
Fixing the State Budget: Approximation of
Regular Languages with Small DFAs

Graeme Gange1,?, Pierre Ganty2,??, and Peter J. Stuckey1

1 Department of Computing and Information Systems, University of Melbourne,
3010 Australia

2 IMDEA Software Institute, Madrid, Spain

Abstract. Strings are pervasive in programming, and arguably even
more pervasive in web programming. A natural abstraction for reason-
ing about strings are finite-automata. They are a well-understood for-
malism, and operations on them are decidable and well-known. But in
practice these operations either blow up in size or in cost of operations.
Hence the attractive automata representations become impractical. In
this paper we propose reasoning about strings using small automata, by
restricting the number of states available. We show how we can con-
struct small automata which over-approximate the language specified by
a larger automata, using discrete optimization techniques, both complete
approaches and incomplete approaches based on greedy search. Small
automata provide a strong basis for reasoning about strings in program-
ming, since operations on small automata do not blow up in cost.

1 Introduction

Strings are pervasive in programs, and arguably even more pervasive in web pro-
gramming. They also arise as a natural representation of system configurations
for multi-agent systems where agents are linearly ordered [3].

To reason about such systems or programs one has to manipulate possibly
infinite sets of strings or languages. To achieve effective reasoning, a natural
abstraction for languages is to consider the class of regular languages which
were shown to be sufficiently expressive to verify non-trivial properties. Regular
languages are well-studied and are supported by multiple description formalism
including automata-based representations. The usual operations required for ab-
stract reasoning such as Boolean operations and usual tests such as inclusion and
equivalence can be implemented in polynomial time on deterministic finite-state

? This work was supported by the Australian Research Council through grants
DE160100568 and LP140100437.

?? Pierre Ganty has been supported by the Madrid Regional Government project
S2013/ICE-2731, N-Greens Software - Next-GeneRation Energy-EfficieNt Secure
Software, and the Spanish Ministry of Economy and Competitiveness project No.
TIN2015-71819-P, RISCO - RIgorous analysis of Sophisticated COncurrent and dis-
tributed systems.

automata. This contrasts with non-deterministic finite-state automata where in-
clusion is PSPACE-complete. This has to be taken with a grain of salt since there
exist languages whose specification by non-deterministic finite-state automata
are logarithmically more succinct than their smallest deterministic automata
counterpart [14]. In practice, however, deterministic finite-state automata often
blow up in representation size impeding the success automata-based techniques.

In this paper we examine the use of deterministic finite-state automata of
bounded size as a way to achieve scalability of automata-based techniques. By
bounding the size we combine the benefit of a small representation with the
polynomial runtime of the operations and tests on finite-state automata. We
consider k-state deterministic finite-state automata as our representation for
languages. This restriction avoids the blow up in size, the size of the whole
automata is k|Σ|, and avoids the blow up in cost of operations, each operation
is at most k2|Σ|.

We start by investigating basic questions and show that, in general, there is
no “minimum” k-state DFA that includes a language specified by n-state DFA
with n > k. Here “minimum” is defined using language inclusion. This result is
expected since the intersection of two languages defined by k-state DFAs is in
general not representable precisely as a k-state DFA. Therefore we identify crite-
ria besides language inclusion to select between two k-state DFA approximation
when language inclusion alone is inconclusive.

To evaluate the effectiveness of those criteria, we formalize the problem of
computing a k-state DFA approximating a given a n-state DFA as a search
problem. Modelling the problem as a search problem allows to flexibly express
the criteria we identified as objective to minimize.

Our first model as a search problem restricts the search space to those k-
state DFA resulting from merging state of the n-state DFA in accordance with
a k-block partition of the n states. State partitioning is the basis of minimiza-
tion algorithms for DFAs. Using partitions result in a straightforward encoding
of k-state approximation because language inclusion follows immediately from
partitioning.

In a second model, we formalize the search problem in full-generality by con-
sidering all k-state DFAs. Therefore, in this encoding, we encode the constraint
that the language of the k-state DFA includes that of the n-state DFA.

As a consequence of our result on the absence of a least k-state DFA the above
search problems have no unique solution. Therefore we rely on the identified
criteria to narrow the set of solutions using an objective function.

Modelling the approximation of an automaton as a search problem allows us
to find all possible approximations, or find optimal approximations, in practice
these problems are challenging to solve. Hence it is worth considering a greedy
approach to tackling these problems. We first introduce a greedy approach for
finding quotient automata approximations. Then, motivated by the ease in which
quotient automata collapse, we introduce a greedy algorithm that preserves more
of the structure of the automata while building decreasing size approximations,
based on the idea of tracking language dominance of states of the automata.

2 Preliminaries

Strings. We assume a finite alphabet of symbols Σ. A string w is either the
empty string ε or of the form cw′ where c is a symbol in Σ and w′ a string.
The length of a string w, denoted |w|, is the number of symbols appearing in
the string. We use array notation to lookup the symbols appearing in a string.
Suppose |w| = l then w[i], 1 ≤ i ≤ l is the ith symbol appearing in the string.
We assume the reader is familiar with regular expressions.

Finite-state automata. A finite-state automaton (or simply automaton) is a tuple
R = 〈Q,Σ, δ, q0, F 〉 where Σ is an alphabet ; Q is a finite set of states including
the initial state q0 and a set F of accepting states; and δ ⊆ Q×Σ ×Q is a set
of transitions. The size of an automata R, size(R) is defined as |Q|.

A transition in automaton R from state q to q′, written q → q′, exists if
there is (q, c, q′) ∈ δ for some c ∈ Σ. A computation for string w of length l
in an automaton R is a sequence of transitions q0 → q1 → · · · → ql where
(qi, w[i + 1], qi+1) ∈ δ. An accepting computation for w in R from state q0 is a
computation for w in the automaton R where ql ∈ F . The language of automaton
R from state q ∈ Q, L(q,R), is the set of strings w which have an accepting
computation from state q. The language of automaton R, L(R) = L(q0, R).

A state q is said to be accessible if there is a sequence of transitions from
q0 to q; co-accessible if there is a sequence of transitions from q to some state
q′ ∈ F ; and useful if q is both accessible and co-accessible. An automaton is trim
if all its states are useful. An automaton is deterministic (DFA) if δ denotes a
(partial) function from Q×Σ into Q. In that case, we sometimes use the notation
δ(q, c) where q ∈ Q, c ∈ Σ to refer to q′ where (q, c, q′) ∈ δ, when it exists. An
automaton is said to be a t-DFA if it is deterministic and trim.

3 Automaton Approximation

In this paper we are interested in defining approximations of DFAs which are as
precise as possible given a fixed budget on the number of states.

Definition 1. Given two automata R and R′, we say that R′ approximates R
iff L(R) ⊆ L(R′). Given two k-state approximations R1, R2 of R we say R1

dominates R2 whenever L(R1) ⊂ L(R2).

When constructing an approximation of a DFA R we are interested in finding
an approximation that is not dominated by any other approximation. Next we
exhibit an example showing there might be more than one such approximation.

Example 1. LetA be the 3-state t-DFA 〈{0, 1, 2}, {a, b}, {(0, a, 1), (1, b, 2)}, 0, {2}〉
that accepts exactly {ab}.

// 0
a // 1

b // 2

Then for the three 2-state approximations shown in Figure 1: L(B1) = ab?,
L(B2) = a?b and L(B3) = (ab)? and none dominates another. ut

// 0
b //

a��
1 // 0

a // 1
b��

// 0 a
// 1

buu

B1 B2 B3

Fig. 1. Three 2 state approximations of the automata A.

While we are mainly interested in over-approximations of DFAs, we can de-
fine under-approximations as well using the complement. To compute an under-
approximation of n-state DFA R = (Q,Σ, δ, q0, F) such that δ is total, we
complement R obtaining R̄ = (Q,Σ, δ, q0, Q − F) and compute a k-state over-
approximation of R̄, R̄′ = (Q′, Σ, δ′, q0′, F ′) and then, assuming δ′ is total,3
complement R̄′ to obtain R′ = (Q′, Σ, δ′, q0′, Q′−F ′). R′ is a k-state automaton
under-approximating R by construction.

4 Approximations Using Equivalence Relations on States

DFA minimization relies on building an equivalence relation of the states of the
DFA, or equivalently partitioning the states into equivalence classes. Given an
n-state DFA R that minimizes to an equivalent k-state DFA R′, we find that
R′ dominates all other k-state approximations of R since L(R′) = L(R). This
observation is the starting point of our study of approximations using state
partitions.

4.1 Partitions and Quotient Automata

Consider a partition P = {b1, . . . , bn} of Q into n non-empty, pairwise disjoint
subsets covering Q called blocks and define the equivalence class of a state q,
written [q]P as the (unique) block bi such that q ∈ bi. It is known that the set of
partitions of a finite set forms a complete lattice. Thus we find that (Part(Q),�
,f,g, {Q}, {{q} | q ∈ Q}) is a complete lattice where Part(Q) is the set of
partitions of Q; P1 � P2 iff for all blocks b1 of P1 there exist a block b2 of P2

such that b1 ⊆ b2; P1 f P2 is the partition resulting from intersecting all pairs
of blocks of P1 and P2

4; P1 gP2 is the partition obtained by merging the blocks
of P1 which have a member in the same block of P2.

Given a t-DFA R = 〈Q,Σ, δ, q0, F 〉 and a partition P of Q, then the quotient
automata R/P is defined as the automaton 〈P,Σ, δP , [q0]P , FP 〉 where FP =
{p ∈ P | p ∩ F 6= ∅}, and δP = {([q]P , c, [q′]P) | (q, c, q′) ∈ δ}. Notice that R/P
is not necessarily a t-DFA. The resulting automaton is a t-DFA for a subset of
the partitions as we will see later.

A quotient automaton is always an approximation of the automaton it is
defined from.
3 or a k − 1-state over-approximation, on which we turn δ′ into a total function.
4 Note that the empty set is not a block, hence it is not part of the resulting partition.

determinize-part(P ,〈Q,Σ, δ, q0, F 〉):
T := ∅
δ′ := ∅
for(bi ∈ P)

for(q ∈ bi)
repr[q] := min(bi)

for((q, c, q′) ∈ δ)
if((FIND(q), c, q′′) ∈ δ′)

T := T ∪ {(q′, q′′)}
else δ′ := δ′ ∪ {(FIND(q), c, q′)}

while(∃(q1, q2) ∈ T)
T := T − {(q1, q2)}
UNION(T, δ′, q1, q2)

Rs := {q | q ∈ Q,FIND(q) = q}
return {{q′ | q′ ∈ Q,FIND(q′) = q} | q ∈ Rs}

FIND(x):
if(repr [x] 6= x)

repr [x] := FIND(repr [x])
return repr [x]

UNION(T , δ′, x, y):
rx := FIND(x)
ry := FIND(y)
if(rx = ry) return
repr [ry] := rx
for((ry, c, q) ∈ δ′)

δ′ := δ′ − {(ry, c, q)}
if (∃(rx, c, q′) ∈ δ′)

T := T ∪ {(q, q′)}

Fig. 2. Algorithm for computing detR(P). It maintains a partition represented by a
union-find data structure repr.

Theorem 1. Given t-DFA R and partition P of its states, L(R) ⊆ L(R/P). ut

Example 2. Consider the t-DFA of Example 1, we have B1 = A/{{0,1},{2}}, B2 =
A/{{0},{1,2}} and B3 = A/{{0,2},{1}}. ut

4.2 Determinizing Partitions

Note that the quotient automata of a t-DFA is not necessarily deterministic.
A partition P for a t-DFA R is deterministic if for all {(q, c, q′), (q′′, c, q′′′)} ⊆
δ, [q]P = [q′′]P ⇒ [q′]P = [q′′′]P . Hence the resulting quotient automata R/P is
also a t-DFA. Given a t-DFA R we define the language quotients of R as the
automata R/P arising from all deterministic partitions P of R. Lemma 1 shows
that the set of deterministic partitions forms a meet semi-lattice.

Lemma 1. Let P and P ′ be deterministic partitions for some t-DFA R. Then
the partition P f P ′ is deterministic. ut

Lemma 2. Given a t-DFA R and partition P there is a least deterministic
partition detR(P) of R such that P � detR(P). ut

For any t-DFA R and partition P , we compute the least deterministic parti-
tion detR(P) in O(|δ|+ |P ||Σ|) time. This algorithm is given in Figure 2.

Lemma 3. Procedure determinize-part(P,R) runs in O(|δ|+ |P ||Σ|) time. ut

Lemma 4. Let P ′ = determinize-part(P,R). Then P ′ = detR(P). ut

4.3 Incompleteness of Partition-Based Approaches

It would be convenient if the only k-state DFA approximations we need to con-
sider were quotient automata, since there are many fewer quotient automata of
an n-state t-DFA, than there are k-state DFA. Unfortunately, this is not the
case.

Example 3. The following 14 state automaton A1 for (a|b)aaaaaaaaaaaa

// 0
a **

b

44 1 a
// 2 a

// 3 a
// 4 a

// 5 a
// 6 a

// 7 a
// 8 a

// 9 a
// 10

a

��
13 12

aoo 11
aoo

has this 8 state approximation A2 such that L(A2) = aaa(aaa)?|baaa(aaaa)?

// 0
a //

b
��

1 a
// 2 a

// 3

a

}}

4 a
// 5 a

// 6 a
// 7

a

yy

There is no 8-state quotient of A1 whose language is a subset of L(A2) since any
quotient t-DFA must map state 1 to a single block and hence accepts a language
of the form (a|b) E for some regular expression E. ut

It is worth noting that when computing quotients of sparse automata, trim-
ming is crucial. With a complete DFA, the additional error transitions force us
to merge more states than we need to preserve determinism.

Example 4. Recall the automaton from Example 1, now as a complete DFA.

// 0
a //

b
��

1
b //

a

��

2

a,b
��
∅

a,b

kk

If we attempt to merge states 0 and 2 as before, the transitions (0, a, 1) and
(2, a, ∅) force us to merge 1 with ∅. Then (∅, b, ∅) and (1, b, 2) forces us to merge
the two remaining partitions, yielding the single-state trivial automaton.

5 Approximations as a Search Problem

We define a discrete satisfaction problem that given an original n-state t-DFA
R = 〈Q,Σ, δ, q0, F 〉, finds a k-state DFA R′ = 〈Q′, Σ, δ′, q0′, F ′〉 which ap-
proximates it. In the next subsection we consider only quotient DFA, before
generalizing this to arbitrary DFA in the following subsection.

5.1 Searching Quotient k-state DFAs

Quotient DFAs are an attractive class to consider for approximating arbitrary
DFAs since they automatically satisfy the approximation condition, and they
can be specified simply in terms of a partition.

Writing this problem as a combinatorial search problem is reasonably straight-
forward since we are merely deciding a partition. The model is defined by the
principal decisions mq which maps each state q ∈ Q to a state in Q′ where
|Q′| = k (which represent the states of the k-state DFA). The constraints are

mq ∈ Q′ (1)
mq is surjective (2)
q0′ = mq0 (3)
F ′ = {mq | q ∈ F} (4)
δ′ = {(mq, c,mq′) | (q, c, q′) ∈ δ} ∀q ∈ Q, c ∈ Σ (5)
δ′ is a partial function from Q′ ×Σ to Q′ (6)

The size of the system of constraints O(nk|Σ|).

Theorem 2 (Correctness). Let t-DFA R and DFA R′ satisfy equations (1)–
(6) then L(R) ⊆ L(R′). ut

Theorem 3 (Completeness). Given t-DFA R and R′, if R′ is a quotient t-
DFA of R then there exist m satisfying equations (1)–(6). ut

In practice we improve the model (1)–(6) by adding value symmetry break-
ing constraints to remove isomorphic k-states automata. We add a symmetry
breaking constraint requiring that ∀q ∈ Q, u ∈ {2, . . . , k} if mq = u then there
exists q′ < q,mq′ = u − 1. This enforces that we number the partitions P of R
in the order of their least element. To be compatible with equation (3) we also
require that the initial states q0 and q0′ of both R and R′ are the least numbered
state.

5.2 Searching all k-state DFAs

Not all k-state DFAs are quotient automata. Furthermore, Example 3 shows
there are k-state DFAs approximations which are dominated by no k-state quo-
tient DFA. Hence we are also interested in non-quotient k-state DFA that are
approximations.

To model the general approximation problem we reason about the synchro-
nized product of the known n-state t-DFA, and the unknown k-state DFA. The
principle decisions are δ′ the transition relation for the k-state DFA and F ′ the
set of final states. We ensure that each state reachable in the synchronized prod-
uct, which represents a final state for the n-state t-DFA, is also a final state
for the k-state DFA. The propositional decision variables rq,q′ represent that the
state (q, q′) is reachable in the intersection DFA. The first four constraints ensure
that any computation in the n-state t-DFA is reflected in the k-state DFA. The
last constraint ensures that each reachable state in the synchronized product
which is final for the n-state t-DFA is also final for the k-state DFA.

rq0,q0′ (7)
rq,q′ → ∀(q, c, q2) ∈ δ ∃(q′, c, q′2) ∈ δ′ : rq2,q′2 (8)
δ′ is a partial function from Q′ ×Σ to Q′ (9)

rq,q′ → q′ ∈ F ′ ∀q ∈ F, q′ ∈ Q′ (10)

The size of this system of constraints in O(nk|Σ|).

Theorem 4 (Correctness). Let t-DFA R and DFA R′ satisfy equations (7)–
(10) then L(R) ⊆ L(R′). ut

Theorem 5 (Completeness). Given t-DFAs R and R′ if R′ is k-state t-DFA
such that L(R) ⊆ L(R′) then there is a solution of equations (7)–(10). ut

5.3 Complexity

We conjecture that the problem of finding a non-dominated k-state DFA of an
n-state t-DFA is NP-hard, even when we restrict to quotient automata.

NONDOMPART(R,P): given an n-state t-DFA R and deterministic par-
tition P of R decide whether there exists a deterministic partition P ′ of
R where |P ′| ≤ |P | such that L(R/P ′) ⊂ L(R/P).

NONDOMAPPROX(R,R′): given an n-state t-DFAR and a k-state DFA
R′ where L(R) ⊆ L(R′) decide whether there exists a k-state DFA R′′

such that L(R) ⊆ L(R′′) ⊂ L(R′).

Conjecture 1. NONDOMPART and NONDOMAPPROX are NP-hard ut

Observe that both problems are in NP. For NONDOMPART, guess a parti-
tion P ′ of the n states of R with no more than |P | blocks; check in polynomial
time that P ′ is deterministic; if successful then build the DFAs R/P and R/P ′ ;
check, in polynomial time, that L(R/P ′) ⊆ L(R/P) and L(R/P ′) 6= L(R/P). The
argument to show NONDOMAPPROX belongs to NP is similar.

There are some closely related problem which are NP-complete. Gold [8]
shows that deciding if there exists a k-state automaton that agrees with a set of
examples and counterexamples is NP-complete.

5.4 Objectives

The models above that describe the problem of finding a k-state approximation
of an n-state t-DFA, while correctly capturing this question are not that useful
in practice. It is always possible to answer with a single-state machine whose
initial state is accepting and has self arcs for all symbols in the alphabet.

Ideally what we desire are k-state t-DFA R which are non-dominated. Al-
though this is decidable it seems hard to compute, and we conjecture it is NP-
hard. Instead we will consider simpler objectives which are easier to compute.
Hence we convert our problem to a discrete optimization problem.

Counting Prefixes The first thing we consider is counting the number of
strings accepted up to some length. We can compute the number of strings
accepted aq′,l for each state q′ ∈ Q′ and each length from l ∈ {0, . . . ,m} as
follows

aq′,0 = q′ ∈ F ′ (11)

aq′,l+1 =
∑

(q′,c,q′′)∈δ′
aq′′,l (12)

The size of this constraint system is O(k2|Σ|m). We can then minimize the
expected number of strings of length between 0 and m accepted by the initial
state of the k-state DFA

∑
l∈0,...,m aq′0,l

Using a result of Moore [11] that states that a pair of automata can be
differentiated by a string of length less than the sum of their numbers of states
we show the following lemma.

Lemma 5. Supposem ≥ 2k−1 then a k state DFA R′ minimizing
∑
l=0,...,m aq′0,l

is dominated by no k-state DFA R′′ approximating R. ut

Markov-like measures If we assume that the strings of interest have a Poisson
distribution in length we can model this as an expected probability pc for each
alphabet symbol x and a probability pe of reaching the end of the string where
pe +

∑
c∈Σ

pc = 1. We can define the expected proportion of strings rq accepted

by state q as a system of simultaneous equations

rq′ = pe× (q′ ∈ F ′) +
∑

(q′,c,q′′)∈δ′
pcrq′′ (13)

The size of this constraint system is O(k2|Σ|). We can then minimize the ex-
pected proportion of strings accepted by the automata as rq0′ .

Other objectives are possible: using a finite corpus of counter-examples, or
calculating the expected proportion of strings of some length that are accepted.

quot(R,k):
let R = 〈Q,Σ, δ, q0, F 〉
P := {{q} | q ∈ Q}
m := +∞
for({b1, b2} ⊆ P, b1 6= b2)

P12 := determinize-part(P − {b1, b2} ∪ {b1 ∪ b2}, R)
M ′ := R/P12

if m > measure(M ′)
m := measure(M ′)
M := M ′

if size(M) ≤ k return M
return quot(M ,k)

Fig. 3. Greedy algorithm for building a k-state quotient t-DFA for t-DFA R.

6 Greedy Approaches

Independent of whether our conjecture of NP hardness holds, solving the con-
straint optimization problems defined in the previous section are challenging.
Their solving behaviour appears to scale exponentially in k in practice.

Hence we consider incomplete approaches to find k-state approximations to
an n-state t-DFA, which may not necessarily return a non-dominated approxi-
mation, nor minimize any objective.

The most obvious approach to producing a greedy approximation is by re-
stricting consideration to quotient DFA of the original n-state t-DFA R, and
merging partitions in these DFA until we reach a DFA with k or less states.

The greedy algorithm is shown in Figure 3. At each stage it considers each
deterministic automaton R/P12

that arises from merging each pair of states in
the original automaton R, and calculates a measure (objective value) for the
automaton. It greedily selects the best resulting t-DFA. If this has no more than
k states the process finishes, otherwise we repeat the merging process.

The result crucially depends on the measure used. Note that each of the
objective measures defined in Section 5.4 is straightforward to calculate for a
given fixed automaton R/P12

.

Example 5. Consider the automaton A from Example 1. We will consider each
of the quotient automata B1, B2 and B3 of Figure 1 arising from partitions
{{0, 1}, {2}}, {{0}, {1, 2}} and {{0, 2}, {1}} respectively. If we count the number
of strings accepted of length up to 3, we find the measures are respectively 3,
3, and 2, and B3 is preferable. If we use a Markov measure with pe = 1/3 and
pa = pb = 1/3 then the measures are respectively 1/6, 1/6 and 3/8 and one of
B1 or B2 is preferable. ut

7 Better State Merging

Quotient automata while easy to understand and construct often collapse quickly
by partition determinization into small, and even single-state, automaton. Worse,
some interesting classes of automata admit no non-trivial deterministic quotient.

Example 6. Consider the following automaton, recognizing the language (a ∪
b)?abaa(a ∪ b)?:

// 0
a //

b

33 1
b //

a

33 2
a //

b

aa 3
a //

b

��
4

a,b

kk

If we attempt to merge states 3 and 4, we find that the outgoing transitions
on b conflict, and we are forced to add 2 to the partition. But as 2 transitions
to 0 on b, we are again forced to merge 0 with {2, 3, 4}. But since 0 and {2, 3, 4}
disagree on a, we are finally forced to add 1 to the partition, obtaining the
single-state universal automaton.

The same collapse occurs for any pair of states we choose to merge. How-
ever, in some sense it should be safe to merge state 3 into state 4, to produce
automaton recognizing the shorter substring aba. ut

This suggests that language quotients describe too restrictive a form of
transformation. Instead, consider some partition P such that [q1]P = [q2]P ,
{(q1, c, q′1), (q2, c, q

′
2)} ⊆ δ, [q′1]P 6= [q′2]P and L(q′1, R) ⊆ L(q′2, R). If we replace

the transition (q1, c, q
′
1) with (q1, c, q

′
2), we resolve the non-determinism of δP

and obtain an over-approximation of L(R).
In order to use this we have to understand the inclusion relations between

the states of the automaton we wish to approximate. To this end, we can use
simulation preorders between states. Simulation preorders are computable in
time polynomial in the size of the automaton. Moreover, if a simulation preorder
v is such that q v q′ in R then L(q,R) ⊆ L(q′, R) holds [6].

We will determinize a t-DFA while shrinking the number of states from n
to k by using an approximating version of the NFA to DFA translation. First
we map the t-DFA with n-states R to a t-DFA with n-states RR whose state
names are QQ = {{q} | q ∈ Q}. During the determinization we will construct
new states which always represent sets of the original states Q. This mapping
is only used to prevent creating states which already exists. We calculate the
inclusion relation D for the t-DFA RR using, for instance, simulation preorders.
We then apply the algorithm determinize-tdfa defined in Figure 4 to R and D
choosing two states q1 and q2 in QQ to collapse.

The algorithm works by collapsing two states q1 and q2 into one. In the case
that there is an inclusion relation between them this is easy, we simply eliminate
the included state. Otherwise we create a new state q labelled with the union of
original states of q1 and q2, and replace all occurrences of q1 and q2 by q. This

determinize-tdfa(R, D, q1, q2):
let R = 〈Q,Σ, δ, q0, F 〉
if (q1, q2) ∈ D

Q′ := Q− {q1}
F ′ := F − {q1}
q0′ := (q0 = q1 ? q2 : q0)
δ′ := δ ∪ {(q′, c, q2) | (q′, c, q1) ∈ δ}
return 〈Q′, Σ,

(
δ′ ∩ (Q′ ×Σ ×Q′)

)
, q0′, F ′〉

elseif (q2, q1) ∈ D
return determinize-tdfa(R, D, q2, q1):

q := q1 ∪ q2 % new state
Q′ := Q− {q1, q2} ∪ {q}
F ′ := F − {q1, q2} ∪ {q | q1 ∈ F ∨ q2 ∈ F}
q0′ := (q0 ∈ {q1, q2} ? q : q0)
D′ := D ∪ {(q′, q) | (q′, q1) ∈ D ∨ (q′, q2) ∈ D}
δ′ := δ ∪ {(q, c, q′′) | (q′, c, q′′) ∈ δ, q′ ∈ {q1, q2}} ∪ {(q′, c, q) | (q′, c, q′′) ∈ δ, q′′ ∈ {q1, q2}}
δ′ := δ′ ∩ (Q′ ×Σ ×Q′)
R′ := 〈Q′, Σ, δ′, q0′, F ′〉
while(∃(q′, c, q′1) ∈ δ′, (q′, c, q′2) ∈ δ′, q′1 6= q′2)

(q′12, 〈Q′, Σ, δ′, q0′, F ′〉, D′) := merge-state(q′1, q′2, R′, (D′ ∩ (Q′ ×Q′)))
δ′ := δ′ − {(q′, c, q′1), (q′, c, q′2)} ∪ {(q′, c, q′12)}
R′ := 〈Q′, Σ, δ′, q0′, F ′〉

return 〈Q′, Σ, (δ′ ∩ (Q′ ×Σ ×Q′)), q0′, F ′〉

Fig. 4. Algorithm for computing a n − 1-state DFA approximation of n-state t-DFA
R given inclusion relation D which replaces q1 and q2 by their union.

may result in an NFA. We then continue finding non-deterministic transitions
going to q′1 and q′2 and merging the states using merge-state which replaces one
of these states by a state that over-approximate the union of their languages.

Lemma 6. The algorithm determinize-tdfa terminates. ut

Lemma 7. The algorithm determinize-tdfa returns a DFA R′ with at most n−1
states such that L(R) ⊆ L(R′). ut

We can adapt the greedy algorithm quot to use determinize-tdfa to construct
the candidate automaton M ′ in place of determinize-part in an obvious manner.
We call this dom.

There is a simpler variation of determinization using dominance. We add a
universal accepting state a to the original automata (initially unconnected) and
we only consider greedily merging other states q with a. This means that the
first if condition in determinize-tdfa always holds, so determinization is simple.
We call this greedy variant univ.

merge-state(q1, q2, R, D):
let R = 〈Q,Σ, δ, q0, F 〉
if q1 ∪ q2 ∈ Q

return (q1 ∪ q2, R,D)
if (q1, q2) ∈ D

return (q2, R,D)
elseif (q2, q1) ∈ D

return (q1, R,D)
q := q1 ∪ q2
r := (|{(q′, c, q1) | (q′, c, q1) ∈ δ}| > |{(q′, c, q2) | (q′, c, q2) ∈ δ}| ? q2 : q1)
Q′ := Q− {r} ∪ {q}
F ′ := F − {r} ∪ {q | q1 ∈ F ∨ q2 ∈ F}
q0′ := (q0 = r ? q : q0)
D′ := D ∪ {(q′, q) | (q′, q1) ∈ D ∨ (q′, q2) ∈ D} ∪ {(q1, q), (q2, q)}
δ′ := δ ∪ {(q′, c, q) | (q′, c, r) ∈ δ} ∪ {(q, c, q′) | (q′′, c, q′) ∈ δ, q′′ ∈ {q1, q2}}
return (q, 〈Q′, Σ, (δ′ ∩ (Q′ ×Σ ×Q′)), q0′, F ′〉, (D′ ∩ (Q′ ×Q′)))

Fig. 5. Algorithm for computing an NFA with one of states q1 and q2 replaced with
their union. It returns the name of the merged state, an NFA and a language inclusion
relation for the states of the NFA.

8 Experiments

To evaluate the proposed approximation strategies, we generated a corpus of
automata. For an instance ty-l-m-d.xx, we generated m random wordsW with
length l over alphabet {1, . . . , d}. We then built an automaton of the given type
ty: exact matching {w ∈ W}, prefix {wΣ∗ | w ∈ W}, suffix {Σ∗w | w ∈ W} or
substring {Σ∗wΣ∗ | w ∈ W}. We generated 10 instances for each combination
of l ∈ {5, 10, 15, 20},m ∈ {1, 3, 5, 10}, d ∈ {2, 3, 5, 10}, yielding 2560 automata
with between 6 and 200 states.

For an automaton having n states, we constructed k-state approximations
for k ∈ {n− 2, n2 ,

n
4 } using the three greedy merging approaches: quotient deter-

minization (quot), merge-into-universal (univ) and determinization with domi-
nance (dom).

Results for the three greedy approaches are illustrated in Figure 6. For each
initial automaton and target size k, we computed the number of strings of length
≤ 2k−1 recognized by the approximation, and reported the average over the 10
instances for each combination of parameters.

It is interesting to note the differences in behaviour of quot and univ. For au-
tomata recognizing a single substring, quot cannot produce a non-trivial approx-
imation – after merging any two states, determinization produces the universal
automaton. But for these, univ constructs good (frequently minimal) approxi-
mations, recognizing a shorter prefix of the target substring . Conversely, quot
produces much better approximations for exact string matching automata than

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●
●●●
●

●●
●●●
●

●●
●

●●

●

●●

●
●●

●
●●

●

●●
●

●●
●●●●●●●●●●●●●●●
●●●
●

●
●

●
●

●

●
●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●●●●●●●
●●●●●●
●●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●
●

●100

1050

10100

10150

10200

10250

100 1050 10100 10150 10200 10250

dom

qu
ot

kind

● match

prefix

substring

suffix

●●●●●●●●●●●●●●
●●●
●
●
●
●
●
●
●

●●
●
●

●
●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●
●
●●
●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●
●
●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●
●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

1050

10100

10150

10200

10250

100 1050 10100 10150 10200 10250

dom

un
iv

kind

● match

prefix

substring

suffix

(a) (b)

Fig. 6. For each parameter combination and target size k, the number of strings of
length ≤ 2k−1 recognized by the approximate automaton (averaged over 10 instances).

univ: univ produces automata matching all prefixes of the target string, whereas
quot constructs long loops.

As hoped, the greater fidelity of dom allows us to achieve tighter approxima-
tions than quot or univ. In all but one instance, dom produced an automaton at
least as tight, and frequently much tighter, than either quot or univ. A summary
of runtimes is given in Figure 7.

med. 75% max
quot 0.02 0.40 382.46
univ < 0.01 0.04 29.32
dom 0.06 1.46 2819.01

Fig. 7. Runtime quartiles
for the greedy approxima-
tion methods. The lower two
quartiles are < 0.01 for all
methods.

In most cases approximations are constructed
quickly. However for large automata, repeatedly
evaluating all possible merges (each evaluation sim-
ulating the DFA up to 2k − 1 steps) becomes quite
expensive. However, we expect by using previous re-
sults as lower bounds, we could avoid many of these
evaluations entirely.

To test the accuracy of these greedy approxi-
mation strategies, we built MiniZinc [13] models
for the optimal approximation obtainable in general
(equations (7)–(10)), and under the quot and univ approximation strategies.5 We
then computed optimal approximations of the smaller test instances using the

5 We do not include a model for dom, as the natural decision model is semantically
equivalent to the general approximation model.

constraint programming solver chuffed [5]. chuffed was run with time and
memory limits of 10 minutes and 2 Gb respectively. Figure 8 reports results
for those automata where optimal approximations were found for all MiniZinc
models.

●●
●

●●
●

●

●
●

●●

●●

●
101

102

103

104

100.5 101 101.5 102 102.5 103

optimal approximation

id
ea

l(q
uo

t)

kind

● match

prefix

substring

suffix

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100.5

101

101.5

102

102.5

103

100.5 101 101.5 102 102.5 103

optimal approximation

id
ea

l(u
ni

v)

kind

● match

prefix

substring

suffix

(a) (b)

Fig. 8. Ideal approximations achievable under the (a) quot and (b) univ approximation
strategies, compared with the best possible approximation.

The observed results match those for the greedy approaches: both quot and
univ can represent optimal approximations for matching single prefixes, and
produce poor approximations for suffix automata; but quot can produce optimal
automata for exact matching, but univ produces much tighter (but typically not
optimal) automata for substring matching.

9 Conclusion and Related work

Finding small approximating automata is a challenging problem, but the prob-
lem has a number of uses: in static analysis [7], in computer security [10], and
elsewhere given the ubiquity of automata. In this paper we have formalized this
problem as a search problem, and defined a number of complete and incomplete
methods for finding correct approximations.

A related problem is that of computing minimal separating DFAs: Given two
DFA defining disjoint languages, compute a DFA with as few states as possible

that includes one language and is disjoint from the other. Observe that the
minimal separating DFA problem optimizes for size of the resulting DFA while we
optimize for its precision with given size k. The minimal separating DFA problem
has its origin in the learning of DFA from samples [1,8] where its formulation
as a decision problem was shown to be NP-complete. More recently [9,4,12] the
problem found applications in formal verification to discover invariants and in
the context of assume guarantee reasoning. In that context, the work of Neider
[12] is the most relevant to us since he defines a constraint-based approach to
the minimal separating DFA problem.

On the other hand, the problem of finding minimal approximations using
smaller automaton has been studied in several independent contexts [2,7,10].
Vijay D’silva [7] studied the problem in the context of static analysis where
abstract states are given by languages of finite-state automaton. To ensure ter-
mination of fixpoint computations a widening operator has to be defined. D’silva
lays down a principled approach to define widening operators for automata-based
representation. Earlier Bouajjani et al. [2] faced identical termination problems
in the context of abstract regular model-checking.

Both work put forward an approach based on state equivalences for various
notions of equivalences. Equivalent states are then collapsed (merged or identi-
fied) yielding a smaller automaton whose language is a superset of original one.
The equivalence relation is fixed a priori based on the application domain.

We differ in several aspects: we have a fixed budget on the number of states
of the resulting automaton; and using our constraint-based approach we are
searching a larger space of candidate automata, not necessarily automata result-
ing from merging states.

Finally, let us mention the work of Luchaup et al. [10] in the context of
computer security where the use of approximations of finite-state automaton is
motivated for performance reasons. Again they use an approach merging states
with the goal of minimizing the error of classification.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

2. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. International Journal on Software Tools for Technology Transfer
14(2), 167–191 (2011)

3. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Computer Aided Verification, pp. 372–386. Springer (2004)

4. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal
separating DFA’s for compositional verification. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 31–45. Springer (2009)

5. Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, Department of
Computing and Information Systems, University of Melbourne (2011)

6. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-
tion preorders. In: Computer Aided Verification, pp. 255–265. Springer (1992)

7. D’silva, V.: Widening for Automata. diploma thesis, Institut Für Informatik, Uni-
versität Zürich (2006)

8. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

9. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Formal Methods in System Design 32(3), 285–301 (2008)

10. Luchaup, D., Carli, L.D., Jha, S., Bach, E.: Deep packet inspection with dfa-
trees and parametrized language overapproximation. In: 2014 IEEE Conference on
Computer Communications, INFOCOM. pp. 531–539. IEEE (2014)

11. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C., Mc-
Carthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press,
Princeton, NJ (1956)

12. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: Automated Technology for Verification and Analysis, pp.
354–369. Springer (2012)

13. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint Programming. LNCS,
vol. 4741, pp. 529–543. Springer (2007)

14. Rabin, M.O., Scott, D.: Finite automata and their decision problem. IBM Journal
of Research and Development 3, 114–125 (1959)

	Fixing the State Budget: Approximation of Regular Languages with Small DFAs

