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Abstract
Binary Decision Diagram (BDD) based set bounds propagation is a powerful ap-

proach to solving set-constraint satisfaction problems. However, prior BDD based
techniques incur the significant overhead of constructing and manipulating graphs
during search.

We present a set-constraint solver which combines BDD-based set-bounds prop-
agators with the learning abilities of a modern SAT solver. Together with a number
of improvements beyond the basic algorithm, this solver is highly competitive with
existing propagation based set constraint solvers.

1. Introduction

It is often convenient to model a constraint satisfaction problem (CSP) using finite
set variables and set relationships between them. A common approach to solving
finite domain CSPs is using a combination of backtracking search and a constraint
propagation algorithm. The propagation algorithm attempts to enforce consistency
on the values in the domains of the constraint variables by removing values from the
domains of variables that cannot form part of a complete solution to the system of
constraints. The most common level of consistency is set bounds consistency (Gervet,
1997) where the solver keeps track for each set of which elements are definitely in
or out of the set. Many solvers use set bounds consistency including ECLiPSe (IC-
PARC, 2003), Gecode (GECODE, 2008), and ILOG SOLVER (ILOG, 2004).

Set bounds propagation is supported by solvers since stronger notions of propaga-
tion such as domain propagation require representing exponentially large domains of
possible values. However, Lagoon and Stuckey (2004) demonstrated that it is possible
to use reduced ordered binary decision diagrams (BDDs) as a compact representation

∗. A preliminary version of this work appears as (Gange, Lagoon, & Stuckey, 2008)
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of both set domains and of set constraints, thus permitting set domain propagation.
A domain propagator ensures that every value in the domain of a set variable can be
extended to a complete assignment of all of the variables in a constraint. The use of
the BDD representation comes with several additional benefits. The ability to easily
conjoin and existentially quantify BDDs allows the removal of intermediate variables,
thus strengthening propagation, and also makes the construction of propagators for
global constraints straightforward.

Given the natural way in which BDDs can be used to model set constraint prob-
lems, it is therefore worthwhile utilising BDDs to construct other types of set solver.
Indeed it has been previously demonstrated (Hawkins, Lagoon, & Stuckey, 2004,
2005) that set bounds propagation can be efficiently implemented using BDDs to
represent constraints and domains of variables. A major benefit of the BDD-based
approach is that it frees us from the need to laboriously construct set bounds propa-
gators for each new constraint by hand. Moreover, correctness and optimality of such
BDD-based propagators follow by construction. The other advantages of the BDD-
based representation identified above still apply, and the resulting solver performs
very favourably when compared with existing set bounds solvers.

But set bounds propagation using BDDs still constructs BDDs during propaga-
tion, which is a considerable overhead. In this paper we show how we can perform
BDD-based set bounds propagation using a marking algorithm that perform linear
scans of the BDD representation of the constraint without constructing new BDDs.
The resulting set bounds propagators are substantially faster than those using BDDs.

The contributions of this paper are:

• Efficient set bounds propagators: No new BDDs are constructed during
propagation, so it is very fast.

• Graph reuse: We can reuse a single BDD for multiple copies of the same
constraint, and hence handle larger problems.

• Ordering flexibility: We are not restricted to a single global ordering of
Booleans for constructing BDDs.

• Filtering: We can keep track of which parts of the set variable can really make
a difference, and reduce the amount of propagation.

Pure set-bounds propagation tends to perform badly, however, in problems where
a large number of similar regions of the search space must be explored. We therefore
embed the set-bounds propagators in MiniSAT (Eén & Sörensson, 2003), to provide
SAT-style clause learning.

In the next section, we introduce propagation-based solving for set problems,
and briefly discuss SAT solving. In Section 3 we discuss binary decision diagrams
(BDDs) and how to implement set bounds propagation using BDDs. Then in
Section 4, we present the propagation algorithm used by the hybrid solver, together
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with a number of variations upon the standard algorithm. In Section 5, we show how
to incorporate reason generation with BDD propagation to build a hybrid solver In
Section 6 we test the performance of the solver on a variety of set-constraint problems,
and compare with other set-constraint solvers. In Section 7 we discuss related work,
before concluding in Section 8.

2. Propagation-based Solving

Propagation based approaches to solving set constraint problems represent the prob-
lem using a domain storing the possible values of each set variable, and propagators
for each constraint, that remove values from the domain of a variable that are incon-
sistent with values for other variables. Propagation is combined with backtracking
search to find solutions.

A domain D is a complete mapping from the fixed finite set of variables V to
finite collections of finite sets of integers. The domain of a variable v is the set
D(v). A domain D1 is said to be stronger than a domain D2, written D1 v D2,
if D1(v) ⊆ D2(v) for all v ∈ V . A domain D1 is equal to a domain D2, written
D1 = D2, if D1(v) = D2(v) for all variables v ∈ V . A domain D can be interpreted
as the constraint

∧
v∈V v ∈ D(v).

For set constraints we will often be interested in restricting variables to take on
convex domains. A set of sets K is convex if a, b ∈ K and a ⊆ c ⊆ b implies
c ∈ K. We use interval notation [a, b] where a ⊆ b to represent the (minimal)
convex set K including a and b. For any finite collection of sets K = {a1, a2, . . . , an},
we define the convex closure of K: conv(K) = [∩a∈Ka,∪a∈Ka]. We extend the
concept of convex closure to domains by defining ran(D) to be the domain such that
ran(D)(v) = conv(D(v)) for all v ∈ V .

A valuation θ is a set of mappings from the set of variables V to sets of integer
values, written {v1 7→ d1, . . . , vn 7→ dn}. A valuation can be extended to apply to
constraints involving the variables in the obvious way. Let vars be the function that
returns the set of variables appearing in an expression, constraint or valuation. In an
abuse of notation, we say a valuation is an element of a domain D, written θ ∈ D, if
θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

2.1 Constraints, Propagators and Propagation

A constraint is a restriction placed on the allowable values for a set of variables. We
shall use primitive set constraints such as (membership) k ∈ v, (equality) u = v,
(subset) u ⊆ w, (union) u = v ∪ w, (intersection) u = v ∩ w, (cardinality) |v| = k,
(upper cardinality bound) |v| ≤ k, (lexicographic order) u < v, where u, v, w are set
variables, k is an integer. We can also construct more complicated constraints which
are (possibly existentially quantified) conjunctions of primitive set constraints. We
define the solutions of a constraint c to be the set of valuations θ on vars(c) that
make the constraint true.
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We associate a propagator with every constraint. A propagator f is a mono-
tonically decreasing function from domains to domains, so D1 v D2 implies that
f(D1) v f(D2), and f(D) v D. A propagator f is correct for a constraint c if and
only if for all domains D: {θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

A propagation solver solv(F,D) for a set of propagators F and a domain D re-
peatedly applies the propagators in F starting from the domain D until a fixpoint is
reached. solv(F,D) is the weakest domain D′ v D where f(D′) = D′ for all f ∈ F .

Example 1 A small example of a set-constraint problem would be to, given a uni-
verse consisting of the elements {1, 2, 3, 4}, find values for variables x, y, z such that
z = x ∩ y, |x| = 3, |y| = 3, |z| = 2, 3 /∈ z, 1 ∈ z and 2 /∈ y.

The unique solution to this problem is θ = {x 7→ {1, 2, 4}, y 7→ {1, 3, 4}, z 7→
{1, 4}}.

2.2 Set bounds consistency

A domain D is (set) bounds consistent for a constraint c if for every variable v ∈
vars(c) the upper bound of D(v) is the union of the values of v in all solutions of c in
D, and the lower bound of D(v) is the intersection of the values of v in all solutions
of c in D. We define the set bounds propagator for a constraint c as

ub(c)(D)(v) =

{
{i | ∃θ · θ ∈ solns(D ∧ c) ∧ i ∈ θ(v)} if v ∈ vars(c)
ub(v) otherwise

lb(c)(D)(v) =

{
{i | ∀θ · θ ∈ solns(D ∧ c)→ i ∈ θ(v)} if v ∈ vars(c)
lb(v) otherwise

sb(c)(D)(v) = [lb(c)(D)(v), ub(c)(D)(v)]

Then sb(c)(D) is always bounds consistent with c.

Example 2 Continuing the example from the previous section, the initial bounds
of the variables x, y, z are D(x) = D(y) = D(z) = [∅, {1, 2, 3, 4}], as no values are
explicitly included or excluded from the domains. As first 3 /∈ z is added, then 1 ∈ z
and finally 2 /∈ y, the bounds are reduced, and the consequences of these changes are
propagated among the variables as follows:
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Propagator D(x) D(y) D(z)
[∅, {1, 2, 3, 4}] [∅, {1, 2, 3, 4}] [∅, {1, 2, 3, 4}]

3 /∈ z [∅, {1, 2, 3, 4}] [∅, {1, 2, 3, 4}] [∅, {1, 2, 4}]
1 ∈ z [∅, {1, 2, 3, 4}] [∅, {1, 2, 3, 4}] [{1}, {1, 2, 4}]

z = x ∩ y [{1}, {1, 2, 3, 4}] [{1}, {1, 2, 3, 4}] [{1}, {1, 2, 4}]
2 /∈ y [{1}, {1, 2, 3, 4}] [{1}, {1, 3, 4}] [{1}, {1, 2, 4}]
|y| = 3 [{1}, {1, 2, 3, 4}] [{1, 3, 4}, {1, 3, 4}] [{1}, {1, 2, 4}]
z = x ∩ y [{1}, {1, 2, 4}] [{1, 3, 4}, {1, 3, 4}] [{1}, {1, 4}]
|z| = 2 [{1}, {1, 2, 4}] [{1, 3, 4}, {1, 3, 4}] [{1, 4}, {1, 4}]
|x| = 3 [{1, 2, 4}, {1, 2, 4}] [{1, 3, 4}, {1, 3, 4}] [{1, 4}, {1, 4}]

Once 1 ∈ z is fixed, 1 is added to lb(z). Since z = x∩y, any element in lb(z) must
also be in lb(x) and lb(y). Once 2 /∈ y has been set, |ub(y)| = 3 and since |ub(y)| ≥
|y| = 3 this means y = ub(y) = {1, 3, 4}. This means that 2 /∈ z since z = x ∩ y.
Since 3 /∈ ub(z), at least one of x or y must not contain 3. Once 3 ∈ lb(y) has set, it
can be determined that 3 /∈ ub(x). Since |ub(z)| = 2 this forces z = ub(z) = {1, 4}.
Finally the constraint |x| = 3 then results in the value of x becoming fixed. The
corresponding valuation is θ = {x 7→ {1, 2, 4}, y 7→ {1, 3, 4}, z 7→ {1, 4}}, which is the
solution provided in Example 1.

2.3 Boolean Satisfiability (SAT)

Boolean Satisfiability or SAT solvers are a special case of propagation-based solvers,
restricted to Boolean variables and clause constraints.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Davis, Logemann, &
Loveland, 1962), on which most modern SAT solvers are based, is also a propagation-
based approach to solving SAT problems. It interleaves two phases – search, where
an unfixed variable is assigned a value, and propagation (so called unit propagation).

Modern SAT solvers incorporate sophisticated engineering to propagate constraints
very fast, to record as nogoods part of the search that lead to failure, and to automate
the search by keeping track of how often a variable is part of the reason for causing
failure (activity) and concentrating search on variables with high activity. Modern
SAT solvers also frequently restart the search from scratch relying on nogoods record-
ing to prevent repeated search, and activity to drive the search into more profitable
areas. See e.g. (Eén & Sörensson, 2003) for a good introduction to modern SAT
solving.

A rough architecture of a modern SAT solver is illustrated in Figure 1. Search
starts the unit propagation process which interacts with the clause database and
may detect failure, which initiates conflict analysis. Unit propagation records for
each literal that is made true, the clause that explains why the literal become true.
Conflict analysis uses the graph of explanations to construct a nogood which is a
resolvent of clauses causing the failure that adds to the strength of unit propagation.
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SAT Engine

Clause Database

unit propagation

Search

conflict
analysis

Figure 1: Architecture for the SAT solver.

This is stored in the clause database and causes search to backjump. It prevents the
search revisiting the same set of decisions. Not detailed here are activity counters
which record which variables are most responsible for failure, these are the variables
chosen for labelling by the search.

3. Binary Decision Diagrams

We assume a set B of Boolean variables with a total ordering ≺. A Boolean vari-
able can take the value 0 (false) or 1 (true). We make use of the following Boolean
operations: ∧ (conjunction), ∨ (disjunction), ¬ (negation), → (implication), ↔ (bi-
implication) and ∃ (existential quantification). We denote by ∃V F the formula
∃x1 · · · ∃xnF where V = {x1, . . . , xn}, and by ∃̄V F we mean ∃V ′F where V ′ =
vars(F ) \ V .

Reduced Ordered Binary Decision Diagrams are a well-known method of repre-
senting Boolean functions on Boolean variables using directed acyclic graphs with
a single root. Every internal node n(v, f, t) in a BDD r is labelled with a Boolean
variable v ∈ B, and has two outgoing arcs — the ‘false’ arc (to BDD f) and the ‘true’
arc (to BDD t). Leaf nodes are either F (false) or T (true). Each node represents
a single test of the labelled variable; when traversing the tree the appropriate arc is
followed depending on the value of the variable. Define the size |r| as the number of
internal nodes in a BDD r, and VAR(r) as the set of variables v ∈ B appearing in
some internal node in r.

Reduced Ordered Binary Decision Diagrams (BDDs) (Bryant, 1986) require that
the BDD is: reduced, that is it contains no identical nodes (that is, nodes with the
same variable label and identical true and false arcs) and has no redundant tests (no
node has both true and false arcs leading to the same node); and ordered, if there is
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Figure 2: BDDs for (a) v3 ∧ ¬v4 ∧ ¬v5 ∧ v6 ∧ v7. (b) x1 + x2 + x3 + x4 + x5 ≤ 2. The
node n(v, f, t) is shown as a circle labelled v with a dotted arc to the f BDD, and a
solid arc to the t BDD.

an arc from a node labelled v1 to a node labelled v2 then v1 ≺ v2. A BDD has the
nice property that the function representation is canonical up to variable reordering.
This permits efficient implementations of many Boolean operations.

A Boolean variable v is said to be fixed in a BDD r if either for every node
n(v, f, t) ∈ r t is the constant F node, or for every node n(v, f, t) f is the constant
F node. Such variables can be identified in a linear time scan over the domain BDD
(see e.g. Hawkins et al., 2005). For convenience, if φ is a BDD, we write JφK to denote
the BDD representing the conjunction of the fixed variables of φ.

Example 3 Figure 2(a) gives an example of a BDD representing the formula v3 ∧
¬v4∧¬v5∧v6∧v7. Figure 2(b) gives an example of a more complex BDD representing
the formula x1 +x2 +x3 +x4 +x5 ≤ 2 where we interpret the Booleans as 0-1 integers.
One can verify that the valuation {x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0} makes
the formula true by following the path right, left, right, left, left from the root.

3.1 Set Propagation using BDDs

The key step in building set propagation using BDDs is to realize that we can represent
a finite set domain using a BDD.

3.1.1 Representing domains

If v is a set variable ranging over subsets of {1, . . . , N}, then we can represent v using
the Boolean variables V (v) = {v1, . . . , vN} ⊆ B, where vi is true iff i ∈ v. We will
order the variables v1 ≺ v2 · · · ≺ vN . We can represent a valuation θ using a formula

R(θ) =
∧

v∈vars(θ)

 ∧
i∈θ(v)

vi ∧
∧

i∈{1,...,N}−θ(v)

¬vi

 .
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Then a domain of variable v, D(v) can be represented as φ =
∨
a∈D(v)R({v 7→ a}).

This formula can be represented by a BDD. The set bounds of v can be obtained by
extracting the fixed variables from this BDD, JφK.

For example the valuation θ of Example 1 is represented by the formula R(θ):

x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ y1 ∧ ¬y2 ∧ y3 ∧ y4 ∧ z1 ∧ ¬z2 ∧ ¬z3 ∧ z4.

And the domain D(v) = [{3, 6, 7}, {1, 2, 3, 6, 7, 8, 9}] is represented by the BDD in
Figure 2(a) since v3, v6 and v7 are true so 3, 6, 7 are definitely in the set, and v4 and
v5 are false so 4 and 5 are definitely not in the set.

3.1.2 Representing constraints

We can similarly model any set constraint c as a BDD B(c) using the Boolean variable
representation V (v) of its set variables v. By ordering the variables in each BDD
carefully we can build small representations of the formulae. The pointwise order of
Boolean variables is defined as follows. Given set variables u ≺ v ≺ w ranging over
sets from {1, . . . , N} we order the Boolean variables as u1 ≺ v1 ≺ w1 ≺ u2 ≺ v2 ≺
w2 ≺ · · ·uN ≺ vN ≺ wN .

The representation B(c) is simply ∨θ∈solns(c)R(θ). For primitive set constraints
(using the pointwise order) this size is linear in N . For more details see Hawkins
et al., 2005. The BDD representation of |x| ≤ 2 is shown in Figure 2(b), for N = 5.

3.1.3 BDD-based Set Bounds Propagation

We can build a set bounds propagator, more or less from the definition, since we have
BDDs to represent domains and constraints.

φ = B(c) ∧
∧

v′∈vars(c)

D(v′)

sb(c)(D)(v) = ∃V (v) JφK

We simply conjoin the domains to the constraint obtaining φ, then extract the fixed
variables from the result, and then project out the relevant part for each variable v.
The set bounds propagation can be improved by removing the fixed variables as soon
as possible. The improved definition is given in (Hawkins et al., 2004). Overall the
complexity can be made O(|B(c)|).

The updated set bounds can be used to simplify the BDD representing the prop-
agator. Since fixed variables will never interact further with propagation they can be
projected out of B(c), so we can replace B(c) by ∃VAR(JφK)φ.

3.2 Tseitin Transformation

It is possible to convert any Boolean circuit to a pure SAT representation; the method
for doing so is generally attributed to Tseitin (1968). Figure 3 gives pseudo code for
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bdd2sat(node) {
switch node {
F : return (0, {}) ;
T : return (1, {});
n(v, f, t):

if (visit[node] 6= ⊥) return(visit[node],{});
let n′ be a new Boolean variable;
visit[node] = n′;
(f ′, Cf ) = bdd2sat(f);
(t′, Ct) = bdd2sat(t);
return (n′, {v ∧ t′ → n′,¬v ∧ f ′ → n′, v ∧ ¬t′ → ¬n′,¬v ∧ ¬f ′ → ¬n′,

t′ ∧ f ′ → n′,¬t′ ∧ ¬f ′ → ¬n′} ∪ Cf ∪ Ct);
}

}

Figure 3: Pseudo-code for Tseitin transformation of BDD rooted at node where n′

is the Boolean variable encoding the truth value of node.

the translation of BDD rooted at node, returning a pair of (Boolean variable, set of
clauses). The clauses enforce that the Boolean variable takes the truth value of the
BDD. Like most BDD algorithms it relies on marking the visited nodes to ensure
each node is visited at most once. It assumes the array visit[] is initially all bottom
⊥, and on first visiting a node stores the corresponding Boolean variable in visit[].
A more comprehensive discussion of the Tseitin transformation is presented by Eén
and Sörensson (2006).

The constraint is enforced by fixing the variable corresponding to the root node
to true. An advantage of replacing a BDD by its Tseitin representation is that we
can use an unmodified SAT solver to then tackle BDD-based set constraint problems.
We shall see in Section 6 that this approach cannot compete with handling the BDDs
directly.

4. Faster Set-bounds Propagation

While set bounds propagation using BDDs is much faster than set domain propagation
and often better than set domain propagation (or other variations of propagation for
sets) it still creates new BDDs. This is not necessary as long as we are prepared to
give up the simplifying of BDDs that is possible in set bounds propagation.

We do not represent domains of variables as BDDs, but rather as arrays of Boolean
domains. A domain D is an array where, for variable v ranging over subsets of
{1, . . . , N}: 0 /∈ D[vi] indicates i ∈ v, and 1 /∈ D[vi] indicates i /∈ v. If D[vi] = {0, 1},
we don’t know whether i is in or not in v. Hence D(v) = [{i|0 /∈ D[vi]}, {i|1 ∈ D[vi]}].
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The BDD representation of a constraint B(c) is built as before. A significant
difference is that since constraints only communicate through the set bounds of vari-
ables we do not need them to share a global variable order hence we can if necessary
modify the variable order used to construct B(c) for each c, or use automatic variable
reordering (which is available in most BDD packages) to construct B(c). Another
advantage is that we can reuse the BDD for a constraint c(x̄) on variables x̄ for the
constraint c(ȳ) on variables ȳ (as long as they range over the same initial sets), that
is, the same constraint on different variables. Hence we only have to build one such
BDD, rather than one for each instance of the constraint.

The set bounds propagator sb(c(x̄)) for constraint c(x̄) is now implemented as
follows. A generic BDD representation r of the constraint c(ȳ) is constructed. The
propagator copies the domain description of the actual parameters x1, . . . , xn onto
a domain description E for formal parameters y1, . . . , yn. It constructs an array
E where E[yji ] = D[xji ]. Let V = {yji | 1 ≤ j ≤ n, 1 ≤ i ≤ N} be the set of
Boolean variables occurring in the constraint c(ȳ). The propagator executes the code
bddprop(r, V, E) shown in Figures 4 and 5 which returns (r′, V ′, E ′). If r′ = F the
propagator returns a false domain, otherwise the propagator copies back the domains
of the formal parameters to the actual parameters so D[xji ] = E[yji ]. We will come
back to the V ′ argument in the next subsection.

The procedure bddprop(r, V, E) traverses the BDD r as follows. We visit each node
n(v, f, t) in the BDD in a top-down memoing manner. We record if, under the current
domain, the node can reach the F node, and if it can reach the T node. If the f child
can reach the T node we add support for the variable v taking value 0. Similarly if
the t child can reach T we add support for the variable v taking 1. If the node can
reach both F and T we record that the variable v matters to the computation of
the BDD. After the visit we reduce the variable set for the propagator to those that
matter, and remove values with no support from the domain. The procedure assumes
a global time variable which is incremented between each propagation, which is used
to memo the marking phase. The top(n, V ) function returns the variable in the root
node of n or the largest variable (under ≺) in V if n = T or n = F .

As presented bddprop has time complexity O(|r| × |V |) where |r| is the number of
nodes appearing in BDD r. In practice the complexity is O(|r| + |V |) since the |V |
factor arises from handling “long arcs”, where a node n(v, f, t) has a child node (f
or t) are labelled by a Boolean different from that next in the order ≺ after v. For
set constraints the length of a long arc is typically bounded by the arity of the set
constraint. It is possible to create a version of bddprop which is strictly O(|r|) by
careful handling of long arcs. We did so, but in practice it was slower than the form
presented here. bddprop has space complexity O(|V | + |r|) the first component for
maintaining the domains of variables and the second for memoing the BDD nodes.

Example 4 Consider the BDD for the constraint x = y ∪ z when N = 2 shown in
Figure 6(a). Assuming a domain E where E[y1] = {1} (1 ∈ y) and E[z2] = {1}
(2 ∈ z), and the remaining variables take value {0, 1}, the algorithm traverses the
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bddprop(r,V ,E) {
for (v ∈ V ) {

E ′[v] = {};
}
(reachf , reacht) = bddp(r, V, E);
if (¬reacht) return (F , ∅, E);
vars = ∅;
for (v ∈ V ) {

if (E ′[v] 6= E[v]) {
E[v] = E ′[v];

}
if (E[v] = {0, 1} ∧ matters[v] ≥ time) vars = vars ∪ {v};

}
return (r, vars , E);

}

Figure 4: Pseudo-code for BDD-propagation.

edges shown with double lines in Figure 6(b). No path from x1, or x2 following the
f arc reaches T hence 0 is not added to E ′[x1] or E ′[x2]. As a result E[x1] and E[x2]
are set to {1}. Hence we have determined 1 ∈ x and 2 ∈ x.

Also, no nodes for z1 are actually visited, and the left node for y2 only reaches
F and the right node only reaches T . Hence matters[z1] and matters[y2] are not
marked with the current time. The set of vars collected by bddprop is empty, since
the remaining variables are fixed.

4.1 Waking up less often

In practice a bounds propagation solver does not blindly apply each propagator until
fixpoint, but keeps track of which propagators must still be at fixpoint, and only
executes those that may not be. For set bounds this is usually managed as follows.
To each set variable v is attached a list of propagators c that involve v. Whenever v
changes, these propagators are rescheduled for execution.

We can do better than this with the BDD based propagators. The algorithm
bddprop collects the set of Boolean variables that matter to the BDD, that is can
change the result. If a variable that does not matter becomes fixed, then set bounds
propagation cannot learn any new information. We modify the wakeup process as
follows. Each propagator stores a list vars of Boolean variables which matter given
the current domain. When a Boolean variable xji becomes fixed we traverse the list
of propagators involving xji and wake those propagators where xji occurs in vars . On
executing a propagator we revise the set vars stored in the propagator. Note the same
optimization could be applied to the standard approach, but requires the overhead
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bddp(node,V ,E) { ← if (in set(fset , node)) { return (1, 0)};
switch node {
F : return (1,0);
T : return (0,1);
n(v, f, t):

if (visit[node] ≥ time) return save[node];
reachf = 0; reacht = 0;
if (0 ∈ E[v]) {

(rf0 , rt0 ) = bddp(f, V, E);
reachf = reachf ∨ rf0 ;
reacht = reacht ∨ rt0 ;
if (rt0 ) {

for (v′ ∈ V, v ≺ v′ ≺ top(f, V ))
E ′[v′] = E[v′];

E ′[v] = E ′[v] ∪ 0;
}

}
if (1 ∈ E[v]) {

(rf1 , rt1 ) = bddp(t, V, E);
reachf = reachf ∨ rf1 ;
reacht = reacht ∨ rt1 ;
if (rt1 ) {

for (v′ ∈ V, v ≺ v′ ≺ top(t, V ))
E ′[v′] = E[v′];

E ′[v] = E ′[v] ∪ 1;
}

}
if (reachf ∧ reacht) matters[v] = time;
save[node] = (reachf , reacht); ← if (¬reacht) { insert(fset , node) };
visit[node] = time;
return (reachf , reacht);

}
}

Figure 5: Pseudo-code for processing the constraint graph during propagation. Mod-
ifications necessary for using dead-subgraph memoization are shown on the right.

of computing vars which here is folded into bddprop. It is possible to instead do
propagator wake-up on literals, rather than variables. In this case, we observe that
fixing a variable v to true matters to a node n(v, f, t) iff T is reachable from f and
F is reachable from t – the converse holds for ¬v. In terms of the pseudo-code in
Figure 5, the line
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Figure 6: (a) The BDD representing x = y∪ z where N = 2. (b) The edges traversed
by bddprop, when E[y1] = {1} and E[z2] = {1} and E[v] = {0, 1} otherwise, are
shown doubled.

if (reachf ∧ reacht) matters[v] = time;

may therefore be replaced with

if (rt0 ∧ rf1) matters[v] = time;
if (rt1 ∧ rf0) matters[¬v] = time;

While this allows for propagators to wake up less frequently, propagator execution is
slower due to keeping track of additional reachability information.

4.2 Dead Subgraph Memoization and Shortcutting

The algorithm as presented above always explores all reachable parts of the graph in
order to determine the set of supported values. However, a number of improvements
for Multi-Decision Diagrams (MDDs) were presented by Cheng and Yap (2008) which
reduce the portion of the graph which must be traversed in order to enforce consis-
tency. These are dead subgraph memoization, which avoids traversal of subgraphs
which cannot provide support for any values, and shortcutting, which recognizes sit-
uations where it is only necessary to find one path to T to ensure consistency. These
can readily be adapted to a BDD-based set constraint solver.

4.2.1 Dead Subgraph Memoization

The key observation for dead subgraph memoization is that, as search progresses,
paths along the graph to T are only ever removed. As such, if T becomes unreachable
from a node n, the subgraph incident from n need never again be explored until the
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insert(S, n) {
S.sparse[n] = S.members
S.dense[S.members ] = n
S.members++

}

in set(S, n) {
index = S.sparse[n]
return index < S.members
∧ S.dense[index] == n

}

(a) Sparse set operations

insert(S, n) {
old index = S.sparse[n]
swap value = S.dense[S.members]

S.sparse[n] = S.members
S.dense[S.members ] = n

S.sparse[swap value] = old index
S.dense[old index] = swap value
S.members++

}

in set(S, n) {
return S.sparse[n] < S.members

}

(b) Modified sparse-set operations

Figure 7: Pseudo-code for conventional sparse-set operations, and the corresponding
modified versions.

solver backtracks. Thus, if the set of dead nodes can be maintained, it is possible to
progressively eliminate subgraphs during propagation.

We keep for each instance of a constraint c(x̄) a failure set, fset which records
which nodes can not reach T (and hence are equivalent to F). During propagation,
once a node n is shown to have no path to T , it is added to the failure set fset . When
a node is processed, we first check if it is in fset—if so, we terminate early, otherwise
we proceed as normal. The modifications necessary for this are shown on the right
in Figure 5. For simplicity the pseudo-code treats fset as a global.

A method for efficiently maintaining the failure sets was presented by Cheng and
Yap (2008), which uses sparse-set data structures to provide efficient lookup, insertion
and backtracking. The set fset is maintained as a pair of arrays: sparse and dense
and a counter members. n ∈ fset if sparse[n] < members and dense[sparse[n]] = n.
The operations for insertion and testing are shown in Figure 7(a). Crucially we can
backtrack to earlier forms of the set simply by resetting members to its value at that
time.

These structures can be improved slightly by the observation that checking mem-
bership will occur significantly more often than insertion. Pseudo-code for the modi-
fied sparse-set operations are given in Figure 7(b). While insertion operations become
more expensive, the overall computation time is reduced.

14



0 6 2 1

1 7 4 3

0 1 2 3 4 5 6 7

sparse

dense

2

(a) S0 = {1, 7}

0 2 2 1

1 7 3 3

0 1 2 3 4 5 6 7

sparse

dense

3

(b) S0 ∪ {3}

0 2 6 1

1 7 3 4

0 1 2 3 4 5 6 7

sparse

dense

3

(c) S0 ∪ {3} using modified operations

Figure 8: A sparse representation for sets. (a) A possible state of the data structure
representing S0 = {1, 7}. (b) Inserting 3 into the data structure using the standard
operations. sparse[3] is updated to point to the next element of dense, and the
corresponding entry in dense points back to 3. Notably, both sparse[3] and sparse[4]
now point to dense[2]. (c) Inserting 3 into the data structure using the modified
operations. After the operation, both the sparse and dense arrays are maintained
such that ∀v dense[sparse[v]] = v.

Example 5 Consider the set illustrated in Figure 8(a). The elements in the set are
{1, 7}. We can determine that the element 4 is not in the set S0, as sparse[4] is not
strictly less than members , indicated by the arrow in Figure 8(a).

To insert an element v using the standard sparse-set operations, we merely over-
write dense[members ] with v, and set the value of sparse[v] tomembers. This is shown
in Figure 8(b), inserting 3 into S0. At this point, both sparse[3] and sparse[4] have
the value 2. To test if 4 ∈ S ′0, it is not sufficient to determine if sparse[4] < members.
One must also check that dense[sparse[4]] = 4.

When inserting v using the modified operations, as illustrated in Figure 8(c), we
swap the values of sparse[v] and sparse[dense[members]], and likewise switch the
values of dense[members] and dense[sparse[v]]. This maintains the property that
v ∈ S ⇔ sparse[v] < members.

Dead subgraph memoization comes with a space cost of O(|r|) to store the failure
set fset. It reduces the time complexity of bddprop to O((|r| − |fset|) × |V |) and
O(|r| − |fset|+ |V |) in practice.
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4.2.2 Shortcutting

Shortcutting is an optimization to propagation on the BDD which notices that if all
values in the current domains of variables vi, vi+1, · · · , vN are fully supported, then
we do not need to examine the rest of the nodes involving those variables. We keep
a high water mark hwater which shows the least variable all of whose values are
supported. If we ever reach a node numbered at or below the high water mark we
only need to prove that it reaches T , we do not need to fully explore the sub-graph
below it.

A modified propagation algorithm taking into account shortcutting (and dead
subgraph minimization) is given in Figures 9 and 10. The high water mark hwater
is originally larger than the greatest variable appearing in the BDD.

The principle difference of imp bddp is that if we reach a node with variable at
or below the high water mark we use the simplified form shortcut bddp which only
checks whether the node can reach T . The only other complexity is to update the
high water mark hwater when we find all values of v are supported (E[v] = E ′[v]).
shortcut bddp has to be careful to mark all variables in nodes visited that reach T as
mattering to the propagator.

Example 6 Consider the BDD for the constraint |y ∩ z| = 1 when N = 3 shown
in Figure 11(a). As no variables are fixed, we first explore the false paths, and find
the T node. This provides complete support for y2, x3, y3, so the high-water mark is
updated to y2. When searching for support for x2 false, we no longer need to find
support for anything beneath the high-water mark – we need only find a single path
to true from the node labelled y2. The high water mark then increases to y1. Likewise,
when finding support for x1, everything below that point is already supported, so we
explore only the first path to T . The edges explored are shown doubled in 11(b).

Example 6 also illustrates that the impact of shortcutting is highly dependent on
the order in which branches are searched, and the structure of the constraint – if
we were to explore the true branches first, rather than the false branches, we would
need to explore all nodes to find support for all variables. Clearly shortcutting does
not change the asymptotic time or space complexity of the algorithm. Note that
shortcutting for BDDs is more complex than the approach used by Cheng and Yap
(2008) since they do not treat “long arcs” in MDDs.

5. Hybrid SAT Solver

Despite very fast propagation, a pure set bounds-based solver nevertheless suffers from
an inability to analyze the reasons for failure, which results in repeated exploration
of similar dead subtrees. This limits the performance of the solver on many hard
problem instances.

In order to address this, we construct a hybrid solver which embeds BDD-based
set bounds propagators within an efficient SAT solver. Search and conflict analysis
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imp bddp(node,V ,E) {
if (in set(fset , node)) return (1, 0);
switch node {
F : return (1,0);
T : return (0,1);
n(v, f, t):

if (visit[node] ≥ time) return save[node];
if (v ≥ hwater) return shortcut bddp(node, V,E);
reachf = 0; reacht = 0; maxvar = v;
if (0 ∈ E[v]) {

(rf0 , rt0 ) = imp bddp(f, V, E);
reachf = rf0 ; reacht = rt0 ;
if (rt0 ) {

maxvar = top(f, V );
E′[v] = E′[v] ∪ 0;
if (hwater ≤ top(f, V ) ∧ E′[v] == E[v]) {

hwater = v;
reachf = 1;
goto cleanup;

}
}

}
if (1 ∈ E[v]) {

(rf1 , rt1 ) = imp bddp(t, V, E);
reachf = reachf ∨ rf1 ; reacht = reacht ∨ rt1 ;
if (rt1 ) {

maxvar = max(maxvar, top(t, V );
E′[v] = E′[v] ∪ 1;
if (hwater ≤ top(t, V ) ∧ E′[v] == E[v]) {

hwater = v;
}

}
}
if (¬reacht):

insert(fset , node);
cleanup:

for (v′ ∈ V, v ≺ v′ ≺ maxvar)
E′[v] = E[v];

if (reachf ∧ reacht) matters[v] = time;
save[node] = (reachf , reacht);
visit[node] = time;
return (reachf , reacht);

}
}

Figure 9: Pseudo-code for processing the constraint graph during propagation, using
dead-subgraph memoization and shortcutting.

are performed in the SAT solver, and the BDD propagators are used to generate
inferences and clauses for the SAT solver to use during propagation.

5.1 Efficient Reason Generation

Key to a successful SAT solver is the recording of nogoods, small subsets of the
current variable assignments which independently result in failure. This allows similar
subtrees to be eliminated from consideration, hence significantly reducing the search
space.
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shortcut bddp(node,V ,E) {
if (in set(fset , node)) return (1,0);
switch node {
T : return (0,1);
n(v, f, t):

rf0 = 0;
if (visit[node] ≥ time) return save[node];
if (0 ∈ E[v]) {

(rf0 , rt0 ) = shortcut bddp(f, V, E);
if (rt0 ) {

if (1 ∈ E[v]) { matters[v] = time; rf0 = 1; }
visit[node] = time; save[node] = (rf0 , 1);
return save[node];

}
}
if (1 ∈ E[v]) {

(rf1 , rt1 ) = shortcut bddp(t, V, E);
if (rt1 ) {

if (rf0 ) { matters[v] = time; rf1 = 1; }
visit[node] = time; save[node] = (rf1 , 1);
return save[node];

}
}
insert(fset , node);
return (1, 0);

}
}

Figure 10: Pseudo-code for the shortcut phase.

In order to construct nogoods, it is necessary to explain the reason why each
literal was set. in order to determine the chain of reasoning which resulted in a
contradiction. In a pure SAT solver this is easy, as each variable is either a decision
variable, or associated with a clause that caused propagation.

BDD-based propagation methods, however, do not automatically provide expla-
nations for inference. The naive approach for generating a reason clause for a BDD
inference is to enumerate all the fixed variables which occur in the propagator, and
construct a clause from the negations:∧

li∈fix(B)

li � l⇔ l ∨
∨

li∈fix(B)

¬li
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Figure 11: (a) The BDD representing |x ∩ y| ≤ 1 where N = 3. A node n(v, f, t)
is shown as a circle around v with a dotted arrow to f and full arrow to t. (b) The
edges traversed by imp bddp, when E[v] = {0, 1} for all v, are shown doubled.

Unfortunately, this often results in very large reason clauses, particularly in the
case of merged propagators or global constraints. As smaller clauses result in stronger
nogoods being generated by the SAT solver, it is preferable to determine the minimal
set of variables required to cause propagation, and include only those variables in the
clause.

A method for constructing such minimal clauses was demonstrated in (Hawkins &
Stuckey, 2006), but this method involves constructing new BDDs, eliminating redun-
dant variables until the minimal BDD is constructed, then reading off the variables
remaining in the BDD. Given the propagation algorithm herein avoids expensive BDD
operations, we do not wish to use them for explanation.

Given that a set of assignments {l0, . . . , lk} entail a literal l with respect to a
constraint C, it is also true that

C ∧ ¬l

 ∧
i∈{0...k}

li

 � ⊥

As a result, the problem of finding a minimal reason for a given inference from a
BDD is equivalent to fixing ¬l and unfixing as many variables as possible without
rendering T reachable.

The algorithm presented by Subbarayan (2008) provides a method to do this by
traversing a static graph, again avoiding the need to construct intermediate BDDs.
The algorithm, given in Figure 12, traverses each node n(v, f, t) in a top-down mem-
oing manner. At each node, it records if, given to the current domain, the T node is
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reachable. If the variable v has been assigned a value, it also records if T is reachable
from the conflicting edge; any such edges must not become relaxed, otherwise the
partial assignment is no longer a conflict.

The graph is then traversed a second time, this time in a breadth-first manner.
For each variable v, if all nodes which have been reached corresponding to v variable
may be relaxed without opening a path to T , the v is unfixed. If the v remains fixed,
v is marked as part of the reason, and only the node corresponding to the value of
v is marked as reachable. Otherwise, v is not in the minimal reason, and both the
f and t nodes are marked as reached. The procedure returns the reason as a clause.
The procedure is O(|r|) in time and space complexity, but note this is O(|r|) per new
propagation that has to be explained!

Example 7 Consider the constraint and assignments obtained in Example 4. It
was determined that E[y1] = {1} ∧ E[z2] = {1} → E[x2] = {1} (or equivalently,
1 ∈ y ∧ 2 ∈ z → 2 ∈ x). As such, the naive reason clause to explain 2 ∈ x would be
¬y1 ∨ ¬z2 ∨ x2; however, it is possible to construct a smaller clause than this.

In order to construct the minimal reason for E[x2] = {1}, we first set E[x2] = {0}.
The corresponding graph is shown in Figure 13(a), with nodes that are consistent
with the partial assignment shown doubled. Note that as the solid edge from x2 is
not consistent with the assignment, T is not reachable along a doubled path from the
root node.

The algorithm then determines the set of nodes from which T is reachable – these
nodes shown doubled in Figure 13(b). These nodes must remain unreachable along
the final reason; as such, the nodes which must remain fixed are the x2 node and the
leftmost z2 node.

Finally, the algorithm progressively unfixes any variables which would not provide
a path to T (in this case, y1). The final path is shown in Figure 13(c), the resulting
inference being E[z2] = {1} → E[x2] = {1}; the corresponding reason clause is
x2 ∨ ¬z2.

5.2 Lazy Reason Generation

The simplest way to use reason generation is a so called eager generation, where when-
ever a BDD propagator makes a new inference, a minimal reason clause is generated
and added to the SAT solver. These clauses, however, cannot make any meaningful
contribution to search until a conflict is detected – they cannot cause any propa-
gation until the solver backtracks beyond the fixed variable, and no conflict clauses
are constructed until there is a conflict. As there is a degree of overhead in adding
and maintaining a large set of these clauses in the solver, it may be better to delay
constructing these reasons until they are actually required to explain a conflict.

We can instead apply the reason generation only when the SAT conflict analysis
asks for the explanation of a literal set by the BDD solver. We call this lazy generation.
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construct reason(r,V ,D,var,sign) {
Let r = n(v, t, f)
Dold = D[var];
D[var] = {1− sign};
forall (nodes n ∈ r) visit[n] := ⊥
mark reason(r,V,D);
reached [v] = {r};
if (sign)

reason = var;
else

reason = ¬var;
for (v′ ∈ V ) {

fixedvar = false;
for (n ∈ reached [v ′]) {

fixedvar = fixedvar ∨ fixed [n];
}
if (fixedvar ∧ v′ 6= var) {

if (0 ∈ D[v])
reason = reason ∨ v;

else
reason = reason ∨ ¬v;

}
for (n(vn, fn, tn) ∈ reached [v ′]) {

if (¬fixedvar ∨ 1 ∈ D[v′])
reached [vn ] = reached [vn ] ∪ tn;

if (¬fixedvar ∨ 0 ∈ D[v′])
reached [vn ] = reached [vn ] ∪ fn;

}
}
D[var] = Dold;
return reason;

}

mark reason(node,V ,D) {
if (visit[node] 6= ⊥) return visit[node];
Let node = n(v, t, f)
reachhi = mark reason(t, V,D);
reachlow = mark reason(f, V,D);
reacht = false;
if (0 ∈ D[v])

reacht = reacht ∨ reachlow ;
else

fixed [node] = reachlow ;
if (1 ∈ D[v])

reacht = reacht ∨ reachhi ;
else

fixed [node] = reachhi ;
visit[node] = reacht;
return reacht ;

}

Figure 12: Pseudo-code for the reason generation algorithm by Subbarayan (2008).
Constructs a minimal set of variables required to cause the inference var = sign.

In order to do so, we must determine the state of the propagator which caused the
inference. We implement this by recording the order in which literals become fixed in a
propagator. When generating a reason for a variable v becoming fixed, we look at each
variable in the propagator, and unfix any variable v′ such that time(v) ≤ time(v′),
then restore them after the reason is constructed.
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Figure 13: (a) The BDD representing x = y ∪ z where N = 2, with E[y1] = {1},
E[z2] = {1} and E[x2] = {0}. Edges consistent with the partial assignment are shown
doubled. (b) Nodes which must remain unreachable in the reason are shown doubled.
(c) Edges reachable along the minimal reason are shown doubled, as are nodes which
remain fixed.
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BDD Propagator

imp_bddp
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Figure 14: Architecture for the hybrid BDD-SAT solver.

5.3 Hybrid Architecture

The hybrid SAT solver embeds BDD propagators inside the SAT engine. The ar-
chitecture is illustrated in Figure 14. The usual SAT engine architecture is shown
on the left. BDD propagation is added as shown on the right. Unit propagation
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causes Boolean literals to be fixed which may require that BDD propagators need to
be awoken. We attach to each Boolean variable representing part of a set variable x
the BDD propagators involving that set variable. When unit propagation reaches a
fixpoint, the trail of fixed literals is traversed and each BDD propagator that includes
one of these literals is scheduled for execution. If we are using filtering, it is only
scheduled if the literal is one which matters to the propagator. Then we execute
the scheduled BDD propagators using imp bddp. If the BDD propagator fixes some
literals then these are added to the trail of the unit propagation engine. If we are
using eager reason generation then we also immediately build a clause explaining the
propagation and add it to the clause database and record this clause as the reason
for the propagation of the literal.

If we are using lazy reason generation, instead we record as the reason simply a
pointer to the BDD propagator which causes the literal to be fixed. Then if conflict
analysis demands an explanation for the literal, we call the reason generation for the
BDD propagator, using the state at the time when the literal was fixed, to build an
explaining clause. This is used in conflict analysis. We replace the reason for the
literal in the trail by the generated explanation clause and also add the explanation
clause to the database.

The implementation inherits almost all features of the underlying SAT solver.
Eager reason clauses are added as nogoods, and deleted when the SAT solver decides
to eliminate nogoods, lazy reason clauses are only generated on demand during conflict
analysis. They are added to the clause database even though this is not necessary,
since its makes memoing which explanations have been already performed simpler.
The hybrid solver can make use of restarting activity based search, and restarts,
although we also extend the search capabilities to allow some simple static searches
as these can be preferable for the set problems we tackle.

6. Experimental Results

We built a hybrid SAT solver implementing the algorithms described above. The
solver is based on MiniSAT 2.0 (dated 070721) (Eén & Sörensson, 2003), which has
been modified to include the BDD-based propagation engine. BDDs are constructed
using the BuDDy BDD package (http://sourceforge.net/projects/buddy/) All BDDs
are constructed at the beginning of execution, then converted to the static graph used
during propagation. Indeed, for many of the smaller problems solved in Section 6,
the majority of the solution time is used in constructing the BDDs.

The BDD propagators are executed at a lower priority level than unit propagation,
in order to detect conflict as early as possible. Reason clauses which are generated by
the set-bounds propagator are added to the SAT solver as learnt clauses, as otherwise
the number of clauses added to the solver during propagation of hard problems can
overwhelm the solver.

23



Experiments were conducted on a 3.00GHz Core2 Duo with 2 Gb of RAM running
Ubuntu GNU/Linux 8.10. All problems were terminated if not completed within 10
minutes.

We experimented on 3 classes of set benchmarks: social golfers, Steiner systems,
and Hamming codes. Unless otherwise specified, the hybrid solver is always executed
using lazy reason generation.

We compare with the Gecode 3.1.0 set bounds propagation solver since it is ac-
knowledged as one of the fastest solvers available, as well as ECLiPSE 6.0 #100. We
also compare with published results of the Cardinal (Azevedo, 2007) and Length-
Lex (Yip & Hentenryck, 2009) solvers on the same problems.

6.1 Social Golfers

A common set benchmark is the “Social Golfers” problem, which consists of arranging
N = g × s golfers into g groups of s players for each of w weeks, such that no two
players play together more than once. Again, we use the same model as (Lagoon
& Stuckey, 2004), using a w × g matrix of set variables vij where 1 ≤ i ≤ w and
1 ≤ j ≤ g.

(
∧w
i=1 partition

<(vi1, . . . , vig)) ∧
(∧w

i=1

∧g
j=1 |vij| = s

)
∧(∧

i,j∈{1...w}, i 6=j
∧
k,l∈{1...g} |vik ∩ vjl| ≤ 1

)
∧
(∧w−1

i=1

∧w
j=i+1 vi1 ≤ vj1

)
The global constraint partition< ensures its arguments are pairwise disjoint and
imposes a lexicographic order on its arguments, i.e. vi1 < · · · < vig. The correspond-
ing propagator is based on a single BDD. We construct BDD propagators for each of
the constraint forms |v ∩ v′| ≤ 1, v ≤ v′ and |v| = s. Note that the first form would
typically be decomposed into u = v ∩ v′ ∧ |u| ≤ 1 in a normal set bounds propagator.

The hybrid solver constructs one BDD for each of the 4 terms in the above equa-
tion, instantiating constraints accordingly.

Table 1 shows the results using a static search strategy on easy problems. The
search fixes the elements of the sets vij is order v11, v12, . . . , v1g, v21, . . . , vwg, always
trying to first place the least element in the set then excluding it from the set. We com-
pare against the reported results for the original BDD-SAT hybrid solver of Hawkins
and Stuckey (2006) versus a number of variations of our hybrid. base is the base
solver of Figures 4 and 5, while +f indicates with filtering of Section 4.1 added, +s
indicates with dead subgraph memoization and shortcutting added (Section 4.2) us-
ing the original sparse set code, +i is these optimizations with the improved sparse
set code. We also combine filtering with the other optimizations. The table shows
time and number of fails for each variant, where the solvers with identical failure be-
haviour are grouped together. Note that filtering can change the search by reordering
the propagations and hence changing the nogoods that are generated, while the other
optimizations cannot except that shortcutting can change the results of filtering (and
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Problem
Static Search

Hawkins] Hybrid
time fails base +s +i fails +f fails +fs +fi fails

2,5,4 0.10 11 0.03 0.02 0.02 19 0.02 19 0.02 0.02 19
2,6,4 0.10 45 0.04 0.04 0.05 126 0.05 153 0.05 0.04 153
2,7,4 0.20 90 0.06 0.07 0.07 148 0.07 265 0.07 0.07 265
2,8,5 0.80 472 2.84 3.15 3.13 8856 0.47 1119 0.50 0.50 1119
3,5,4 0.10 11 0.02 0.02 0.04 19 0.02 19 0.03 0.02 19
3,6,4 0.20 48 0.04 0.05 0.07 129 0.05 156 0.06 0.06 156
3,7,4 0.70 81 0.12 0.08 0.11 165 0.10 282 0.14 0.12 282
4,5,4 0.20 11 0.03 0.03 0.04 19 0.02 19 0.02 0.03 19
4,6,5 0.70 81 0.25 0.27 0.26 559 0.07 77 0.10 0.09 77
4,7,4 0.80 105 0.11 0.14 0.15 171 0.18 288 0.17 0.17 288
4,9,4 1.90 32 0.18 0.18 0.18 40 0.14 40 0.14 0.14 40
5,4,3 ? 12.00 9568 2.58 3.00 2.92 10294 2.35 10209 2.69 2.69 10188
5,5,4 2.30 1167 0.42 0.48 0.46 1328 0.33 1293 0.40 0.36 1297
5,7,4 1.50 159 0.18 0.25 0.21 217 0.24 335 0.25 0.24 335
5,8,3 0.90 12 0.06 0.10 0.07 10 0.08 10 0.06 0.10 10
6,4,3 ? 2.10 908 0.51 0.60 0.57 1699 0.33 1079 0.32 0.33 922
6,5,3 0.90 282 0.13 0.14 0.16 278 0.09 261 0.11 0.14 257
6,6,3 0.40 5 0.05 0.04 0.05 5 0.03 5 0.03 0.04 5
7,5,3 18.20 6152 3.79 4.67 4.45 7616 2.10 5702 3.08 2.97 6302
7,5,5 ? 0.80 100 0.20 0.20 0.18 121 0.18 121 0.21 0.20 121
Total 44.90 19340 11.64 13.53 13.19 31819 6.92 21452 8.45 8.33 21874

Table 1: First-solution performance results on the Social Golfers problem using a
static, first-element in set ordering. Instances marked with (?) are unsatisfiable,
entries marked with ‘—’ did not complete within 10 minutes.

hence change search). While filtering improves on the base line, dead subgraph mem-
oization and shortcutting do not, although we can see the benefit of the improved
sparse set operations. Comparing against the solver of Hawkins and Stuckey (2006),
which was run on a (]) 2.4GHz Pentium 4, we find that, slightly different number of
backtracks and slightly faster machine not withstanding, the solver presented here is
roughly an order of magnitude faster.

Table 2 shows the results using VSIDS search on easy problems. It compares
against the solver of Hawkins and Stuckey (2006) and a Tseitin decomposition. The
results are the same as for Table 1, and overall VSIDS is better than static search.
The table illustrates some of the difficulty of comparing systems using VSIDS search,
since small differences can drastically change the search space. The solver +f is the
best except for a bad-performance on 7,5,3. The base solver is around 5 times faster
per failure than the solver of Hawkins and Stuckey (2006). The Tseitin decomposition
is not competitive, even if we discount the results on 7,5,3.

For social golfers, dead-subset memoization and shortcutting provide no advantage
(when we discount the drastically different search for 7,5,3 using VSIDS). While the
number of nodes processed can be reduced slightly, this is not enough to repay the
additional cost of computation at each node.

Table 3 compares the reason generation strategies: eager reasoning which con-
structs reasons as soon as inference is detected; and lazy reasoning which only those
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Problem
VSIDS Search

Hawkins] Hybrid Tseitin
time fails base +s +i fails +f fails +fs +fi fails time fails

2,5,4 0.10 22 0.04 0.03 0.03 4 0.02 4 0.02 0.03 4 0.03 7
2,6,4 0.10 64 0.02 0.03 0.02 20 0.03 20 0.02 0.02 20 0.04 37
2,7,4 0.20 119 0.03 0.03 0.03 13 0.04 13 0.05 0.04 13 0.06 55
2,8,5 1.30 622 0.10 0.12 0.11 109 0.10 109 0.10 0.10 109 0.09 78
3,5,4 0.10 24 0.04 0.04 0.02 51 0.03 51 0.03 0.04 51 0.05 170
3,6,4 0.30 58 0.05 0.04 0.04 80 0.06 80 0.04 0.04 80 0.07 268
3,7,4 0.60 92 0.06 0.06 0.06 78 0.07 79 0.06 0.10 79 0.12 469
4,5,4 0.40 122 0.05 0.06 0.06 108 0.04 116 0.06 0.06 116 0.14 1143
4,6,5 1.30 304 0.26 0.26 0.26 309 0.13 158 0.14 0.15 205 0.49 3156
4,7,4 1.00 98 0.09 0.11 0.10 102 0.10 103 0.09 0.08 103 0.25 1020
4,9,4 2.00 59 0.16 0.18 0.18 36 0.14 36 0.18 0.15 36 0.63 1037
5,4,3 ? 5.60 5876 1.23 1.42 1.35 5869 0.56 3139 0.69 0.67 3184 4.74 26769
5,5,4 1.90 581 4.14 5.16 4.80 9846 0.91 2487 0.77 0.74 1754 0.58 3475
5,7,4 1.50 104 0.16 0.13 0.13 77 0.11 84 0.13 0.12 84 1.16 3596
5,8,3 1.70 425 0.08 0.10 0.10 29 0.10 29 0.10 0.10 29 0.52 918
6,4,3 ? 0.20 71 0.18 0.17 0.17 425 0.14 479 0.30 0.28 1013 2.83 17595
6,5,3 4.30 2801 0.25 0.27 0.29 369 0.18 409 0.17 0.16 397 1.85 8675
6,6,3 1.00 275 0.07 0.06 0.07 36 0.07 70 0.08 0.09 70 1.09 3547
7,5,3 18.00 7018 8.81 11.08 10.72 18949 39.35 93789 2.47 2.38 4554 45.54 77786
7,5,5 ? 2.00 139 0.14 0.11 0.12 47 0.10 47 0.13 0.10 47 0.93 1977
Total 43.60 18874 15.96 19.46 18.66 36557 42.28 101302 5.63 5.45 11948 61.21 151778

Table 2: First-solution performance results on the Social Golfers problem using a
VSIDS search strategy.

Problem
Social Golfers

Lazy Reason Generation Eager Reason Generation
base reasons fails +f reasons fails base reasons fails +f reasons fails

7,5,3 6.34 62630 13071 5.49 65447 13079 8.76 117323 13273 7.38 117657 12598
2,6,5 0.14 1673 581 0.03 317 66 0.17 3026 581 0.04 740 66
4,6,5 0.46 7058 1067 0.38 7026 1037 0.55 11833 1066 0.48 11967 1028
6,10,3 0.90 6675 871 0.72 6973 946 1.04 9942 820 0.87 10101 849
9,10,3 16.91 15522 3857 15.74 15103 3708 27.88 34181 4039 25.77 32945 3853
10,10,3 109.43 28110 11462 130.04 32580 13128 198.90 81270 12755 187.11 79461 12338
Total 134.18 121668 30909 152.40 127446 31964 237.30 257575 32534 221.65 252871 30732

Table 3: First-solution performance results on harder Social Golfers problems, using
a static least-element in set search method. Results are given comparing eager and
lazy reason generation.

reasons necessary to determine the first UIP or perform conflict clause minimization.

Table 3 compares the base solver with and without filtering (since dead subgraph
memoization and shortcutting do not help here) on harder social golfer problems
using a static search. It shows time (base) as well as the number of reasons generated
and fails in order to find a first solution. For these harder examples filtering is highly
beneficial. Here we can see that the number of reasons generated by lazy reasoning
is about half of that required by eager reasoning, but it doesn’t make that much
difference to the computation time, since propagation dominates the time spent in
the solver. Interestingly not adding reasons eagerly also seems to generate slightly
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Problem
Social Golfers

Lazy Reason Generation Eager Reason Generation
base reasons fails +f reasons fails base reasons fails +f reasons fails

7,5,3 0.20 2096 217 1.03 12638 2608 0.22 4328 212 2.18 63780 4911
2,6,5 0.02 38 4 0.02 38 4 0.03 350 4 0.04 350 4
4,6,5 0.06 176 18 0.06 176 18 1.28 28026 1565 0.08 1604 40
6,10,3 0.22 188 7 0.18 188 7 0.34 1824 7 0.34 1823 7
9,10,3 0.92 1743 110 0.45 666 68 1.59 6685 134 1.20 6310 107
10,10,3 1.51 1917 139 0.64 641 46 2.06 7707 200 1.08 4310 57
Total 2.93 6158 495 2.38 14347 2751 5.52 48920 2122 4.92 78177 5126

Table 4: First-solution performance results on harder Social Golfers problems, using a
VSIDS search method. Results are given comparing eager and lazy reason generation.

better nogoods as the search is usually smaller. Table 4 shows the results using
VSIDS search on these harder instances. It appears the advantages of lazy reasoning
are increased by the use of VSIDS, presumably because the better nogoods are then
more useful in driving search.

Finally Table 5 compares against a number of different systems. We use the model
of social-golfers described in Yip and Hentenryck (2009), which in addition fixes the
first week, and the first group of the second week to eliminate symmetric solutions.
We use the instances reported in Yip and Hentenryck (2009). We show results for
our base solver with and without filtering. We compare against Gecode 3.1.0 and
Eclipse 6.0 #100, both which implement a set bounds propagation combined with
limited cardinality reasoning, on an identical MiniZinc model of social-golfers running
on our 3GHz Core2Duo. Gecode arguably represents the state of the art for set
bounds propagation solving. We also compare against the published results of the
Cardinal solver (Azevedo, 2007), which uses more complex cardinality reasoning
for set solving, using a (†) Pentium 4 2.4GHz machine, and the just published results
for the Length-Lex solver of Yip and Hentenryck (2009), which maintains bounds
on sets variables in terms Of the length-lex order (see Gervet and Van Hentenryck
(2006), Yip and Hentenryck (2009) for details) running on a (‡) C2D-M 2.53GHz
machine. The pure set bounds solvers cannot compete with our approach since the
search space without using nogood recording is just too big. None of the other
systems except Length-lex can solve all of these instances. The hybrid solver is
overall around an order of magnitude faster than Length-Lex.

6.2 Steiner Systems

Another commonly used benchmark for set constraint solvers is the calculation of
small Steiner systems. A Steiner system S(t, k,N) is a set X of cardinality N and a
collection C of subsets of X of cardinality k (called ‘blocks’), such that any t elements
of X are in exactly one block. Any Steiner system must have exactly m =

(
N
t

)
/
(
k
t

)
blocks (Theorem 19.2 of van Lint & Wilson, 2001).

We model the Steiner problem similarly to Lagoon and Stuckey (2004) extended
for the case of more general Steiner Systems. We model each block as a set variable
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Problem Gecode Eclipse Cardinal† length-lex‡ base +f
4,4,2 0.00 0 0.56 0.01 0 0.01 3 0.01 3
5,4,2 0.00 0 0.54 0.01 0 0.02 4 0.02 4
6,4,2 0.00 0 0.55 0.01 0 0.02 8 0.02 8
7,4,2 0.00 0 0.62 0.01 0 0.02 13 0.04 13
4,4,3 0.00 6 0.56 0.01 0 0.01 9 0.02 9
5,4,3 1.72 5781 11.21 165.63 0.40 732 0.46 1877 0.35 1799
6,4,3 0.01 45 0.66 94.67 0.02 29 0.03 57 0.04 57
4,4,4 0.00 0 0.57 0.06 111 0.02 3 0.02 3
5,4,4 0.00 0 0.61 0.05 57 0.02 8 0.03 8
3,5,2 0.00 1 0.54 0.01 0 0.02 1 0.02 1
4,5,2 0.00 2 0.57 0.01 0 0.01 3 0.03 3
5,5,2 0.00 2 0.61 0.01 0 0.02 5 0.02 5
6,5,2 0.00 6 0.66 0.01 0 0.01 8 0.03 8
7,5,2 0.01 17 0.71 0.02 1 0.04 14 0.04 14
8,5,2 0.01 22 0.81 0.02 1 0.06 24 0.05 24
9,5,2 0.01 17 0.86 0.02 1 0.12 40 0.14 40
3,5,3 0.01 49 0.58 0.01 1 0.02 10 0.02 10
4,5,3 0.03 73 0.65 0.01 1 0.03 18 0.01 16
5,5,3 0.03 105 0.76 0.02 5 0.03 30 0.03 30
6,5,3 110.33 335531 — — 0.41 316 0.80 2516 0.56 2345
7,5,3 — — — — 74.59 46117 6.32 13071 5.50 13079
2,5,4 0.09 1090 1.26 0.01 11 0.02 21 0.02 21
3,5,4 0.11 605 1.10 1.89 0.02 24 0.03 36 0.02 36
4,5,4 0.09 298 0.98 3.13 0.14 194 0.07 191 0.08 189
5,5,4 0.19 410 1.40 28.65 1.87 1947 0.98 2592 0.74 2356
3,5,5 0.00 1 0.65 0.06 93 0.02 0 0.02 0
4,5,5 0.01 13 0.74 4.72 6876 0.05 29 0.04 27
5,5,5 0.04 45 0.84 54.27 50623 0.07 64 0.06 64
6,5,5 0.03 30 0.96 29.21 15769 0.15 167 0.15 221
7,5,5 8.11 12274 161.12 — 0.01 1 3.28 4728 8.17 11736
2,6,3 0.00 0 0.56 0.00 0 0.02 4 0.02 4
3,6,3 0.01 30 0.69 0.01 1 0.03 4 0.01 4
4,6,3 0.01 23 0.71 0.01 1 0.04 11 0.02 11
5,6,3 0.09 311 1.08 0.02 6 0.04 15 0.04 15
6,6,3 0.15 388 1.32 1.20 0.04 10 0.39 932 0.27 959
2,6,4 1.91 16608 8.12 1.75 0.01 14 0.04 58 0.02 58
3,6,4 3.68 15948 10.16 4.62 0.03 42 0.06 97 0.05 97
2,6,5 — — — 0.05 118 0.13 581 0.05 66
3,6,5 547.91 1893577 — 2.54 3351 0.15 532 0.08 178
4,6,5 275.38 584532 — — 32.60 31270 0.45 1067 0.35 1037
5,6,5 96.89 145371 265.40 28.76 6758 15.24 26495 2.85 7295
3,6,6 0.01 8 0.82 0.82 661 0.04 0 0.03 0
2,7,2 0.00 1 0.60 0.01 0 0.03 0 0.03 0
2,7,3 0.00 10 0.64 0.01 1 0.02 0 0.03 0
2,7,4 5.64 39833 17.43 2.82 0.01 0 0.02 19 0.05 19
3,7,4 13.40 46621 27.23 6.37 0.03 21 0.07 69 0.07 72
4,7,4 10.54 24216 19.38 12.46 0.05 26 0.08 62 0.08 63
5,7,4 11.32 18785 17.17 17.18 0.36 152 0.22 243 0.16 234
2,7,5 — — — 0.31 574 0.45 1944 0.07 133
2,7,6 — — — 0.78 1271 1.44 6031 0.18 566
2,7,7 0.01 0 0.86 0.28 0 0.06 0 0.05 0
5,8,3 — — — 1.01 34.52 45477 0.09 71 0.11 70
4,8,4 26.92 56844 46.03 0.06 18 0.12 67 0.10 67
2,8,5 — — — — 0.25 307 0.56 2145 0.23 291
4,9,4 8.93 11854 12.18 42.45 0.21 94 0.19 90 0.19 100
6,10,3 — — — 5.86 2941 0.91 871 0.73 946
9,10,3 — — — 233.80 45437 16.66 3857 15.64 3708
10,10,3 — — — 210.80 25246 110.80 11462 129.66 13128
4,10,4 17.33 16345 17.10 0.27 104 0.52 409 0.46 419
5,10,4 34.62 36294 46.58 0.58 149 0.76 576 0.65 596
Total — — — — 719.11 286960 162.39 83262 168.58 62265

Table 5: Comparison against solvers using different propagation mechanisms, using
the model and instances described by (Yip & Hentenryck, 2009). “—” denotes failure
to complete a test-case in 10 minutes (or 15 minutes for Cardinal). A blank entry
means there is no published result to compare.

s1, . . . , sm, with the constraints:
m∧
i=1

(|si| = k) ∧

m−1∧
i=1

m∧
j=i+1

(|si ∩ sj| ≤ t− 1 ∧ si < sj)
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Problem
Gecode Eclipse Card† Length-lex‡ Static Hybrid VSIDS Hybrid Tseitin

time fails time time time fails base fails base fails time fails
2,3,7 0.00 0 0.53 0.01 0.00 0 0.01 0 0.03 5 0.04 59
2,3,9 0.00 3 0.56 0.05 0.01 1 0.02 1 0.02 17 0.81 3804
2,3,13 0.03 18 1.20 0.61 0.05 10 0.06 9 0.02 24 1.93 7879
2,3,15 0.04 0 2.15 0.91 0.09 0 0.07 0 0.32 295 143.81 124205
2,3,19 0.65 144 8.09 7.94 0.46 164 0.37 78 0.07 106 14.01 34089
2,3,21 2.61 413 × 39.07 1.04 448 0.82 225 39.19 42688 — —
2,3,25 — — × 14.07 5100 7.10 2474 — — — —
2,3,27 — — × 23.55 7066 12.88 3401 229.59 113373 — —
2,3,31 × × × 39.07 5.29 0 5.38 0 — — — —
2,3,33 × × × 443.07 111923 19.30 8228 — —

Table 6: First-solution performance results on the alternate Steiner Systems instances
using a dual model. Gecode and the sequential hybrid use a sequential least-element
in set search strategy over the dual variables. The VSIDS hybrid and Tseitin de-
composition use VSIDS search. “—” denotes failure to complete a test-case in 10
minutes. A blank entry means there is no published result to compare.

For comparison with the results of Azevedo (2007) and Yip and Hentenryck (2009),
we construct a dual model with additional variables d1, . . . , dN , with additional con-
straints as shown:

m∧
i=1

N∧
j=1

(j ∈ si ⇔ i ∈ dj) ∧

N∧
j=1

(|dj| =
m× k
N

)

We create BDD propagators for each of the the constraint forms |v| = m×k
N

and
|v ∩ v′| ≤ t− 1∧ v < v′ ∧ |v| = k ∧ |v′| = k. Again note in non-set bounds solvers the
last form would typically be five separate constraints. The channelling component
j ∈ v ⇔ i ∈ v′ is not explicitly represented. Instead, the underlying Boolean variables
are re-used.

In Table 6, we use the model and search strategy used by Azevedo (2007), re-
stricting the number of times a given element can occur in the sets s1, . . . , sm. We
compare against Gecode and Eclipse using the same MiniZinc model, as well as
the published results of Cardinal and Length-Lex. The model used by the hybrid
solver constructs one constraint for each pair of set variables, conjoining cardinality,
intersection and ordering constraints. On those instances where a significant amount
of search occurs, we again see a massive improvement beyond the performance of
any of the pure set bounds propagation solvers. Our hybrid solver and Length-Lex
are the most robust. We can see the hybrid requires the least search and is some-
what faster than Length-Lex. We also compare versus VSIDS search. The Steiner
problems illustrate how a specialized search strategy can be better than the generic
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Problem
Fixed-weight Hamming Codes

Gecode Length-lex‡ Static Hybrid VSIDS Hybrid Tseitin
time fails time fails +f +fs +fi fails +f +fs +fi fails time fails

8,4,4 — — 0.07 110 0.16 0.17 0.16 897 0.08 0.08 0.10 282 11.15 50530
9,4,3 — — 2.05 4617 7.13 7.47 7.25 29985 0.30 0.26 0.24 1627 16.18 67876
9,4,4 — — — — — — — — 56.55 45.95 43.39 210183 — —
9,4,5 — — — — — — — — 69.28 59.56 56.65 307786 — —
9,4,6 — — 0.40 908 1.67 1.66 1.61 10541 0.43 0.39 0.36 2589 14.84 55292
10,4,3 — — 359.30 629822 — — — — 102.64 90.37 86.09 638214 — —
10,4,4 — — — — — — — — 53.72 38.72 37.04 91781 — —
10,4,5 — — — — — — — — — — — — — —
10,4,6 — — — — — — — — 509.13 404.65 385.48 987682 — —
10,4,7 — — 1.99 4415 — — — — 110.65 101.37 103.20 727465 — —
10,6,5 280.97 2175542 0.03 158 78.99 78.14 78.92 92349 0.71 0.57 0.54 5057 157.86 693148

Table 7: Results on hard Hamming instances, with no additional symmetry breaking.

VSIDS approach. We can see that the Tseitin decomposition is not competitive for
these prolems

6.3 Fixed-weight Hamming Codes

The problem of finding maximal Hamming codes can also be expressed as a set-
constraint problem. A Hamming code with distance d and length l is a set of l-bit
codewords such that each pair of codewords must have at least d bits which differ. A
variation of this problem is to find maximal codes where all codewords have exactly
w bits set.

A formulation for this problem is:

m∧
i=1

(|si| = w) ∧

m−1∧
i=1

m∧
j=i+1

(|si ⊕ sj| ≥ d ∧ si < sj)

where s ⊕ s′ = (s − s′) ∪ (s′ − s) is the symmetric difference. This is similar in
structure to the formulation for the Steiner Systems; however, rather than having a
fixed number of sets, we find the maximal code by repeatedly adding new sets and
the corresponding constraints until no solution can be found. The unsatisfiability of
n codewords proves that the maximal code has n − 1 codewords. We create BDD
propagators for the constraint form |v ⊕ v′| ≥ d ∧ v < v′ ∧ |v| = w ∧ |v′| = w.

We compare on two different models of the fixed-weight Hamming code prob-
lems, one just using the description above, and another where the first two sets are
fixed to remove symmetries. We compare against Gecode, the published results of
Length-Lex with our hybrid using a static search strategy (the same least element
in set strategy as used for Social Golfers), as well as the hybrid solver and a Tseitin
decomposition using VSIDS search. For our systems we compare with and without
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Problem
Fixed-weight Hamming Codes

Gecode Length-lex‡ Static Hybrid VSIDS Hybrid Tseitin
time fails time fails +f +fs +fi fails +f +fs +fi fails time fails

8,4,4 15.29 29869 0.07 110 0.04 0.04 0.04 51 0.03 0.05 0.03 61 1.06 6194
9,4,3 66.72 216598 2.05 4617 0.28 0.29 0.28 2130 0.08 0.06 0.06 300 3.19 19952
9,4,4 — — — — 18.09 17.95 17.99 43318 1.28 1.10 1.04 4466 319.05 407762
9,4,5 — — — — 55.90 56.52 57.14 71777 4.82 4.20 4.03 21651 186.64 244474
9,4,6 47.72 101832 0.40 908 0.04 0.04 0.04 208 0.06 0.05 0.06 256 1.31 8328
10,4,3 — — 359.30 629822 — — — — 2.76 2.56 2.37 16755 120.22 226380
10,4,4 — — — — — — — — 20.53 15.45 14.66 34503 — —
10,4,5 — — — — — — — — 143.50 104.29 104.39 184051 — —
10,4,6 — — — — — — — — 64.10 51.76 48.96 131379 — —
10,4,7 — — 1.99 4415 6.16 6.24 6.29 22857 2.21 2.05 1.96 13533 58.06 112269
10,6,5 0.07 546 0.03 158 0.02 0.02 0.02 70 0.03 0.04 0.03 145 0.10 1044

Table 8: Results on hard Hamming instances, with fixed first and second sets.

shortcutting and our optimized implementation. Since we are not sure which model
was used by Length-Lex we report it results for both models.

Tables 7 and 8 show the results on the 11 hard instances reported in (Hawkins
et al., 2005). Clearly on these problems the VSIDS hybrid is the most robust. It can
solve all but one instance in the basic model, and all with the additional symmetry
breaking. This example also clearly shows the potential advantages of shortcutting
and our improved data structures: these do not change the search but improve the
time by 18% and 21% respectively for the base model, and 24% and 26% respectively
for the improved model. Once more Tseitin decomposition is not competitive.

7. Related Work

Set-constraint problems have been an active area of research in the past decade. Many
of the earlier solvers, beginning with PECOS (Puget, 1992), used the set-bounds
representation combined with a fixed set of propagation rules for each constraint. This
general approach was also used by Conjunto (Gervet, 1997), ECLiPSe (IC-PARC,
2003), ILOG Solver (ILOG, 2004) and Mozart (Müller, 2001). However, as set-
bounds are a relatively weak approximation of the domain of a set variable, a variety of
variations have been developed to improve the propagation strength of set-constraint
solvers. These include solvers which combine set-bounds representation with either
cardinality information, such as that proposed by Azevedo (2002, 2007), lexicographic
bounds information (Sadler & Gervet, 2004) or both (Gervet & Van Hentenryck, 2006;
Yip & Hentenryck, 2009).

BDD-based approaches to set-constraint solving, such as that presented by Hawkins
et al. (2005) differs greatly from these approaches, as it is possible to perform propa-
gation over arbitrary constraints; Lagoon and Stuckey (2004) also demonstrated the
feasibility of a BDD-based solver which maintains a complete domain representation
of set variables.

31



These directly BDD-based algorithms were used to construct the earlier hybrid
solver presented by Hawkins and Stuckey (2006), which is conceptually similar to the
solver presented in this paper. The solver presented here is much more efficient, and
includes improvements such as filtering and shortcutting not present in the solver
of Hawkins and Stuckey (2006). The solver of Damiano and Kukula (2003) also
combines BDD solving and SAT solving, but rather than building BDDs from a high-
level problem description and lazily constructing a SAT representation, instead takes
a CNF SAT representation and constructs a BDD from a collection of clauses with
the primary goal of variable elimination. It is essentially equivalent to the base solver.

The underlying BDD propagation algorithm is similar to propagation of the case

constraint of SICStus PRolog (SICS, 2009) and Multi-valued Decision Diagrams
(MDDs) (see e.g. Cheng & Yap, 2008). Indeed we have adapted the dead subgraph
memoization and shortcutting devices of Cheng and Yap (2008) to BDD propagation.
Propagators for case and MDDs do not presently use filtering or generate reasons.

Finally the hybrid set solver we present in this paper is an example of a lazy
clause generation solver (Ohrimenko, Stuckey, & Codish, 2007, 2009). The BDD
propagators can be understood as lazily creating a clausal representation of the set
constraints encoded in the BDD, as search progresses.

8. Concluding Remarks

In this paper we have improved BDD-based techniques for set-bounds propagation,
having demonstrated an approach which avoids the need for expensive BDD construc-
tion and manipulation operations. This traversal-based method, when combined with
filtering to reduce the number of redundant propagator executions and dead subgraph
memoization and shortcutting, is at least an order of magnitude faster than previous
techniques which construct BDDs during runtime (Hawkins et al., 2005).

Furthermore, when integrated into a modern SAT solver with clause learning and
augmented with a method for generating nogoods, the new hybrid solver is capable of
solving hard problem instances several orders of magnitude faster than pure bounds
set solvers. Overall the hybrid solver is robust and a highly competitive with any
other propagation based set-solvers we are aware of.

In many set problems there are significant numbers of symmetries and there is
a large body of work solving set problems with symmetry breaking techniques (see
e.g. Puget, 2005). It would be interesting to combine symmetry breaking with our
hybrid solver.
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