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Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and re-
quires expert knowledge from the user. Thus there is great interest in
developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already ex-
ist, such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to op-
timization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action1 based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also generate
value heuristics. Phase saving [7] if a value-only heuristic which reuses the last
value of a Boolean variable (its phase) when it is reconsidered. In this paper, we

1 It was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.



focus on learning useful value heuristics for improving constraint programming
search.

Given a current domain D and a variable x to branch on, assuming a max-
imization problem, the task of the value heuristic is to give the order in which
the values in x’s current domain should be explored. This is typically accom-
plished by defining a scoring function g(D,x, v) which gives a score indicating
how good assigning the value v to x is likely to be given the current domain D.
The values are then sorted based on their scores and visited in decreasing score
order. Ideally, g is a function such that g(D,x, v1) ≥ g(D,x, v2) iff the optimal
value down the x = v1 branch is greater than or equal to the optimal value
down the x = v2 branch. Such a value heuristic would immediately lead us to
the optimal solution. In practice, a perfect scoring function is not likely to be
feasible to compute and hence we will settle for a heuristic that is likely to have
ordered the good/optimal branches near the front.

Many optimization problems have good, manually designed scoring func-
tion which allow the solver to find good solutions quickly. However, manually
designing scoring functions can be a time consuming process and requires ex-
pert knowledge from the user. Thus there is significant value in developing au-
tonomous search heuristics which work well for a wide variety of problems. One
way to produce an autonomous value heuristic is to treat the design of the scor-
ing function g(D,x, v) as a machine learning problem. In order to do so, we have
to characterize the current domain D using a set of appropriate features, gen-
erate a set of appropriate training instances along with their scores (i.e., values
for D, x, v and the output value of the function for these arguments), and use
an appropriate regression technique from machine learning to learn the function
g.

Several autonomous search heuristics already exist, such as impact based
search [4] and action based search [6]. The value heuristics suggested in these
two methods can be seen as simple instances of machine learning. In both cases,
the current domain is characterized by 0 features (i.e., both of these methods
completely ignore the current domain when scoring a value), the training in-
stances are collected during search or during an initial probing phase, and the
score assigned to each training instance is the impact (i.e., proportional reduc-
tion in domain size) for impact based search, and the number of variables with
reduced domains for action based search. In both cases, since there are no fea-
tures used, the learning simply consists of taking the average score of all the
training instances involving an assignment x = v and assigning that average
score as the value of g(D,x, v).

There are several possible improvements to these methods. First, both of
these methods do not use the current domain in the scoring function at all. This
may be fine for problems where the merit of an assignment x = v is largely
independent of what else has been assigned. However, in problem classes where
the merit of an assignment depends significantly on what else has been assigned,
we should be able to learn a much better scoring function by taking into account
the current domain D. Thus we are interested in finding features of D which help
us to predict the merit of an assignment x = v and using them in our machine
learning algorithm. We claim that features of variables which are closer to the
decision variable in the constraint graph are more likely to be predictive of the



merit of its values. Thus we propose using the features of variables within a
k-neighborhood of the decision variable in the constraint graph as our features,
where k is a parameter of our algorithm.

Second, the scores assigned to the training instances in the above two meth-
ods, i.e., impact and the number of domain changes, are only indirect measures
of how good the subtree is, and there may be better ways to assign scores to the
training instances. Indeed neither of these scores consider the objective function
of the problem. We propose an alternative scoring method based on the pseudo-
cost [8, 9], i.e., the change in bound of the objective function after propagating
the decision.

Note that the application of machine learning to Constraint Programming
in this paper is significantly different from the large body of work using ma-
chine learning for solver/algorithm selection in portfolio based solvers (e.g. [10]).
There, machine learning is used to predict how well existing solvers/algorithms
may perform on a particular instance in order to select a solver/algorithm which
works well for the instance. Here, we are using machine learning to predict
how well a particular value assignment may do in order to generate new search
heuristics. Clearly, these two uses of machine learning are complementary and it
is possible to use the search heuristics we generate as the input to the algorithm
selection problem.

The contributions of this paper are:

– A framework for learning value heuristics by defining scoring functions, and
using linear regression over a restricted class of features of the problem

– A new scoring function, analogous to that used in pseudo-costs [8, 9] we can
use to define a value heuristics

– A new method of taking the objective function into account for constraint
programming search.

– Experiments demonstrating that learnt value heuristics can be as effective
as programmed value heuristics

The remainder of the paper is organized as follows. In Section 2, we go
through our definitions and background. In Section 3, we describe how to gen-
erate training instances for the machine learning algorithm. In Section 4, we
discuss feature selection and the machine learning algorithm. In Section 5, we
present experimental results. In Section 7, we conclude and discuss future work.

2 Background

Constraint programming A constraint optimization problem (COP) P is a tuple
(V,D,C, f) where V is a set of variables, D is a set of domains, C is a set of
constraints, and f is an objective function. Let Dx be the domain of variable
x. Without loss of generality, we assume the objective function f is to be max-
imized. A CP solver solves a COP P by interleaving search with inference. It
starts with the original problem P = (V,D,C, f) at the root of the search tree.
At each node in the search tree, it repeatedly propagates the constraints c ∈ C to
try to infer variable/value pairs in the current domain D which cannot take part
in any improving solution to the problem within that subtree. Such pairs are



removed from the current domain D to create a new domain D′. The process is
repeated until no more pairs can be removed. We denote this as D′ = solv(C,D).
If the resulting domain D′ is a false domain, i.e. D′(v) = ∅ for some v ∈ V , then
the subproblem has no solution and the solver backtracks. Once the propagation
fixed point is reached, if all the variables are assigned, then a solution θ has been
found. The solver adds a branch and bound constraint constraining the solver
to find only solutions with better objective value than θ, and then continues the
search. If not all variables are fixed, then the solver further divides the problem
into a number of more constrained subproblems and searches each of those in
turn. The search heuristic determines how this division is performed. Typically,
the search strategy consists of two parts, a variable selection heuristic which
picks an unassigned variable x to branch on, and a value heuristic which pick a
value v to try. The search will then explore x = v down one branch and x 6= v
down the other branch.

Given a constraint problem P ≡ (V,D,C, f), let its constraint graph G be
the graph with the variables V as nodes, and with an edge between two variables
x, y ∈ V iff x and y appear together in at least one constraint c ∈ C. Given a
graph G, let the k-neighborhood of a node x in graph G be the set of all nodes
within a distance k of node x.

Impact based search Impact based search was proposed in [4]. The impact of
a decision x = v can be defined as follows. Let D be the domain before the
decision, and D′ = solv(C ∪ {x = v}, D) be the domain after the decision
has been propagated to fixed point. The impact of the decision is then: 1 −∏

x∈V |D′
x|/|Dx|. In impact based search, a running average Ī(x = v) of the

impact of each assignment x = v is maintained. The impact of a variable x given
the current domain D is given by

∑
v∈Dx

1 − Ī(x = v). The variable heuristic
picks the variable x with the highest impact and the value heuristic picks the
value with the lowest impact.

Action based search Action based search was proposed in [6]. At each decision
in the search tree, the action A(x) of each variable x is decayed by some factor
α if x was not fixed before the decision, and A(x) is increased by 1 if its domain
was reduced after propagating the decision. The variable heuristic chooses the
variable with the highest A(x)/|Dx| value. The action of an assignment x = v
is the running average of the number of variables whose domains were reduced
after propagating a decision x = v. The value heuristic chooses the value with
the lowest action.

Linear regression In supervised learning, there is an underlying function h :
X → Y which we wish to learn, and we are given a set of training instances
{(x̄1, ȳ1), . . ., (x̄n, ȳn)} such that ȳi = h(x̄i) for each i. The goal is to learn an
approximation h′ of h which is as close to h as possible under some notion of
error. The inputs x̄i and the outputs ȳi could be single values or could be a
vector of values. In this paper, we are interested in the case where the inputs are
a set of Boolean or numeric features x1, . . . , xm, the output is a single numerical
value y, and we are interested in learning a linear function y =

∑
aixi + a0

which relates the inputs and the output, where Boolean features are considered



0-1 numeric variables. One common method for doing this is ordinary least
squares regression (OLS) (see e.g.[11]). Unfortunately, OLS is insufficient for
our purposes as it requires there to be more training instances than there are
features, and the features must be linearly independent. An alternative is partial
least squares regression (PLS) [12]. PLS attempts to project the input into a
lower dimensional space represented by latent variables such that these latent
variables explain as much of the variance in the output as possible. The number
of latent variables to use is a parameter of the algorithm. PLS is able to handle
cases where features may be linearly dependent or where there may be far more
features than training instances.

3 Generating Training Instances

In this paper, we would like to treat the design of the scoring function g(D,x, v)
used in the value heuristic as a machine learning problem. However, unlike a
typical machine learning problem where we are given a set of training instances,
in this case, we need to generate our own. Furthermore, it is not obvious what the
function g(D,x, v) is supposed to output. One possibility is try to learn a function
g(D,x, v) which outputs the optimal value of the subproblem (V,D,C ∪ {x =
v}, f). To do this, we could generate some training instances by picking some
D, x and v values and solving the COP’s (V,D,C ∪ {x = v}, f) exactly to get
the correct output values. However, this is clearly highly impractical, because
solving (V,D,C ∪ {x = v}, f) exactly is very expensive and we would have to
do this for each training instance we want to generate. Alternatively, we could
try to learn a function g which outputs an easier to calculate measure which is
predictive of how high the optimal value of (V,D,C ∪ {x = v}, f) is. As long as
this measure tends to have higher values for subproblems with higher optimal
value, it can still be a good value heuristic.

We consider three different approximate measures for use in computing g:
those used in impact and action based search which do not make use of the
objective function f of the problem; and one other which attempts to take into
account the objective. These measures are

score impact Impact based search tries to learn a function g which predicts the
impact of a particular assignment, with the assumption that lower impact
tends to lead to better solutions. We will call this score impact defined as
gscore impact(D,x, v) = 1 −

∏
x∈V |D′

x|/|Dx| where D′ = solv(C ∪ {x =
v}, D).

score num red Action based search tries to learn a function g which predicts
how many variables will have their domains reduced by a particular as-
signment, with the assumption that fewer domain reductions lead to better
solutions. We’ll call this score num red defined as gscore num red(D,x, v) =
|{x ∈ V | Dx 6= D′

x} where D′ = solv(C ∪ {x = v}, D).
score pseudo cost Pseudo-cost branching [8, 9] is an important variable selec-

tion strategy in mixed integer programming. Recall that we are assuming
that the objective f is to be maximized. We try to learn a g which pre-
dicts how much the upper bound of the objective function f will decrease by
when the assignment is made. Value choices for which the upper bound



of f decreased less are likely to lead to better solutions. We’ll call this
score pseudo cost defined as gscore pseudo cost(D,x, v) = maxDf − maxD′

f

where D′ = solv(C ∪ {x = v}, D).

Generating training instances to learn these three measures is much easier
than generating instances to learn a function to predict the optimal value. Sim-
ilar to impact based search and action based search, we propose to generate
training instances with an initial probing phase followed by a normal search
phase. In the probing phase, we use a random value heuristic, restart after every
solution, and do not perform branch and bound. The aim of this phase is to get
a good coverage of all the assignments. In the normal search phase, we use the
learned value heuristic and perform branch and bound as normal. At each node
during each of these two phases, when we get to the propagation fixed point and
make a decision, we record those (D,x, v) values as a new training instance, and
depending on which of the three scoring functions we are trying to learn, the
score for this training instance will either be: the impact, the number of variables
with reduced domains, or the change in the upper bound of f .

4 Feature Selection

In order to apply machine learning techniques to this problem, we need to define
the set of features to be used in the model. Potentially, we could train a single
model for g(D,x, v) where x and v are considered features. However, we expect
that the relevant features and the way that they affect the value could be very
different for different values of x and v. Instead, we train a separate model
for each possible assignment x = v, i.e., we learn a set of functions gx1,v1(D),
gx1,v2(D), . . ., gxn,vm(D) s.t. g(D,x, v) = gx,v(D).

We need to extract from D a set of good features for predicting the value of
the function we are trying to learn. We claim that the domains of the variables
in the problem contain many of the features which are useful for predicting the
value. Furthermore, we claim that it is typically the features of the variables
which are close to the decision variable in the constraint graph which are the
most useful. This is borne out by our analysis of the custom search heuristics for
a variety of problems. In most of these custom search heuristics, the features used
in the scoring function are simply the lower bounds, upper bounds or assignments
of variables close to the decision variable in the constraint graph.

Example 1. Consider the minimization of open stacks problem [13]. We have a
set of customers and a set of products. Each customer requires some subset of the
products, and has a stack which must be opened when any product they require
begins production. The customer’s stack can be closed when all the products
that the customer requires have finished production. We wish to find the order
in which to produce the products such that the maximum number of open stacks
at any time is minimized. It has been shown that rather than a model where we
determine the order in which to produce products, it is better to determine the
order in which we close the stacks of the customers [13]. In the model proposed
in [13], we create a customer graph G where the nodes are customers and there
is an edge between two customers iff there is a product that they both require.



1 int: n; % number of customers
2 set of int: CUST = 1..n;
3 set of int: TIME = 1..n;
4 array[CUST ,CUST] of bool: g; % customer graph
5

6 array[TIME] of var CUST: x; % which customer ’s stack is closed at time t
7 array[CUST ,TIME] of var bool: open_before; % customer c open before time t
8 array[CUST ,TIME] of var bool: closed_before;% customer c closed before time t
9 array[CUST ,TIME] of var bool: open_during; % customer c is open at time t

10 var CUST: stacks; % number of stacks required
11

12 constraint forall (c in CUST) (not closed_before[c, 1]);
13 constraint forall (c in CUST , t in 2..n)
14 ( (closed_before[c,t] = (closed_before[c,t-1] \/ x[t-1] = c)) /\
15 (closed_before[c,t] -> x[t] != c) );
16 constraint forall (c in CUST , t in TIME)
17 (open_before[c,t] = ((if t > 1 then open_before[c,t-1] else false endif)
18 \/ exists (d in CUST where g[c,d]) (x[t] = d)) );
19 constraint forall (c in CUST , t in TIME)
20 (open_during[c,t] = (open_before[c,t] /\ not closed_before[c,t]));
21 constraint forall (t in TIME)
22 ( sum (c in CUST) (bool2int(open_during[c,t])) <= stacks );
23

24 solve minimize stacks;

Fig. 1. A MiniZinc [14] model for minimization of open stacks

Closing a particular customer’s stack means that all the products they require
must be produced before that time, which in turn means that the stacks of all
its neighbors in the customer graph must be opened before that time. This leads
to the model shown in Figure 1.

A good variable ordering is simply to label the x variables in order, as that
produces the best propagation. The value heuristic proposed in [13] picks the
customer which opens the fewest new stacks at each stage. In terms of the
variables in this model, the score for the decision x[t] = c can be written
as:

∑
d∈CUST where g[d,c](opened before[d, t] − 1), where we are simply giving a

penalty of 1 to each stack that closing customer c’s stack would force open
and which is not already open. Clearly, this scoring function is simply a linear
combination of the values of variables which already exist in the model.

We divide integer variables into two classes: value type integer variables and
bound type integer variables.

– Value type integer variables typically have small domains. The value are
unordered and each value means a completely different thing. They are typ-
ically involved in constraints like alldifferent, element or table where
there is a lot of propagation based on values. For value type integer vari-
ables x for each value v in its original domain, we take the truth values of
D ⇒ x = v and D ⇒ x 6= v as features where D is the current domain.

– Bound type integer variables on the other hand could have much larger
domains, and the values are ordered, so values close together are closely re-
lated. They are typically involved in constraints like cumulative or linear
constraints where there is only propagation based on bounds. For bounds



type integer variables, we take their lower bound and upper bounds as fea-
tures.

For a Boolean variable b, we take the truth values of D ⇒ b and D ⇒ ¬b as
features. When used in a linear regression, integer features are kept as is, while
Boolean features are converted to 0-1 integers.

Example 2. Suppose we have Boolean variables b1, b2 and b3, with current do-
main b1 ∈ {true}, b2 ∈ {false} and b3 ∈ {false, true}. The two features for a
Boolean variable b are the truth values of D ⇒ b and D ⇒ ¬b. For b1, they are 1
and 0 respectively. For b2, they are 0 and 1 respectively. For b3, they are 0 and 0
respectively. Suppose we have value type integer variables x1 and x2, both with
original domain {1, 2, 3} and current domains x1 ∈ {1, 3} and x2 ∈ {2}. The
features are the truth values of D ⇒ x = v and D ⇒ x 6= v for each v in the
original domain. For x1, this gives 0 and 0 for v = 1, 0 and 1 for v = 2, and 0
and 0 for v = 3. For x2, this gives 0 and 1 for v = 1, 1 and 0 for v = 2 and 0 and
1 for v = 3. Suppose we have bound type integer variable x with current domain
{2, . . . , 153}. The two features are simply its lower and upper bound, i.e., 2 and
153.

In general, it is difficult to tell which variables have features which are useful
for the function we wish to learn. We could of course, use the features of all
the variables in the problem and use some standard feature selection algorithm
to find a good subset of them. However, such methods are far too expensive
in this context and are prone to over-fitting due to the large number of poten-
tial features and a limited number of training instances. Instead, we exploit our
knowledge that variables closer to the decision variable in the constraint graph
tend to be more useful and define a series of subsets of features to check. For each
k = 0, 1, 2, . . ., we pick the features of the variables in the k-neighborhood of the
decision variable in the constraint graph as our features. Using a larger neighbor-
hood may mean that useful features get included, improving the performance of
the learned function, but it may also add irrelevant features and produce over-
fitting as well as increase overhead. Note that using the 0-neighborhood with
score impact and score num red corresponds to the value heuristics used in im-
pact based search and action based search respectively. However, here we have
the potential to use higher k to learn that other assignments have an effect on
the current decision.

After the training instances are generated and the features are selected, we
can run our regression algorithm. We choose to use the partial least squares re-
gression method. The reason is that the vast majority of custom scoring functions
we analyzed were simple linear combinations of features, and thus we believe a
linear function should do well. Secondly, we have to deal with co-linearity in
the features as well as the possibility that there are more features than train-
ing instances. Partial least squares regression is able to handle all these and is
therefore a good choice. We run the regression algorithm once when the probing
phase is complete. After that, we re-run it every time we double the number of
our training instances. In the special case where we are using a 0-neighborhood
of features, there are actually no features at all, so we can simply keep a run-
ning average and update the scoring function whenever we get a new training
instance.



Example 3. Consider the minimization of open stacks problem again. Suppose
we are branching on x[t]. A 1-neighborhood will include the open before and
closed before variables from time t and t − 1. A 2-neighborhood would include
the open before and closed before variables from time t − 2 to t + 1, as well as
the open during variables from time t. Suppose we use a 1-neighborhood with
the score num red scoring function. We pick a random decision from a random
instance for illustrative purposes. In this instance, the custom scoring function
for the assignment x[3] = 4 is: 1 ∗ open before[3, 4] + 1 ∗ open before[3, 15] + 1 ∗
open before[3, 27] + 1 ∗ open before[3, 29]− 4.

The scoring function learned using partial least squares regression after the
training instance has significantly more terms. However, the terms with the
largest (absolute value of) coefficients are: 28.716 ∗ open before[3, 4], 28.740 ∗
open before[3, 15], 24.047∗open before[3, 27], 24.485∗open before[3, 29], 33.880∗
closed before[3, 16], −26.664 ∗ closed before[3, 19], −24.726 ∗ closed before[3, 26],
and it can be seen that the features considered important in the custom scoring
function also have large coefficients in this learned scoring function. However,
several terms not in the custom scoring function also have large coefficients
here, possibly representing other useful features. In practice however, despite the
differences, our experiments in Section 5 show that this learned value heuristic
is almost identical in strength to the custom one.

5 Experiments

The experiments are run on Intel Xeon 2.40GHz processors using the CP solver
Chuffed. We use the minimization of open stacks problem (see e.g. [13]) (MOSP),
the talent scheduling problem (see e.g. [15]) (Talent), the resource constrained
project scheduling problem (see e.g. [16]) (RCPSP), the nurse scheduling prob-
lem [17] (Nurse), the traveling salesman problem (TSP), and the soft car se-
quencing problem [18] (CarSeq). We select some hard instances from the J60
benchmark for RCPSP and generate 100 random instances for the other 5
problem classes. MiniZinc models and data for the problems can be found at:
www.cs.mu.oz.au/~pjs/learn-value-heuristic/

For each problem, we use a k-neighborhood for feature selection as described
in Section 4 with k = 0, 1, 2. For RCPSP and TSP, k = 1 is identical to k = 2
since it already includes all the variables, so we only give results for k = 1. We
try each of the three scoring methods for the training instances described in
Section 3. We use a 10 second probing phase followed by a 590 second search
phase for a total of 10 minutes per instance. We use a limit of 10 latent variables
in the partial least squares regression method.

Since we are principally interested in the value heuristic part of the search
heuristic in this paper, for the first experiment we use the same variable selection
heuristic for all the different settings of the value selection heuristics so we can
just compare the effect of the value heuristic.

We use an in-order variable heuristic for the minimization of open stacks
problem, the talent scheduling problem, the nurse scheduling problem, and the
soft car sequencing problem. We use a max-regret variable heuristic for the trav-
eling salesman problem. And we use the earliest first variable heuristic (also



1-neighborhood 2-neighborhood
MOSP 0.4% 3.3%
Talent 1.1% 3.2%
RCPSP 9.1% –
Nurse 6.2% 67.5%
TSP 1.2% –
CarSeq 0.4% 1.7%

Table 1. Cost of partial least squares regression as a percentage of total run time.

random custom pseudo cost-0 impact-0 num red-0 pseudo cost-1 impact-1 num red-1 pseudo cost-2 impact-2 num red-2

MOSP 23.6 13.6 26.8 19.3 21.4 26.6 18.4 14.0 26.0 20.3 14.3
Talent 999 422 678 865 770 650 687 580 640 693 571
RCPSP 972 119 119 121 426 798 974 828 – – –
Nurse 66.5 136.9 127.6 70.3 86.5 93.8 68.2 78.4 98.9 66.5 77.1
TSP 1157 521 527 874 881 535 968 1036 – – –
CarSeq 32.4 8.4 24.0 35.4 35.4 31.6 26.6 27.0 29.0 32.7 31.1

Table 2. Solution quality at the end of 10 minutes.

called schedule generation [19]) for the resource constrained project scheduling
problem. We also compare using a random value heuristic and a manually de-
signed value heuristic. We use the following manually designed value heuristics.
For the open stacks problem, we use the one described in [13], which tries to
pick the customer which opens the fewest new stacks. For the talent scheduling
problem, we pick the scene which minimizes the cost of new actors plus the cost
of actors who are on-location but not in the scene. For the resource constrained
project scheduling problem, we assign the start time to its current lower bound.
For the nurse scheduling problem, we assign the nurse to the available shift they
most prefer. For the traveling salesman problem, we pick the closest available
city. For the car-sequencing problem, we pick the car type which utilizes the
most heavily loaded available machine.

The average cost of the partial least squares regression as a percentage of run
time is given in Table 1. The costs are generally quite small at just a few percent,
however, for nurse scheduling with a 2-neighborhood, it grows to a rather massive
67.5%.

The solution quality at the end of 10 minutes is given in Table 2. The
graph for average solution quality over time is given for each problem in Fig-
ures 2. The best learned heuristics are: for open stacks score num red-1, for talent
scheduling score num red-2, for RCPSP score pseudo-cost-0, for nurse scheduling
score pseudo-cost-0, for travelling salesman score pseudo-cost-0, and for car se-
quencing score pseudo-cost-0.

Note that these searches do not tend to find any good solutions during the
initial 10 second probing phase where it is using a random value heuristic with
no branch and bound. After that however, they may start finding much bet-
ter solutions. It can be seen that in all the problems, there are some settings
which allow the algorithm to learn a value heuristic which is significantly better
than random. In some cases, the learned value heuristic is of comparable per-
formance to the manually designed value heuristics. It can be seen that using a
k-neighborhood with k > 0 is highly beneficial on problems like minimization
of open stacks and talent scheduling, where whether a particular value is good



pseudo cost-0 impact-0 num red-0 pseudo cost-1 impact-1 num red-1 pseudo cost-2 impact-2 num red-2
MOSP 0 0 0 0 0 635 0 0 365
Talent 0 0 0 0 1 382 5 1 611
RCPSP 1000 0 0 0 0 0 – – –
Nurse 1000 0 0 0 0 0 0 0 0
TSP 761 0 0 239 0 0 – – –
CarSeq 840 0 0 0 107 51 0 0 2

Table 3. Number of times each setting was best out of 1000 random samples of 5 instances.

random custom impact action vsids ml-5
MOSP 23.6 13.6 19.2 18.9 14.0 14.1
Talent 999 422 992 1068 1236 575
RCPSP 972 119 774 415 118 119
Nurse 66.5 136.9 69.0 76.1 140.5 127.6
TSP 1157 521 108 846 722 529
CarSeq 32.4 8.4 52.8 52.3 29.6 24.4

Table 4. Solution quality at the end of 10 minutes.

or not depends significantly on what other decisions have been made. On other
problems however, the extra features from using a larger neighborhood are not
useful and only cause over-fitting, degrading the performance of the learned value
heuristic. It can also be seen that using score pseudo cost to score the training
instances is far better than using score impact or score num red in many cases.

Although it may be difficult to know beforehand which settings will be best
for a problem class, the relative performance of each setting is usually the same
across all instances in a problem class, i.e., the good settings tend to do well on
all instances and the bad settings tend to do badly on all instances. Hence if
we need to solve a large number of instances from the same problem class, we
can simply solve a few sample instances using the different settings, and use the
setting which had the best average performance on the sample instances for the
rest of the instances in the benchmark.

In Table 3, we show the number of times each setting had the best perfor-
mance for 1000 different random samples of 5 instances from each of the bench-
mark. As can be seen, simply by trying the different settings on 5 instances, we
will almost always end up picking the optimal or near optimal setting for the
problem class.

In the third experiment we compare our method against various existing
autonomous searches. From the first and second experiments, we can work out
the expected solution quality over time curve of our method when we pick the
setting by picking the best performing one on a random sample of 5 instances.
That is, we take a weighted average of the curves in the first experiment, where
they are weighted by the numbers in Table 3. We will call this ml-5. We compare
against full impact based search impact, action based search action, the variable
state independent decaying sum heuristic vsids, and the random and custom
search heuristics from the first experiment.

The solution quality at the end of 10 minutes is shown in Table 4. The graph
for average solution quality over time is given for each problem in Figures 3. It
can be seen that our new value heuristic is generally much better at finding good



solutions than the other autonomous searches, although for nurse scheduling,
VSIDS is so good that it beats our heuristic and even beats the custom search.

6 Related Work

A closely related work is Bandit-based Search for Constraint Programming [20].
This method is based on Monte-Carlo tree search and uses reinforcement learning
to learn which values should be explored first. They use a reward function based
on whether the decision led to a failure depth which was above or below the
average, so they do not really target optimization problems. This method differs
from ours in that it uses reinforcement learning and does not attempt to predict
the reward from features of the domain like our method.

Solution counting [5] is a powerful method for defining autonomous search,
giving both variable and value heuristics. It relies on extending propagators
to count or estimate the number of remaining solutions they have. It learns
estimators for variable value pairs, similar to impact and action based search.
Again it does not directly take into account the objective. It would be interesting
to explore measures based on counting in our framework, where the current
domain D can also be taken into account.

Regret [21] is a commonly used variable selection strategy for CP problems
where the objective is the sum of a set of variables. The regret is equivalent to
the difference in score pseudo cost for the two largest values that remain in the
domain of a variable, for these problems.

Pseudo-cost branching [8, 9] is an important MIP heuristic for variable selec-
tion. It is also used in the ToulBar2 [22] weighted CSP solver. It ranks variables
by the expected gain per unit change in the variable, which is the difference be-
tween neighbouring values in score pseudo cost. Value heuristics are not common
in MIP search, since node exploration is more commonly implemented by select-
ing from a frontier of open nodes, but it would be unsurprising if pseudo-cost
had been used as a value heuristic in MIP.

Given that regret for CP and pseudo-costs for MIP are important search
heuristics it is surprising that we are not aware of widespread use of pseudo-cost
for CP search heuristics.

7 Conclusion

Autonomous search is an important topic for constraint programming, since its
removes the burden from the modeller of deciding how best to search for so-
lutions. The majority of work on autonomous search for CP has concentrated
on variable selection heuristics since these can have a significant effect on the
size of the search tree. But when we consider optimization problems, the value
heuristic used can also substantially effect the size of the search tree. Similarly
when we are considering optimization problems that are too hard to find/prove
optimal solutions, value heuristics can make a significant difference on the qual-
ity of solutions found in a limited time. In this paper we define a framework for
learning value heuristics by combining a score function, feature selection, and



machine learning. We show that we can learn value heuristics that are compa-
rable to programmed heuristics, and the cost of learning can be paid for during
the search.

While we have investigated some choices for score functions, feature selec-
tion and machine learning each component of the framework could be replaced,
leaving us wide scope for further exploration of the framework. Clearly we can
imagine many other: score functions, e.g. the objective of the first solution found
in a subtree; feature selections, e.g. a tighter definition of neighbouring variables
using constraint activity; and learning methods, such as polynomial regression;
which might be worth considering.
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Fig. 2. Solution Quality vs Time graph for various value heuristics for the 6 problem
classes. Smaller is better for all except Nurse where larger is better.
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Fig. 3. Solution Quality vs Time graph for various search heuristics on the 6 problem
classes. Smaller is better for all except Nurse where larger is better.
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