cutting that can find and prove the
optimal solution for typical problems instances within 3 minutes. The power
of the approach comes from the combination of careful modelling of the stair
breaking constraints to eliminate symmetries and dominated solutions, and the
use of lazy clause generation to drastically reduce the time to proof of optimality.

Acknowledgements We are indebted to IF Computer GmbH for providing us
not only real world data, but also sharing their knowledge and results with us.

NICTA is funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geomet-
rical constraint kernel in space and time for handling polymorphic k-dimensional
objects. In: CP 2007. LNCS, vol. 4741, pp. 180–194 (2007)

3. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In: CP 2001. pp. 377–391 (2001)

4. Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint
in the context of non-overlapping rectangles. In: CPAIOR 2008. pp. 21–35 (2008)

5. Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-
dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)

6. George, A.E.: The Theory of Partitions. Cambridge University Press (1998)
7. Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal,

two-dimensional knapsack problems. Eur. J. Oper. Res. 83(1), 39–56 (1995)
8. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in

cumulative problems. C. R. Acad. Sci., Paris, Sér. I, Math. 294(2), 209–211 (1982)
9. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey.

Eur. J. Oper. Res. 141(2), 241–252 (2002)
10. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing

problem. Manage. Sci. 44(3), 388–399 (1998)
11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient SAT solver. In: DAC 2001. pp. 530–535 (2001)
12. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.

Constraints 14(3), 357–391 (2009)
13. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint program-

ming for solving the two-dimensional bin-packing problem. INFORMS J. Comput.
19(1), 36–51 (2007)

14. Schulte, C., Tack, G.: Views iterators for generic constraint implementations. In:
CP 2005. pp. 817–821 (2005)

15. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator (2010), to appear in Constraints

16. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource con-
strained project scheduling problem with generalized precedences by lazy clause
generation (Sep 2010), http://arxiv.org/abs/1009.0347

17. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: CP 2008.
pp. 52–66 (2008)

18. Stuckey, P.J., Garcia de la Banda, M., Maher, M., Marriott, K., Slaney, J., Somogyi,
Z., Wallace, M.G., Walsh, T.: The G12 project: Mapping solver independent models
to efficient solutions. In: ICLP 2005. pp. 9–13 (2005)

19. Verden, A., Pearson, C., Birtwistle, M.: Reducing material wastage in the carpet
industry. In: PAP’98. pp. 101–112 (1998)

20. Verden, A., Pearson, C., Birtwistle, M.: Reducing material wastage in the carpet
industry. In: INAP’98. pp. 76–91 (1998)

21. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

