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Abstract. Many search problems contain large amounts of redundancy
in the search. In this paper we examine how to automatically exploit re-
maining subproblem equivalence, which arises when two different search
paths lead to identical remaining subproblems, that is the problem left
on the remaining unfixed variables. Subproblem equivalence is exploited
by caching descriptions, or keys, that define the subproblems visited, and
failing the search when the key for the current subproblem already exists
in the cache. In this paper we show how to automatically and efficiently
define keys for arbitrary constraint problems. We show how a constraint
programming solver with this capability can solve search problems where
subproblem equivalence arises orders of magnitude faster. The system is
fully automatic, i.e., the subproblem equivalences are detected and ex-
ploited without any effort from the problem modeller.

1 Introduction

When solving a search problem, it is common for the search to do redundant
work, due to different search paths leading to subproblems that are somehow
“equivalent”. There are a number of different methods to avoid this redundancy,
such as caching solutions (e.g. [19]), symmetry breaking (e.g. [8]), and nogood
learning (e.g. [14]). This paper focuses on caching, which works by storing infor-
mation in a cache regarding every new subproblem explored during the search.
Whenever a new subproblem is about to be explored, the search checks whether
there is an already explored subproblem in the cache whose information (such as
solutions or a bound on the objective function) can be used for the current sub-
problem. If so, it does not explore the subproblem and, instead, uses the stored
information. Otherwise, it continues exploring the subproblem. For caching to
be efficient, the lookup operation must be efficient. A popular way is to store the
information using a key in such a way that problems that can reuse each other’s
information are mapped to the same (or similar) key.

This paper explores how to use caching automatically to avoid redundancy
in constraint programming (CP) search. Caching has been previously used in
CP search, but either relies on the careful manual construction of the key for
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each model and search strategy (e.g [19]), or exploits redundancy when the re-
maining subproblem can be decomposed into independent components (e.g. [10,
12]). Instead, we describe an approach that can automatically detect and exploit
caching opportunities in arbitrary optimization problems, and does not rely on
decomposition. The principal insight of our work is to define a key that can
be efficiently computed during the search and can uniquely identify a relatively
general notion of reusability (called U -dominance). The key calculation only re-
quires each primitive constraint to be extended to backproject itself on the fixed
variables involved. We experimentally demonstrate the effectiveness of our ap-
proach, which has been implemented in a competitive CP solver, Chuffed. We
also provide interesting insight into the relationships between U -dominance and
dynamic programming, symmetry breaking and nogood learning.

2 Background

Let ≡ denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. A constraint problem P is a tuple (C,D), where D is a set of domain
constraints of the form x ∈ sx (we will use x = d as shorthand for x ∈ {d}),
indicating that variable x can only take values in the fixed set sx, and C is a set
of constraints such that vars(C) ⊆ vars(D). We will assume that for every two
x ∈ sx, y ∈ sy in D : x 6≡ y. We will define DV , the restriction of D to variables
V , as {(x ∈ sx) ∈ D|x ∈ V }. Each set D and C is logically interpreted as the
conjunction of its elements.

A literal of P ≡ (C,D) is of the form x 7→ d, where ∃(x ∈ sx) ∈ D s.t. d ∈ sx.
A valuation θ of P over set of variables V ⊆ vars(D) is a set of literals of P
with exactly one literal per variable in V . It is a mapping of variables to values.
The projection of valuation θ over a set of variables U ⊆ vars(θ) is the valuation
θU = {x 7→ θ(x)|x ∈ U}. We denote by fixed(D) the set of fixed variables in D,
{x|(x = d) ∈ D}, and by fx(D) the associated valuation {x 7→ d|(x = d) ∈ D}.
Define fixed(P ) = fixed(D) and fx(P ) = fx(D) when P ≡ (C,D).

A constraint c ∈ C can be considered a set of valuations solns(c) over the
variables vars(c). Valuation θ satisfies constraint c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ c. A solution of P is a valuation over vars(P ) that satisfies every
constraint in C. We let solns(P ) be the set of all its solutions. Problem P is
satisfiable if it has at least one solution and unsatisfiable otherwise.

Finally, we use ∃V .F to denote ∃v1.∃v2 · · · ∃vn.F where F is a formula and
V is the set of variables {v1, v2, . . . , vn}. Similarly, we use ∃̄V .F to denote the
formula ∃vars(F )−V .F . We let ⇔ denote logical equivalence and ⇒ logical en-
tailment of formulae.

Given a constraint problem P ≡ (C,D), constraint programming solves P
by a search process that first uses a constraint solver to determine whether
P can immediately be classified as satisfiable or unsatisfiable. We assume a
propagation solver, denoted by solv, which when applied to P returns a new set
D′ of domain constraints such that D′ ⇒ D and C ∧D ⇔ C ∧D′. The solver
detects unsatisfiability if any x ∈ ∅ appears in D′. We assume that if the solver
returns a domain D′ where all variables are fixed (fixed(D) = vars(D)), then
the solver has detected satisfiability of the problem and fx(D) is a solution. If the
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solver cannot immediately determine whether P is satisfiable or unsatisfiable,
the search splits P into n subproblems (obtained by adding one of c1, . . . , cn
constraints to P , where C ∧D |= (c1 ∨ c2 ∨ . . .∨ cn)) and iteratively searches for
solutions to them.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P where each node
represents a new (though perhaps logically equivalent) subproblem P ′, which will
be used as the node’s label. For the purposes of this paper we restrict ourselves
to the case where each ci added by the search takes the form x ∈ s. This allows
us to obtain the i-th subproblem from P ≡ (C,D) and ci ≡ x ∈ s as simply
Pi ≡ (C, join(x, s,D)), where join(x, s,D) modifies the domain of x to be a
subset of s: join(x, s,D) = (D − {x ∈ sx}) ∪ {x ∈ s ∩ sx}. While this is not a
strong restriction, it does rule out some kinds of constraint programming search.

3 Problem Dominance and Equivalence

Consider two constraint problems P ≡ (C,D) and P ′ ≡ (C ′, D′) and a set of
variables U . Intuitively, we say that P U -dominates P ′ if variables not in U are
fixed, and when P and P ′ are projected over U , the latter entails the former.

Definition 1. (C,D) U -dominates (C ′, D′) iff

– (vars(D)− U) ⊆ fixed(D) and (vars(D′)− U) ⊆ fixed(D′), and
– ∃̄U .(C ′ ∧D′)⇒ ∃̄U .(C ∧D).

Example 1. Consider P0 ≡ (C,D) where C ≡ {x1 + 2x2 + x3 + x4 + 2x5 ≤ 20},
D ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}, and let
U ≡ {x3, x4, x5}. The subproblem P ≡ (C, {x1 = 3, x2 = 1} ∪DU ) U -dominates
P ′ ≡ (C, {x1 = 1, x2 = 3} ∪DU ). �

If one problem P U -dominates another P ′ we can use the solutions of P to
generate the solutions of P ′, as formalised by the following proposition.

Proposition 1. If P U -dominates P ′ then θ ∈ solns(P ) if (θU∪fx(P ′)vars(P ′)−U ) ∈
solns(P ′).

The situation is even simpler if the U -dominance relationship is symmetric.

Definition 2. P and P ′ are U -equivalent iff P U -dominates P ′ and vice versa.

Example 2. Consider problem (C,D) where C ≡ {alldiff ([x1, x2, x3, x4, x5])}
and D ≡ {x1 ∈ {1..3}, x2 ∈ {1..4}, x3 ∈ {2..4}, x4 ∈ {3..5}, x5 ∈ {3..5}}, and
let U ≡ {x3, x4, x5}. The subproblems P ≡ (C, {x1 = 1, x2 = 2} ∪ DU ) and
P ′ ≡ (C, {x1 = 2, x2 = 1} ∪DU ) are U -equivalent. �

Proposition 2. If P and P ′ are U -equivalent then θ ∈ solns(P ) iff (θU ∪
fx(P ′)vars(P ′)−U ) ∈ solns(P ′).
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cache search(C,D)
D′ := solv(C,D)
if (D′ ⇔ false) return false
if (∃U.∃P ∈ Cache where P U -dominates (C,D)) return false
if fixed(D′) ≡ vars(D)

[SAT] return D
foreach (x ∈ s) ∈ split(C,D)

S := cache search(C, join(x, s,D))
if (S 6≡ false) return S

Cache := Cache ∪ {(C,D′)}
return false

Fig. 1. Computing the first solution under subproblem equivalence.

3.1 Searching with Caching

Detecting subproblem domination allows us to avoid exploring the dominated
subproblem and reuse the solutions of the dominating subproblem (Proposi-
tion 1). This is particularly easy when we are only interested in the first so-
lution, since we know the dominated subproblem must have no solutions. The
algorithm for first solution satisfaction search using domination is shown in Fig-
ure 1. At each node, it propagates using solv. If it detects unsatisfiability it
immediately fails. Otherwise, it checks whether the current subproblem is dom-
inated by something already visited (and, thus, in Cache), and if so it fails, It
then checks whether we have reached a solution and if so returns it. Otherwise it
splits the current subproblem into a logically equivalent set of subproblems and
examines each of them separately. When the entire subtree has been exhaustively
searched, the subproblem is added to the cache.

The above algorithm can be straightforwardly extended to a branch and
bound optimization search. This is because any subproblem cached has failed
under a weaker set of constraints, and will thus also fail with a strictly stronger
set of constraints. As a result, to extend the algorithm in Figure 1 to, for exam-
ple, minimize the objective function

∑n
i=1 aixi, we can simply replace the line

labelled [SAT] by the following lines:3

globally store fx(D) as best solution
globally add

∑n
i=1 aixi ≤ fx(D)(

∑n
i=1 aixi)− 1

return false

Note that in this algorithm, the search always fails with the optimal solution
being the last one stored.

4 Keys for Caching

The principal difficulty in implementing cache search of Figure 1 is implement-
ing the lookup and test for U -dominance. We need an efficient key to repre-
sent remaining subproblems that allows U -dominance to be detected efficiently

3 We assume there is an upper bound u on the objective function so that we can have
a pseudo-constraint

∑n
i=1 aixi ≤ u in the problem from the beginning, and replace

it with the new one whenever a new solution is found.
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(preferably in O(1) time). Naively, one may think D would be a good key for
subproblem P ≡ (C,D). While using D as key is correct, it is also useless since
D is different for each subproblem (i.e., node) in the search tree. We need to find
a more general key; one that can represent equivalent subproblems with different
domain constraints.

4.1 Projection Keys

We can automatically construct such a key by using constraint projection. Roughly
speaking, subproblem U -equivalence arises whenever the value of some of the
fixed variables in C ∧ D and C ∧ D′ is different, but the global effect of the
fixed variables on the unfixed variables of C is the same. Therefore, if we can
construct a key that characterises exactly this effect, the key should be identical
for all U -equivalent subproblems.

To do this, we need to characterize the projected subproblem of each P ≡
(C,D) in terms of its projected variables and constraints. Let F = fixed(D)
and U = vars(C)− F . The projected subproblem can be characterized as:

∃̄U .(C ∧D)
⇔ ∃̄U .(C ∧DF ∧DU )
⇔ ∃̄U .(C ∧DF ) ∧DU

⇔ ∃̄U .(∧c∈C(c ∧DF )) ∧DU

⇔ ∧c∈C(∃̄U .(c ∧DF )) ∧DU

The last step holds because all variables being projected out in every c ∧ DF

were already fixed. Importantly, this allows each constraint c ∈ C to be treated
independently.

We can automatically convert this information into a key by back projecting
the projected constraints of this problem to determine conditions on the fixed
variables F . We define the back projection of constraint c ∈ C for DF as a con-
straint BP (c,DF ) over variables F ∩ vars(c) such that ∃̄U .(c ∧ BP (c,DF )) ⇔
∃̄U .(c ∧DF ). Clearly, while DF∩vars(c) is always a correct back projection, our
aim is to define the most general possible back projection that ensures the equiva-
lence. Note that if c has no variables in common with F , then BP (c,DF ) ≡ true.
Note also that when c is implied by DF , that is ∃̄U .(c∧DF )⇔ true, then c can
be eliminated. We thus define BP (c,DF ) ≡ red(c), where red(c) is simply a
name representing the disjunction of all constraints that force c to be redundant
(we will see later how to remove these artificial constraints). The problem key
for P ≡ (C,D) is then defined as key(C,D) ≡ ∧c∈CBP (c,DF ) ∧DU .

Example 3. Consider the problem C ≡ {alldiff ([x1, x2, x3, x4, x5, x6]), x1+2x2+
x3 +x4 +2x5 ≤ 20} and domain D ≡ {x1 = 3, x2 = 4, x3 = 5, x4 ∈ {0, 1, 2}, x5 ∈
{0, 1, 2}, x6 ∈ {1, 2, 6}}. Then F = {x1, x2, x3} and U = {x4, x5, x6}. The pro-
jected subproblem is characterized by alldiff ([x4, x5, x6]) ∧ x4 + 2x5 ≤ 4 ∧DU .
A correct back projection for alldiff onto {x1, x2, x3} is {x1, x2, x3} = {3, 4, 5}.
A correct back projection of the linear inequality is x1 + 2x2 + x3 = 16. Thus,
key(C,D) ≡ {x1, x2, x3} = {3, 4, 5} ∧ x1 + 2x2 + x3 = 16 ∧ x4 ∈ {0, 1, 2}∧ x5 ∈
{1, 2} ∧ x6 ∈ {1, 2, 6}. �
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constraint c DF ∃̄U .c BP (c,DF )
alldiff ([x1, . . . , xn]) ∧m

i=1xi = di alldiff ([d1, . . . , dm, xm+1, . . . xn]) {x1, . . . , xm} = {d1, . . . , dm}∑n
i=1 aixi = a0 ∧m

i=1xi = di
∑n

i=m+1 aixi = a0 −
∑m

i=1 aidi
∑m

i=1 aixi =
∑m

i=1 aidi∑n
i=1 aixi ≤ a0 ∧m

i=1xi = di
∑n

i=m+1 aixi ≤ a0 −
∑m

i=1 aidi
∑m

i=1 aixi =
∑m

i=1 aidi

x0 = minn
i=1 xi ∧m

i=1xi = di xo = min(minm
i=1 di,minn

i=m+1 xi) minm
i=1 xi = minm

i=1 di

x0 = d0 ∧n
i=1xi ≥ d0 ∧ ∨n

i=1xi = d0 x0 = d0

∨n
i=1xi x1 = true true red(∨n

i=1xi)
∧m

i=1xi = false ∨n
i=m+1xi ∧m

i=1xi = false

Fig. 2. Example constraints with their fixed variables, projections and resulting back projection.

We now illustrate how to use the keys for checking dominance.

Theorem 1. Let P ≡ (C,D) and P ′ ≡ (C,D′) be subproblems arising during
the search. Let F = fixed(D) and U = vars(C)− F . If fixed(D′) = F , D′U ⇒
DU and ∀c ∈ C.(∃̄U .c∧BP (c,D′F ))⇒ (∃̄U .c∧BP (c,DF )) then P U -dominates
P ′.

Proof. The first condition of U -dominance holds since vars(D′) − U = F . We
show the second condition holds:

∃̄U .(C ∧D′)
⇔ ∃̄U .(C ∧D′F ∧D′U )

(?)⇔ ∧c∈C(∃̄U .c ∧D′F ) ∧D′U
⇔ ∧c∈C(∃̄U .c ∧BP (c,D′F )) ∧D′U
⇒ ∧c∈C(∃̄U .c ∧BP (c,DF )) ∧DU

⇔ ∧c∈C(∃̄U .c ∧DF ) ∧D′U
(?)⇔ ∃̄U .(C ∧DF ∧D′U )
⇒ ∃̄U .(C ∧D)

The second and sixth (marked) equivalences hold because, again, all variables
being projected out in each c ∧D′F and c ∧DF were already fixed. �

Corollary 1. Suppose P ≡ (C,D) and P ′ ≡ (C,D′) are subproblems arising in
the search tree for C. Let F = fixed(D) and U = vars(C)− F . If key(C,D) ≡
key(C,D′) then fixed(D′) = F and P and P ′ are U -equivalent.

Proof. Let F ′ = fixed(D′), U ′ = vars(C) − F ′. Since key(C,D) ≡ key(C,D′)
we have that DU ⇔ D′U ′ and hence F = F ′ and U = U ′. Also clearly ∀c ∈
C.BP (c,DF ) ≡ BP (c,D′F ) Hence, P U -dominates P ′ and vice versa. �

While determining a back projection is a form of constraint abduction which
can be a very complex task, we only need to find simple kinds of abducibles
for individual constraints and fixed variables. Hence, we can define for each con-
straint a method to determine a back projection. Figure 2 shows back projections
for some example constraints and variable fixings.

Note that a domain consistent binary constraint c always has either no un-
fixed variables (and, hence, its back projection is true), or all its information
is captured by domain constraints (and, hence, it is redundant and its back
projection is red(c)).
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4.2 Using Projection Keys

By Corollary 1, if we store every explored subproblem P in the cache using
key(P ), and we encounter a subproblem P ′ such that key(P ′) appears in the
cache, then P ′ is equivalent to a previous explored subproblem and does not
need to be explored.

Example 4. Consider the problem P ≡ (C,D) of Example 3 and the new sub-
problem P ′ ≡ (C,D′) where D′ ≡ {x1 = 5, x2 = 4, x3 = 3, x4 ∈ {0, 1, 2}, x5 ∈
{0, 1}, x6 ∈ {1, 2, 6}}. The characterisation of the projected subproblem for P ′ is
identical to that obtained in Example 3 and, hence, key(P ) ≡ key(P ′) indicating
P and P ′ are U -equivalent. �

If we are using projection keys for detecting subproblem equivalence, we are
free to represent the keys in any manner that illustrates identity. This gives use
the freedom to generate space efficient representations, and choose representa-
tions for BP (c,DF ) on a per constraint basis.

Example 5. Consider the problem P ≡ (C,D) of Example 3. We can store its
projection key {x1, x2, x3} = {3, 4, 5} ∧ x1 + 2x2 + x3 = 16 ∧ DU as follows:
We store the fixed variables {x1, x2, x3} for the subproblem since these must
be identical for the equivalence check in any case. We store {3, 4, 5} for the
alldiff constraint, and the fixed value 16 for the linear constraint, which give
us enough information given the fixed variables to define the key. The remain-
ing part of the key are domains. Thus, the projection key can be stored as
({x1, x2, x3}, {3, 4, 5}, 16, {0, 1, 2}, {0, 1, 2}, {1, 2, 6}) �

Theorem 1 shows how we can make use of projection keys to determine
subproblem dominance. If we store key(P ) in the cache we can determine if new
subproblem P ′ is dominated by a previous subproblem by finding a key where
the fixed variables are the same, each projection of a primitive constraint for P ′

is at least as strong as the projection defined by key(P ), and the domains of the
unfixed variables in P ′ are at least as strong as the unfixed variables in key(P ).

Example 6. Consider P ≡ (C,D) of Example 3 and the new subproblem P ′ ≡
(C,D′) where D′ ≡ {x1 = 4, x2 = 5, x3 = 3, x4 ∈ {0, 1, 2}, x5 ∈ {0, 1}, x6 ∈
{1, 2, 6}}. We have that fixed(D′) = fixed(D) = {x1, x2, x3} and the back pro-
jections of the alldiff are identical. Also, the projection of the linear inequality is
x4 +2x5 ≤ 3. This is stronger than the projection in key(P ) which is computable
as ∃x1.∃x2.∃x3.x1 +2x2 +x3 = 16∧x1 +2x2 +x3 +x4 +2x5 ≤ 20⇔ x4 +2x5 ≤ 4.
Similarly, D′U ⇒ DU . Hence, P {x4, x5, x6}-dominates P ′. �

To use projection keys for dominance detection we need to check D′U ⇒ DU

and (∃̄U .c∧BP ′)⇒ (∃̄U .c∧BP ). Note that if BP ≡ red(c), then the entailment
automatically holds and we do not need to store these artificial projection keys.
Note also that we can make the choice of how to check for entailment differently
for each constraint. We will often resort to identity checks as a weak form of
entailment checking, since we can then use hashing to implement entailment.
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Example 7. Consider P ≡ (C,D) of Example 3. Entailment for alldiff is simply
identity on the set of values, while for the linear constraint we just compare fixed
values, since (∃x1.∃x2.∃x3. x1 +2x2 +x3 = k ∧ x1 +2x2 +x3 +x4 +2x5 ≤ 20)⇔
x4 +2x5 ≤ 20−k⇒ (∃x1.∃x2.∃x3. x1 +2x2 +x3 = k′ ∧ x1 +2x2 +x3 +x4 +2x5 ≤
20) ⇔ x4 + 2x5 ≤ 20 − k′ whenever k ≥ k′. For the problem P ′ of Example 6
we determine the key ({x1, x2, x3}, {3, 4, 5}, 17, {0, 1, 2}, {0, 1}, {1, 2, 6}). We can
hash on the first two arguments of the tuple to retrieve the key for P , and then
compare 17 versus 16 and check that each of the three last arguments is a superset
of that appearing in key(P ′). Hence, we determine the dominance holds. �

Note that, for efficiency, our implementation checks D′U ⇒ DU by using
identity (D′U ≡ DU ) so the domains can be part of the hash value. This means
that the problem P ′ of Example 6 will not be detected as dominated in our
implementation, since the domain of x5 is different.

4.3 Caching optimal subproblem values

The presentation so far has concentrated on satisfaction problems; let us examine
what happens with optimization problems. Typically, when solving optimization
problems with caching one wants to store optimal partial objective values with
already explored subproblems. We shall see how our approach effectively man-
ages this automatically using dominance detection with a minor change.

Suppose k is the current best solution found. Then, the problem constraints
must include

∑n
i=1 aixi ≤ k− 1 where

∑n
i=1 aixi is the objective function. Sup-

pose we reach a subproblem P ≡ (C,D) where Dfixed(D) ≡ {x1 = d1, . . . , xm =
dm} are the fixed variables. The remaining part of the objective function con-
straint is

∑n
i=m+1 aixi ≤ k−1−p where p =

∑m
i=1 aidi, and the back projection

is
∑m

i=1 aixi = p. The projection key contains the representation p for this back
projection. If this subproblem fails we have proven that, with D, there is no
solution with a value < k, nor with

∑n
i=m+1 aixi ≤ k − 1− p.

If we later reach a subproblem P ′ ≡ (C,D′) where D′ ⇒ x1 = d′1∧· · ·∧xm =
d′m are the fixed variables, then dominance requires p′ =

∑m
i=1 aid

′
i to satisfy

p′ ≥ p. If this does not hold it may be that a solution for the projected problem
with

∑n
i=m+1 aixi ≥ k− p can lead to a global solution < k. Hence, we do have

to revisit this subproblem.
Suppose that by the time we reach P ′, a better solution k′ < k has been

discovered. Effectively the constraint
∑n

i=1 aixi ≤ k − 1 has been replaced by∑n
i=1 aixi ≤ k′ − 1. Now we are only interested in finding a solution where∑n
i=m+1 aixi ≤ k′−1−p′. To see if this is dominated by a previous subproblem,

the stored value p is not enough. We also need the optimal value k when the
key was stored. There is a simple fix: rather than storing p in the key for P we
store q = k − 1 − p. We can detect dominance if q ≤ k′ − 1 − p′ and this value
q is usable for all future dominance tests. Note that q implicitly represents the
partial objective bound on the subproblem P .

5 Related Work

Problem specific approaches to dominance detection/subproblem equivalance are
widespread in combinatorial optimization (see e.g. [6, 19]) There is also a signif-
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icant body of work on caching that rely on problem decomposition by fixing
variables (e.g [10, 12]). This work effectively looks for equivalent projected prob-
lems, but since they do not take into account the semantics of the constraints,
they effectively use DF∩vars(c) for every constraint c as the projection key, which
finds strictly fewer equivalent subproblems than back-projection. The success of
these approaches in finding equivalent subproblems relies on decomposing the
projected subproblem into disjoint parts. We could extend our approach to also
split the projected problem into connected components but this typically does
not occur in the problems of interest to us. Interestingly, [10] uses symmetry
detection to make subproblem equivalence detection stronger, but the method
used does not appear to scale.

5.1 Dynamic Programming

Dynamic programming (DP) [2] is a powerful approach for solving optimization
problems whose optimal solutions are derivable from the optimal solutions of its
subproblems. It relies on formulating an optimization as recursive equations re-
lating the answers to optimization problems of the same form. When applicable,
it is often near unbeatable by other optimization approaches.

Constraint programming (CP) with caching is similar to DP, but provides
several additional capabilities. For example, arbitrary side constraints not easily
expressible as recursions in DP can easily be expressed in CP, and dominance
can be expressed and exploited much more naturally in CP.

Consider the 0-1 Knapsack problem, a well known NP-hard problem that is
easy to formulate using recursive equations suitable for DP. We show how our
automatic caching provides a different but similar solution, and how caching
can change the asymptotic complexity of the CP solution. The problem is to
maximise

∑n
i=1 pixi subject to the constraints

∑n
i=1 wixi ≤W ∧∀ni=1xi ∈ {0, 1},

where wi is the nonnegative weight of object i and pi is the nonnegative profit.
A normal CP solver will solve this problem in O(2n) steps.

The DP formulation defines knp(j, w) as the maximum profit achievable using
the first j items with a knapsack of size w. The recursive equation is

knp(j, w) =

{
0 j = 0 ∨ w ≤ 0
max(knp(j − 1, w), knp(j − 1, w − wj) + pj) otherwise

The DP solution is O(nW ) since values for knp(j, w) are cached and only
computed once. Consider a CP solver using a fixed search order x1, . . . , xn.
A subproblem fixing x1, . . . , xm to d1, . . . , dm respectively generates key value∑m

i=1 widi for the constraint
∑n

i=1 wixi ≤W and key value k+1−
∑m

i=1 pidi for
the optimization constraint

∑n
i=1 pixi ≥ k+1 where k is the best solution found

so far. The remaining variable domains are all unchanged so they do not need to
be explicitly stored (indeed domains of Boolean or 0-1 variables never need to
be stored as they are either fixed or unchanged). The projection key is simply
the set of fixed variables {x1, . . . , xm} and the two constants. The complexity is
hence O(nWu) where u is the initial upper bound on profit.

The solutions are in fact quite different: the DP approach stores the optimal
profit for each set of unfixed variables and remaining weight limit, while the CP
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approach stores the fixed variables and uses weight plus the remaining profit
required. The CP approach in fact implements a form of DP with bounding [16].
In particular, the CP approach can detect subproblem dominance, a problem
with used weight w′ and remaining profit required p′ is dominated by a problem
with used weight w ≤ w′ and remaining profit p ≤ p′. The DP solution must
examine both subproblems since the remaining weights are different.

In practice the number of remaining profits arising for the same set of fixed
variables and used weight is O(1) and hence the practical number of subproblems
visited by the CP approach is O(nW ).

Note that while adding a side constraint like x3 ≥ x8 destroys the DP ap-
proach (or at least forces it to be carefully reformulated), the CP approach with
automatic caching works seamlessly.

5.2 Symmetry Breaking

Symmetry breaking aims at speeding up execution by not exploring search nodes
known to be symmetric to nodes already explored. Once the search is finished,
all solutions can be obtained by applying each symmetry to each solution. In
particular, Symmetry Breaking by Dominance Detection (SBDD) [4] works by
performing a “dominance check” at each search node and, if the node is found
to be dominated, not exploring the node.

SBDD is related but different to automatic caching. In SBDD P ≡ (C,D) φ-
dominates P ′ ≡ (C,D′) under symmetry φ iff φ(D′)⇒ D since, if this happens,
the node associated to symmetric problem (C, φ(D′)) must be a descendant of
the node associated to P and, thus, already explored. Note that, in detecting
dominance, SBDD places conditions on the domains of all variables in D, while
automatic caching only does so on the constraints of the problem once projected
on the unfixed variables. Thus, P ′ can be φ-dominated by P (in the SBDD sense)
but not be U -dominated, and vice versa.

Our approach is also related to conditional symmetry breaking [7], which
identifies conditions that, when satisfied in a subproblem, ensure new symmetries
occur within that subproblem (and not in the original problem). As before, the
two approaches capture overlapping but distinct sets of redundancies.

5.3 Nogood learning

Nogood learning approaches in constraint programming attempt to learn from
failures and record these as new constraints in the program. The most successful
of these methods use clauses on atomic constraints v = d and v ≤ d to record the
reasons for failures and use SAT techniques to efficiently manage the nogoods.
Automatic caching is also a form of nogood learning, since it effectively records
keys that lead to failure.

Any nogood learning technique representing nogoods as clauses has the ad-
vantage over caching that it can use the nogoods derived to propagate rather
than to simply fail. Restart learning [11] simply records failed subtrees using the
set of decisions made to arrive there. This does not allow subproblem equivalence
to be detected assuming a fixed search strategy. The usefulness arises because it
is coupled with restarting and dynamic search, so it helps avoid repeated search.
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In that sense it has a very different aim to automatic caching. Nogood learning
techniques such as lazy clause generation [14] learn clauses that are derived only
from the constraints that are actually involved in conflicts, which is much more
accurate than using all non-redundant constraints as in projection keys.

On the other hand nogood learning can come at a substantial price: reason
generation and conflict analysis can be costly. Every clause learnt in a nogood
approach adds extra constraints and, hence, slows down the propagation of the
solver. In contrast, projection keys are O(1) to lookup regardless of their number
(at least for the parts that are in the hash).

Because nogood learning use clauses on atomic constraints to define nogoods
they may be less expressive than projection keys. Consider the subproblem x1 +
2x2 + x3 + x4 + 2x5 ≤ 20 ∧ C, with D ≡ {x1 = 1 ∧ x2 = 2 ∧ x3 = 3}. If this
subproblem fails, the projection key stores that x4+2x5 ≤ 12∧other keys leads to
failure. A nogood system will express this as x1 = 1∧x2 = 2∧x3 = 3∧other keys
leads to failure, since there are no literals to representing partial sums. This
weakness is illustrated by the experimental results for 0-1 Knapsack.

6 Experiments

We compare our solver Chuffed, with and without caching, against Gecode
3.2.2 [17] – widely recognized as one of the fastest constraint programming sys-
tems (to illustrate we are not optimizing a slow system) – against the G12 FD
solver [15] and against the G12 lazy clause generation solver [5] (to compare
against nogood learning). We use the MurmurHash 2.0 hash function. We use
models written in the modelling language MiniZinc [13]. This facilitates a fair
comparison between the solvers, as all solvers use the same model and search
strategy. Note that caching does not interfere with the search strategies used
here, as all it can do is fail subtrees earlier. Thus, Chuffed with caching (de-
noted as ChuffedC) always finds the same solution as the non-caching version
and the other solvers, and any speedup observed comes from a reduced search.

Considerable engineering effort has gone into making caching as efficient as
possible: defining as general as possible back projections for each of the many
primitive constraints defined in the solver, exploiting small representations for
back projections and domains, and eliminating information that never needs
storing, e.g. binary domain consistent constraints and Boolean domains.

The experiments were conducted on Xeon Pro 2.4GHz processors with a
900 second timeout. Table 1 presents the number of variables and constraints as
reported by Chuffed, the times for each solver in seconds, and the speedup and
node reduction obtained from using automatic caching in Chuffed. We discuss
the results for each problem below. All the MiniZinc models and instances are
available at www.cs.mu.oz.au/~pjs/autocache/.

Knapsack 0-1 knapsack is ideal for caching. The non-caching solvers all timeout
as n increases, as their time complexity is O(2n). This is a worst case for lazy
clause generation since the nogoods generated are not reusable. ChuffedC,
on the other hand, is easily able to solve much larger instances (see Table 1).
The node to nW ratio (not shown) stays fairly constant as n increases (varying
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between 0.86 and 1.06), showing that it indeed has search (node) complexity
O(nW ). The time to nW ratio grows as O(n) though, since we are using a
general CP solver where the linear constraints take O(n) to propagate at each
node, while DP requires constant work per node. Hence, we are not as efficient
as pure DP.

MOSP The minimal open stacks problem (MOSP) aims at finding a schedule
for manufacturing all products in a given set that minimizes the maximum num-
ber of active customers, i.e., the number of customers still waiting for at least
one of their products to be manufactured. This problem was the subject of the
2005 constraint modelling challenge [18]. Of the 13 entrants only 3 made use of
the subproblem equivalence illustrating that, in general, it may not be easy to
detect. Our MOSP model uses customer search and some complex conditional
dominance breaking constraints that make the (non-caching) search much faster.
We use random instances from [3]. Automatic caching gives up to two orders of
magnitude speedup. The speedup grows exponentially with problem size. Lazy
clause is also capable of exploiting this subproblem equivalence, but the overhead
is so large that it can actually slow the solver down.

Blackhole In the Blackhole patience game, the 52 cards are laid out in 17 piles
of 3, with the ace of spades starting in a “blackhole”. Each turn, a card at the
top of one of the piles can be played into the blackhole if it is +/-1 from the card
that was played previously. The aim is to play all 52 cards. This was one of two
examples used to illustrate CP with caching in [19]. The remaining subproblem
only depends on the set of unplayed cards, and the value of the last card played.
Thus, there is subproblem equivalence. We use a model from [7] which includes
conditional symmetry breaking constraints. We generated random instances and
used only the hard ones for this experiment. The G12 solvers do not use a domain
consistent table constraint for this problem and are several orders of magnitudes
slower. Automatic caching gives a modest speedup of around 2-3. The speedup
is relatively low on this problem because the conditional symmetry breaking
constraints have already removed many equivalent subproblems, and the caching
is only exploiting the ones which are left. Note that the manual caching reported
in [19] achieves speedups in the same range (on hard instances).

BACP In the Balanced Academic Curriculum Problem (BACP), we form a cur-
riculum by assigning a set of courses to a set of periods, with certain restrictions
on how many courses and how much “course load” can be assigned to each pe-
riod. We also have prerequisite constraints between courses. The BACP can be
viewed as a bin packing problem with a lot of additional side constraints. The
remaining subproblem only depends on the set of unassigned courses, and not
on how the earlier courses were assigned. We use the model of [9], but with some
additional redundant constraints that make it very powerful. The 3 instances
curriculum 8/10/12 given in CSPLIB can be solved to optimality in just a few
milliseconds. We generate random instances with 50 courses, 10 periods, and
course credit ranging between 1 and 10. Almost all are solvable in milliseconds
so we pick out only the non-trivial ones for the experiment. We also include
the 3 standard instances from CSPLIB. Both automatic caching and lazy clause
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generation are capable of exploiting the subproblem equivalence, giving orders
of magnitude speedup. In this case, lazy clause generation is more efficient.

Radiation Therapy In the Radiation Therapy problem [1], the aim is to decom-
pose an integral intensity matrix describing the radiation dose to be delivered
to each area, into a set of patterns to be delivered by a radiation source, while
minimising the amount of time the source has to be switched on, as well as the
number of patterns used (setup time of machine). The subproblem equivalence
arises because there are equivalent methods to obtain the same cell coverages,
e.g. radiating one cell with two intensity 1 patterns is the same as radiating it
with one intensity 2 pattern, etc. We use random instances generated as in [1].
Both automatic caching and lazy clause generation produce orders of magnitude
speedup, though lazy clause generation times are often slightly better.

Memory Consumption The memory consumption of our caching scheme is linear
in the number of nodes searched. The size of each key is dependent on the
structure of the problem and can range from a few hundred bytes to tens of
thousands of bytes. On a modern computer, this means we can usually search
several hundreds of thousands of nodes before running out of memory. There are
simple schemes to reduce the memory usage, which we plan to investigate in the
future. For example, much like in SAT learning, we can keep an “activity” score
for each entry to keep track of how often they are used. Inactive entries can then
periodically be pruned to free up memory.

7 Conclusion

We have described how to automatically exploit subproblem equivalence in a
general constraint programming system by automatic caching. Our automatic
caching can produce orders of magnitude speedup over our base solver Chuffed,
which (without caching) is competitive with current state of the art constraint
programming systems like Gecode. With caching, it can be much faster on prob-
lems that have subproblem equivalences.

The automatic caching technique is quite robust. It can find and exploit sub-
problem equivalence even in models that are not “pure”, e.g. MOSP with dom-
inance and conditional symmetry breaking constraints, Blackhole with condi-
tional symmetry breaking constraints, and BACP which can be seen as bin pack-
ing with lots of side constraints and some redundant constraints. The speedups
from caching tends to grow exponentially with problem size/difficulty, as sub-
problem equivalences also grow exponentially.

Our automatic caching appears to be competitive with lazy clause genera-
tion in exploiting subproblem equivalence, and is superior on some problems, in
particular those with large linear constraints.

The overhead for caching is quite variable (it can be read from the tables
as the ratio of node reduction to speedup). For large problems with little vari-
able fixing it can be substantial (up to 5 times for radiation), but for problems
that fix variables quickly it can be very low. Automatic caching of course relies
on subproblem equivalence occurring to be of benefit. Note that for dynamic
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searches this is much less likely to occur. Since it is trivial to invoke, it seems al-
ways worthwhile to try automatic caching for a particular model, and determine
empirically if it is beneficial.
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Table 1. Experimental Results

Instance vars cons. ChuffedC Chuffed Gecode G12 fd G12 lazyfd Speedup Node red.
knapsack-20 21 2 0.01 0.01 0.01 0.01 0.10 1.00 2.9
knapsack-30 31 2 0.02 0.83 0.76 1.168 534.5 41.5 67
knapsack-40 41 2 0.03 38.21 34.54 58.25 >900 1274 1986
knapsack-50 51 2 0.07 >900 >900 >900 >900 >12860 >20419
knapsack-60 61 2 0.10 >900 >900 >900 >900 >9000 >14366
knapsack-100 101 2 0.40 >900 >900 >900 >900 >2250 > 2940
knapsack-200 201 2 2.36 >900 >900 >900 >900 >381 > 430
knapsack-300 301 2 6.59 >900 >900 >900 >900 >137 >140
knapsack-400 401 2 13.96 >900 >900 >900 >900 >65 >65
knapsack-500 501 2 25.65 >900 >900 >900 >900 >35 > 34
mosp-30-30-4-1 1021 1861 1.21 4.80 24.1 50.29 29.70 4.0 4.91
mosp-30-30-2-1 1021 1861 6.24 >900 >900 >900 201.8 >144 >187
mosp-40-40-10-1 1761 3281 0.68 0.66 5.85 15.07 29.80 1.0 1.1
mosp-40-40-8-1 1761 3281 1.03 1.15 9.92 27.00 56.96 1.1 1.3
mosp-40-40-6-1 1761 3281 3.79 11.30 75.36 183.9 165.2 3.0 3.5
mosp-40-40-4-1 1761 3281 19.07 531.68 >900 >900 840.4 28 37
mosp-40-40-2-1 1761 3281 60.18 >900 >900 >900 >900 >15 > 18
mosp-50-50-10-1 2701 5101 2.83 3.17 40.70 92.74 134.1 1.1 1.2
mosp-50-50-8-1 2701 5101 6.00 9.12 113.0 292.0 295.9 1.5 1.8
mosp-50-50-6-1 2701 5101 39.65 404.16 >900 >900 >900 10.2 13.1
blackhole-1 104 407 18.35 39.77 103.6 >900 >900 2.17 2.90
blackhole-2 104 411 14.60 21.52 60.06 >900 >900 1.47 1.94
blackhole-3 104 434 18.31 26.14 31.43 >900 >900 1.43 1.81
blackhole-4 104 393 15.77 30.84 69.13 >900 >900 1.96 2.55
blackhole-5 104 429 24.88 58.77 159.5 >900 >900 2.36 3.45
blackhole-6 104 448 11.31 33.27 85.65 >900 >900 2.94 5.11
blackhole-7 104 407 28.02 47.31 127.6 >900 >900 1.69 2.49
blackhole-8 104 380 24.09 43.60 89.02 >900 >900 1.81 2.45
blackhole-9 104 404 38.74 93.92 215.1 >900 >900 2.42 3.52
blackhole-10 104 364 67.85 159.4 418.0 >900 >900 2.35 3.16
curriculum 8 838 1942 0.01 0.01 0.01 0.02 0.08 1.00 1.00
curriculum 10 942 2214 0.01 0.01 0.01 0.03 0.09 1.00 1.00
curriculum 12 1733 4121 0.01 0.01 0.01 0.10 0.23 1.00 1.00
bacp-medium-1 1121 2654 11.47 34.90 29.31 62.4 6.90 3.04 3.03
bacp-medium-2 1122 2650 9.81 >900 >900 >900 0.22 >92 >115
bacp-medium-3 1121 2648 2.42 380.7 461.62 838.6 0.23 157 190
bacp-medium-4 1119 2644 0.61 4.59 5.74 9.92 1.10 7.52 10.1
bacp-medium-5 1119 2641 2.40 56.46 54.03 126.9 0.76 23.5 26.5
bacp-hard-1 1121 2655 54.66 >900 >900 >900 0.16 >16 >16
bacp-hard-2 1118 2651 181.9 >900 >900 >900 0.22 >5 >7
radiation-6-9-1 877 942 12.67 >900 >900 >900 2.89 >71 >146
radiation-6-9-2 877 942 27.48 >900 >900 >900 5.48 >32 >86
radiation-7-8-1 1076 1168 0.84 >900 >900 >900 1.40 >1071 >5478
radiation-7-8-2 1076 1168 0.65 89.18 191.4 173.6 0.93 137 633
radiation-7-9-1 1210 1301 2.39 143.0 315.6 241.9 2.70 59 266
radiation-7-9-2 1210 1301 7.26 57.44 144.4 101.9 8.83 8 34
radiation-8-9-1 1597 1718 27.09 >900 >900 >900 6.21 >33 >114
radiation-8-9-2 1597 1718 12.21 >900 >900 >900 6.53 >74 >267
radiation-8-10-1 1774 1894 22.40 12.17 15.45 12.90 33.2 0.54 1.10
radiation-8-10-2 1774 1894 59.66 >900 >900 >900 12.05 >15 >78


