
Principal Type Inference for GHC-Style
Multi-Parameter Type Classes

Martin Sulzmann1, Tom Schrijvers2?, and Peter J. Stuckey3

1 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg
2 Department of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

tom.schrijvers@cs.kuleuven.be
3 NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

pjs@cs.mu.oz.au

Abstract. We observe that the combination of multi-parameter type
classes with existential types and type annotations leads to a loss of
principal types and undecidability of type inference. This may be a sur-
prising fact for users of these popular features. We conduct a concise
investigation of the problem and are able to give a type inference proce-
dure which, if successful, computes principal types under the conditions
imposed by the Glasgow Haskell Compiler (GHC). Our results provide
new insights on how to perform type inference for advanced type exten-
sions.

1 Introduction

Type systems are important building tools in the design of programming lan-
guages. They are typically specified in terms of a set of typing rules which are
formulated in natural deduction style. The standard approach towards estab-
lishing type soundness is to show that any well-typed program cannot go wrong
at run-time. Hence, one of the first tasks of a compiler is to verify whether a
program is well-typed or not.

The trouble is that typing rules are often not syntax-directed. Also, we often
have a choice of which types to assign to variables unless we demand that the
programmer supplies the compiler with this information. However, using the
programming language may then become impractical. What we need is a type
inference algorithm which automatically checks whether a program is well-typed
and as a side-effect assigns types to program text.

For programming languages based on the Hindley/Milner system [19] we can
typically verify that type inference is complete and the inferred type is princi-
pal [1]. Completeness guarantees that if the program is well-typed type inference

? Research Assistant of the fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen)

will infer a type for the program whereas principality guarantees that any type
possibly given to the program can be derived from the inferred type.

Here, we ask the question whether this happy situation continues in the
case of multi-parameter type classes (MPTCs) [13], a popular extension of the
Hindley/Milner system and available as part of Haskell [21] implementations
such as GHC [5] and HUGS [9]. GHC and HUGS also support (boxed) existential
types [17] and type annotations [20].1 It is the combination of all these features
that make MPTCs so popular among programmers.

In this paper, we make the following contributions:

– We answer the above question negatively. We show that the combination of
MPTCs with type annotations and existential types does not enjoy principal
types and type inference is undecidable in general (Section 2).

– However, under the GHC [5] multi-parameter type class conditions, we can
give a procedure where every inferred type is principal among all types (Sec-
tion 4).

We omit proofs for brevity, sketches can be found in [26].
To the best of our knowledge, we are the first to point out precisely the

problem behind type inference for MPTCs. Previous work [3] only reports the
loss of principal types but does not provide many clues about how to tackle the
inference problem.

We have written this introduction as if Haskell (GHC and HUGS) is the only
language (systems) that supports MPTCs. Type classes are also supported in
a number of other languages such as Mercury [7, 10], HAL [2] and Clean [22].
However, as far as we know there is no formal description of multi-parameter
type classes and the combination with existential types and type annotations.
From now on, we will use MPTCs to refer to the system that combines all these
features. For example, Läufer [16] only considered the combination of single-
parameter type classes and existential types. The only formal description avail-
able is our own previous work [27] where we introduce the more general system
of extended algebraic data types (EADTs). Notice that in [27] we discuss type
checking but not type inference.

In the next section, we give a cursory introduction to MPTCs as supported
in GHC based on a simple example. We refer to [13] for further examples and
background material on MPTCs.

2 Multi-Parameter Type Classes

Example. We use MPTCs for the implementation of a stack ADT.

class StackImpl s a where
pushImpl :: a->s->s
popAndtopImpl :: s->Maybe (s,a)

instance StackImpl [a] a where
pushImpl = (:)
popAndtopImpl [] = Nothing
popAndtopImpl (x:xs) = Just (xs, x)

1 For the purposes of this paper, we will use the term “type inference” to refer to type
inference and checking in the presence of type annotations.

2

In contrast to a single-parameter type class, a multi-parameter type class such
as StackImpl describes a relation among its type parameters s (the stack)
and a (the type of elements stored in a stack). The methods pushImpl and
popAndtopImpl provide a minimal interface to a stack. We also provide a con-
crete implementation using lists.

With the help of an existential type, the stack implementation can be encap-
sulated:

data Stack a = forall s. StackImpl s a => Stck s

Each stack is parameterized in terms of the element type a whereas the actual
stack s is left abstract as indicated by the forall keyword. We generally refer
to variables such as s as abstract variables. When scrutinizing a stack we are
not allowed to make any specific assumptions about s. The type class constraint
(a.k.a. context) StackImpl s a supplies each stack with its essential operations.
We use a combination of multi-parameter type classes and existential types.

It is then straightforward to implement the common set of stack operations.

push :: a -> Stack a -> Stack a
push x (Stck s) = Stck (pushImpl x s)
pop :: Stack a -> Stack a
pop (Stck s) = case (popAndtopImpl s) of

Just (s’,x::a) -> Stck s’ -- (1)

top :: Stack a -> a
top (Stck s) = case (popAndtopImpl s) of

Just (_,x) -> x
empty :: Stack a -> Bool
empty (Stck s) = case (popAndtopImpl s) of

Just (s’::s,x::a) -> False -- (2)
Nothing -> True

In case of function push, the pattern Stck s brings into scope the type class
StackImpl s a. Thus, we can access specific methods such as pushImpl x s
to push new elements onto the stack. Functions pop and empty require lexically
scoped type annotations at locations (1) and (2). For example, in case of function
pop the call popAndtopImpl s yields a value of type Stack b for some b and
demands the presence of a type class StackImpl s b. Though, the pattern match
Stck s only makes available the type class StackImpl s a. Via the lexically
scoped annotation x::a, notice that a refers to pop’s annotation, we convince
the type inferencer that a=b. Then, the program is accepted.2

The informed reader will notice that instead of lexically scoped type anno-
tations we could use functional dependencies [12] to enforce that a=b. In our
opinion, for many practical examples the reverse argument applies as well. Fur-
thermore, lexically scoped type annotations are a more light-weight extension
than functional dependencies. Hence, we will ignore functional dependencies for
the purpose of this paper.

What we discover next is that MPTC type inference is not tractable in gen-
eral.
2 GHC requires the somewhat redundant pattern annotation pop (Stck s::Stack
a), which we omit here for simplicity.

3

Loss of Principal Types and Undecidability of Type Inference. Con-
sider the following (contrived) program.

class Foo a b where foo :: a->b->Int
instance Foo Int b -- (F1)
instance Foo a b => Foo [a] b -- (F2)
data Bar a = forall b. K a b
f (K x y) = foo x y

The surprising observation is that function f can be given the following infinite
set of types

f :: Bar [Int]n → Int

for any n ≥ 0, where [Int]n is a list of lists ... of lists (n times) of integers. We
postpone a discussion on why the above types arise to the next section.

The devastating conclusion we draw is that principal types are lost in general.
We even cannot hope for complete and decidable type inference because the set
of maximal types given to a program may be infinite. We say a type is maximal
if there is no other more general type. The above types are all clearly maximal.

Function f makes use of multi-parameter type classes and “pure” existential
types. That is, the type class context of the existential data type definition is
empty. This shows that type inference is already a problem for “simple” ex-
amples. We do not have to resort to “fancy” examples where we constrain the
parameters of constructors by a multi-parameter type class.

The “simple” combination of multi-parameter type classes and type anno-
tations poses the same problems. The following function where we assume the
above instances

g y = let h :: c->Int
h x = foo y x

in h y

has a similar infinite set of types g :: [Int]n → Int for any n ≥ 0.
It should be intuitively clear that to establish completeness and decidability

of type inference in the MPTC type system we would need to demand an exces-
sive amount of type annotations, something which would seriously impair the
practical usefulness of MPTCs.

Therefore, we seek for a compromise and give up on having both complete-
ness and decidability. As is usual in the Hindley/Milner type system, we sacrifice
completeness for the sake of decidability. For example, some well-typed programs
with polymorphic recursion are rejected because it makes type inference unde-
cidable [8]. Instead, we demand that if type inference succeeds, the inferred type
must be principal.

An incomplete type inference has already been implemented in GHC; for
example it does not produce a type for either f or g. The incompleteness of
the GHC implementation is captured in a number of conditions on programs.
Programs that do not satisfy these conditions are rejected. Unfortunately, there
exists neither a formalization of GHC’s inference, nor a proof that its conditions
guarantee principal types. We will show that the GHC conditions are indeed
sufficient, and we present a formal type inference that computes principal types
under these conditions.

4

3 MPTC Inference Overview

We investigate in more detail why MPTC inference is so hard. Then, we motivate
our MPTC inference procedure. We postpone a description of the GHC MPTC
conditions to the next section.

3.1 Preliminaries

We introduce some basic assumptions and notation which we will use throughout
the paper.

We often write ō as a short-hand for a sequence of objects o1, ..., on (e.g. types
etc). We write fv(o) to denote the free variables in some object o. We write “−”
to denote set subtraction.

We assume that t refers to types consisting of type variables a, function types
t1 → t2 and user-definable types T t̄. We assume primitive constraints of the
form t1 = t2 (type equations) and TC t̄ (type class constraints).

We generally assume that the reader is familiar with the concepts of substi-
tutions, unifiers, most general unifiers (m.g.u.) etc [15] and first-order logic [23].
We write [t/a] to denote the simultaneous substitution of variables ai by types ti
for i = 1, .., n. We use common notation for Boolean conjunction (∧), implication
(⊃) and universal (∀) and existential quantifiers (∃). Often, we abbreviate ∧ by
“,” and use set notation for conjunctions of formulae. We sometimes use ∃̄V .Fml
as a short-hand for ∃fv(Fml)−V.Fml where Fml is some first-order formula and
V a set of variables, that is existential quantification of all variables in Fml apart
from V . We write |= to denote the model-theoretic entailment relation. When
writing logical statements we often leave (outermost) quantifiers implicit. E.g.,
let Fml1 and Fml2 be two formulae where Fml1 is closed (contains no free vari-
ables). Then, Fml1 |= Fml2 is a short-hand for Fml1 |= ∀fv(Fml2).Fml2 stating
that in any (first-order) model for Fml1 formula ∀fv(Fml2).Fml2 is satisfied.

3.2 Type inference via implication constraints

The examples we have seen so far suggest that we need to perform type infer-
ence under “local assumptions.” That is, the assumption constraints resulting
from type annotations and pattern matches over existential types must satisfy
the constraints resulting from the program body. In the case of multiple pattern
clauses, the individual assumptions for each pattern clause do not interact with
the other clauses. Hence, their effect is localized. This is a significant depar-
ture from standard Hindley/Milner inference where we are only concerned with
solving sets of primitive constraints such as type equations and type classes.

Our MPTC type inference method makes use of the richer form of implication
constraints.

Type Classes tc ::= TC t
Context D ::= tc | D ∧D
Constraints C ::= t = t | TC t̄ | C ∧ C
Implication Constraints F ::= C | ∀b̄.(D ⊃ ∃ā.F) | F ∧ F

Constraints on the left-hand side of the implication symbol ⊃ represent local as-
sumptions arising from constraints in type annotations and data type definitions.
For MPTC programs we can guarantee that only type classes appear on the left-
hand side. Constraints on the right-hand side arise from the actual function body

5

by generating constraints out of expressions following a standard procedure such
as algorithm W [19]. Universally quantified type variables refer to variables in
type annotations and abstract variables. Recall that abstract variables are intro-
duced by the forall keyword in data type definitions. Existentially quantified
type variables belong to right-hand side constraints.

The example from before

pop :: Stack a -> Stack a
pop (Stck s) = case (popAndtopImpl s) of

Just (s’,x::a) -> Stck s’ -- (1)

gives rise to the implication constraint

∀a.∀s.(StackImpl s a ⊃ ∃tx .(StackImpl s tx ∧ tx = a))

For example, constraint StackImpl s tx arises from the program text popAndtopImpl
s and constraint tx = a arises from x::a. On the other hand, the constraint
StackImpl s a on the left-hand side of ⊃ arises from the pattern match Stck s.
The above implication constraint is clearly a universally true statement. Hence,
we can argue that the type of pop is correct.

If we replace the lexically scoped annotation x::a by x we find the following
variation of the above implication constraint.

∀a.∀s.(StackImpl s a ⊃ ∃tx .StackImpl s tx)

This is also a universally true statement. But verifying this statement is more
difficult. Checking is not enough here, we need to find a solution for tx. The
problem is that the solving procedure which we outline below will not necessarily
find the answer tx = a. The GHC type inferencer will fail as well.

The crucial observation is that without the annotation x::a, the program
is in fact “ambiguous”, hence, illegal. The type tx of program variable x does
not appear in the type of function pop. Therefore, several solutions for tx may
exist but this choice is not reflected in the type. Haskell type classes follow the
open-world assumption. That is, at some later stage we can add further instances
such as instance StackImpl s Int and thus we find besides tx = a a second
solution tx = Int.

The danger then is that the meaning of programs may become ambiguous.
This is a well-recognized problem [11, 24]. For this reason, Haskell demands that
programs must be unambiguous. We therefore follow Haskell and rule out am-
biguous programs. In terms of implication constraints, the unambiguity condition
says that all existentially quantified type variables which do not appear in the
final type must be unique. It is certainly not a coincidence that unambiguity
also prevents us from guessing solutions.

For our specific case, we could argue that the declaration instance StackImpl
s Int itself is illegal because it overlaps with the one from before. Hence, there
should be only one valid solution tx = a. The point is that the unambiguity
check is a conservative check and does not take into account any of the specific
conditions which we impose on instances. Hence, the program without the an-
notation x::a fails not because it does not type check, the program is simply
plain illegal.

Let’s consider the implication constraint for the “devious” program

6

f (K x y) = foo x y

We find that tf = Bar tx → tr ∧ ∀ty .(Foo tx ty ⊃ tr = Int) where tf , tx and ty
are respectively the types of f, x and y respectively, and tr is the result type.
The implication constraint restricts the set of solutions that can be given to
these variables. The function body demands that tr = Int and the call foo x y
demands Foo tx ty . The universal quantifier ∀ty captures the fact that variable
y is abstract.

In the previous example, we only had to check that the implication constraint
is correct. Here, we actually need to find a solution. The problem becomes now
apparent. The constraint tf = Bar [Int]n → Int is a solution of the above impli-
cation constraint for any n ≥ 0. More formally,

∀tf .(tf = Bar [Int]n → Int) ⊃
(∃tr .∃tx .tf = Bar tx → tr ∧ ∀ty .(Foo tx ty ⊃ tr = Int))

is a true statement under the assumption that Foo [Int]n ty holds for any ty,
which is implied by the above instances (F1) and (F2). Each one of maximal types
f :: Bar [Int]n → Int corresponds to one of the solutions tf = Bar [Int]n → Int .

A naive “solution” would be to consider the implication constraint itself as
the solution. Although, we (trivially) obtain complete inference, this approach is
not practical. First, types become unreadable. In the type system, we now admit
implication constraints (and not only sets of primitive constraints). Second, type
inference becomes intractable. The implication constraints arising from the pro-
gram text may now have implication constraints on the left-hand side of ⊃. But
then solving these “extended” implication constraints is very close to solving of
first-order formulae. Previous work [14] shows that solving of first-order formula
with subtype constraints is decidable but has a non-elementary complexity. Note
that via Haskell type classes we can encode complex relations such as subtyping.
Hence, we abandon this path and consider how to solve implication constraints
in terms of sets of primitive constraints.

3.3 Highlights of MPTC implication solver

In its simplest form, we need a solving procedure for implication constraints of
the form D ⊃ C where D consists of sets of type class constraints whereas C
additionally contains Hindley/Milner constraints (i.e. type equations). Before we
attempt solving, let’s consider how to check that D ⊃ C holds. Checking is a
natural first step to achieve solving.

We apply the law that D ⊃ C iff D ↔ D ∧ C. Thus, checking can be
turned into an equivalence test among constraints. The standard method to test
for equivalence is to build the canonical normal forms of D and D ∧ C and
check whether both forms are identical. In case of type equations, we can build
canonical normal forms by building most general unifiers. Here, we additionally
find type classes.

The meaning of type classes is specified by instance declarations which effec-
tively define a rewrite relation among constraints. For example, the instance
StackImpl [a] a declaration from Section 2 implies that the StackImpl [a] a
constraint can be rewritten to True. In Haskell speak, this process is known as
context reduction, although, we will use the term constraint rewriting/solving

7

here. In Section 4.1, we formalize how to derive these rewriting steps from in-
stance declarations. For the moment, let’s assume a rewrite relation �∗ among
constraints where we exhaustively apply instance rules on type classes and
rewrite type equations into most general unifiers.

Based on this assumption, we check D ↔ D ∧ C by executing C �∗ C ′

for some final constraint C ′ and testing whether D and C ′ are identical. Notice
that we do not rewrite D which is due to the GHC assumption that constraints
D are already in canonical normal form. If D and C ′ are identical, the check
succeeds. Otherwise, we need to infer some missing hypotheses, i.e. constraint.
The obvious approach is to take the set difference between C ′ and D. Recall that
we can treat a conjunction of primitive constraints as a set. Then, C ′ −D is a
solution of D ⊃ C. We have that (C ′ −D) ⊃ (D ⊃ C) iff ((C ′ −D) ∧D) ⊃ C
iff C ′ ⊃ C which clearly holds. To summarize, the main idea behind our solving
procedure is to rewrite constraints to some canonical normal form. We take the
set difference between canonical normal forms to infer the missing assumptions.

To illustrate this solving procedure, we consider a simple example.

class F a
class B a b where b :: a -> b
instance F a => B a [a]
data T a = F a => Mk a -- (T)
f (Mk x) = b x

In the data type definition (T), F a constrains the type of the constructor Mk.
Function g gives rise to the following implication constraint

tf = T tx → b ∧ (F tx ⊃ B tx b)

This case is slightly more general than above. Constraints tf = T tx → b will
be definitely part of the solution. Solving of (F tx ⊃ B tx b) yields the solution
B tx b. There are no instance rules applicable to B tx b. Hence, the difference
between B tx b and F tx is B tx b. Hence, tf = T tx → b ∧B tx b is a solution.
Hence, f can be given the type ∀tx, b.B tx b ⇒ tx → b.

In general, our solving procedures needs to deal with multiple branches
(i.e. conjunctions of implications). Universally quantified variables refer to type
annotations and abstract variables whereas existentially quantified variables re-
fer to Hindley/Milner constraints. Universal variables are more “problematic”
because they cannot be instantiated and are not allowed to escape. In the fol-
lowing, we give an informal discussion of how our solving procedure deals with
such cases. The exact details are presented in the upcoming section.

For example, B a b ∧ tr = Int is not a valid solution of

∀b.True ⊃ (B a b ∧ tr = Int)

because the variable b escapes. We will check for escaping of universal vari-
ables by applying a well-known technique known as Skolemization [18]. Skolem-
ization of ∀b.True ⊃ (B a b ∧ tr = Int) yields True ⊃ (B a Sk ∧ tr = Int). The
constraint B a Sk ∧ tr = Int is clearly not a valid solution because of the Skolem
constructor Sk .

We explore solving of multiple branches. The idea is consider one branch at
a time.

8

class Foo a b where foo::a->b->Int
instance Foo Int b -- (F)
class Bar a b where bar :: b->a->a
data Erk a = forall b. Bar a b => K1 (a,b)

| forall b. K2 (a,b)
g (K1 (a,b)) = bar b a
g (K2 (a,b)) = foo a b

Function g’s program text gives rise to

t = Erk a → t3 ∧ t3 = t1 ∧ t3 = t2∧ (C0)
(Bar a Sk1 ⊃ Bar a Sk1 ∧ t1 = a)∧ (F1)
(True ⊃ Foo a Sk2 ∧ t2 = Int) (F2)

where each branch corresponds to a pattern clause. Universal quantifiers have
already been replaced by fresh Skolem constructors.

We start solving the first branch F1. Based on our method for solving for
single implications, we find that C0 ∧ t1 = a is a solution for C0 ∧ F1. We make
this solving step explicit by writing

C0 ∧ F1 ∧ F2 � C0 ∧ t1 = a ∧ F2

We will formally define this rewriting relation � among implication constraints
in the upcoming section. Each time we solve a single implication constraint
we replace the implication constraint with its solution. Thus, we incrementally
build up the solution for the entire set of implication constraints. Solving of the
remaining second branch yields the solution C0 ∧ t1 = a ∧ t2 = Int. Hence, we
find that C0∧F1∧F2 �∗ C0∧t1 = a∧t2 = Int. Notice that C0∧t1 = a∧t2 = Int
implies a = Int and therefore we can rewrite Foo a Sk2 to True and thus solve
(F2). We obtain that g has type Erk Int->Int.

If we start solving F2 first, we cannot immediately “fully” solve this impli-
cation constraint. The constraint Foo a Sk2 ∧ t2 = Int is not a valid solution
because of the Skolem constructor. We can only infer, i.e. add, the partial solu-
tion t2 = Int. That is, we make the following progress

C0 ∧ F1 ∧ F2 � C0 ∧ t2 = Int ∧ F1 ∧ F2

If we continue solving F2 we are stuck. No further constraints can be added
at this stage. Our solving method only observes the canonical normal forms of
the constraints involved. Based on this information, we cannot infer the missing
information t1 = a. Hence, we consider solving of F1. We find that C0 ∧ t2 =
Int ∧ F1 ∧ F2 � C0 ∧ t2 = Int ∧ t1 = a ∧ F2. Finally, we can verify that
C0 ∧ t2 = Int ∧ t1 = a ∧ F2 � C0 ∧ t2 = Int ∧ t1 = a.

The point is that it may not be possible to solve a single implication without
solving other implications first. In case we cannot make progress, i.e. no further
constraints can be added, we consider a different branch. In general, a different
solving order may yield a different result. Under the conditions imposed by GHC,
we can verify that we always obtain the same result. The above example satisfies
the GHC conditions and indeed we infer both times the same result.

4 Inferring Principal Types under the GHC Conditions
In our approach, type inference boils down to solving of implication constraints.
In a first step, we review some material on type class constraint solving, i.e. solv-
ing of sets of primitive constraints. Then, we formalize the MPTC implication

9

solver. Along the way, we introduce the conditions imposed by GHC sufficient to
verify our main result: The MPTC implication solver computes principal solu-
tions, therefore type inference computes principal types, under the GHC MPTC
Conditions.

For space reasons, we omit the details of how to generate implication con-
straints out of the program text. This is by now a standard exercise. For full
details see the technical report version of this paper [26].

4.1 Type class constraint solver
In case we only consider multi-parameter type classes (i.e. no existential types
and type annotations are involved), type inference boils down to solving of sets
of primitive constraints. Instance declarations define a rewrite relation among
type class constraints. Hence, the type class constraint solver is parameterized
in terms of these rewrite relations.

Following our earlier work [24], we formally define these rewrite relations in
terms of Constraint Handling Rules (CHRs) [4]. For each declaration

instance D ⇒ TC t̄

we introduce the single-headed CHR rule TC t̄ ⇐⇒ D. In case, the context
D is empty, we generate rule TC t̄ ⇐⇒ True. The set of all such generated
constraint rules is collected in the MPTC program logic P .

Logically, the symbol⇐⇒ corresponds to Boolean equivalence. Operationally,
we can apply a renamed rule TC t̄ ⇐⇒ D to a set of constraints C if we find
a matching copy TC s̄ ∈ C such that φ(t̄) = s̄ for some substitution φ. Then,
we replace TC s̄ by the right-hand side under the matching substitution φ(D)
More formally, we write C � (C − {TC s̄}) ∪ φ(D) to denote this derivation
step. We write C �∗

P C ′ to denote the exhaustive application of all rules in P ,
starting with the initial constraint C and resulting in the final constraint C ′. If
the program logic P is fixed by the context, we sometimes also write C �∗ C ′.

Here is an example to show some CHRs in action. Under the CHRs

rule StackImpl (Tree a) a <==> Eq a
rule Eq [a] <==> Eq a

we find that StackImpl (Tree[a])[a] � Eq [a] � Eq a.
We repeat the CHR soundness result [4] which states that CHR rule applica-

tions perform equivalence transformations. Recall that P |= F means that any
model M satisfying P (treating ⇐⇒ as Boolean equivalence) also satisfies F .

Lemma 1 (CHR Soundness [4]). Let C �∗
P C ′. Then P |= C ↔ ∃̄fv(C).C

′.

We say P is terminating if for each initial constraint we find a final constraint.
We say P is confluent if different derivations starting from the same point can
always be brought together again.

We will demand that CHRs resulting from instances satisfy these properties.
Termination obviously guarantee decidability. Confluence guarantees canonical
normal forms. Otherwise, we may need to back-track and exhaustively explore
all possibilities during solving which may increase the complexity of the solver
significantly.

To guarantee confluence and termination, GHC imposes the following condi-
tions on programs.

10

Definition 1 (Well-Behaved Instances).

Termination Order: The context of an instance declaration can mention only
type variables, not type constructors, and in each individual class constraint
all the type variables are distinct.
In an instance declaration instance D ⇒ TC t1 . . . tn, at least one of the
types ti must not be a type variable and fv(D) ⊆ fv(t1, . . . , tn).

Non-Overlapping: The instance declarations must not overlap: For any two
declarations instance D ⇒ TC t1 . . . tn and instance D′ ⇒ TC t′1 . . . t′n
there is no substitution φ such that φ(t1) = φ(t′1),. . . .,φ(tn) = φ(t′n).

From now on we assume that the MPTC program logic satisfies the Well-Behaved
Instances Conditions. They are sufficient, but not necessary3 conditions for the
essential property that the type class constraint solver is terminating and con-
fluent.

4.2 MPTC implication solver

Solutions and Normalization. We first apply three normalization steps to
the implication constraints for convenience.

In the first normalization step, we flatten nested implications and pull up
quantifiers, based on the following first-order equivalences: (i) (F1 ⊃ Qa.F2) ↔
Qa.(F1 ⊃ F2) where a 6∈ fv(F1) and Q ∈ {∃,∀}; (ii) (Qa.F1) ∧ (Qb.F2) ↔
Qa, b.(F1 ∧ F2) where a 6∈ fv(F2), b 6∈ fv(F1) and Q ∈ {∃,∀}; and (iii) C1 ⊃
(C2 ⊃ C3) ↔ (C1 ∧ C2) ⊃ C3. We exhaustively apply the above identities from
left to right until we reach the pre-normal form

C0 ∧Q.((D1 ⊃ C1) ∧ . . . ∧ (Dn ⊃ Cn))

where Q is a mixed prefix of the form ∃b0.∀a1.∃b1 . . .∀an.∃bn. Variables in C0

are free. Our goal is to find solutions (in terms of types) to these variables.

Definition 2 (Solutions for Fixed Assumption Constraints). Let P be a
MPTC program logic, F ≡ C0∧Q.((D1 ⊃ C1)∧ . . .∧ (Dn ⊃ Cn)) an implication
constraint and C a constraint. We say that C is a solution of F w.r.t. P iff

1. C,C0 � ... � C,
2. |= Q.(C ∧Di ↔ C ′

i) where C,Ci �∗
P C ′

i for i = 1, ..., n, and
3. C ∧Q.(Di ∧ Ci) is satisfiable in P for each i = 1, ..., n.

In such a situation, we say that C satisfies the Fixed Assumption Constraint
Condition.

We say that C is a principal solution iff (i) C is a solution, and (ii) for any
other solution C ′ we have that P |= C ′ ⊃ ∃̄fv(F).C.

The first two conditions define solutions in terms of the operational reading
of instances as CHRs. They imply the logical statement P |= C ⊃ F . This

3 There are other more liberal instance conditions [25] which guarantee the same.

11

can be verified by straightforward application of the CHR Soundness Lemma.
The reason for defining solutions operationally rather than logically is due to
the type-preserving dictionary-passing translation scheme [6] employed in GHC.
Briefly, assumption constraints D are taken literally and turned into dictionaries.
Rewriting them would break separate compilation. Hence, in our definition of
solutions we guarantee that assumption constraints are fixed. Interestingly, the
Fixed Assumption Constraint Condition is essential to guarantee principal types
as we will see later.

The last condition demands that for each particular branch the constraints
arising do not contradict each other (i.e. they must be satisfiable). In particular,
we reject thus the always false constraint Int = Bool as a solution. Such solutions
are clearly non-sensical because they solve any implication constraint. In terms of
the GHC translation scheme, unsatisfiable branches represent dead-code, hence,
we can ignore them.

In the second normalization step we eliminate all universally quantified vari-
ables by Skolemization [18]. That is, we transform ∃b̄.∀ā.F into ∃b̄.[Ska(b̄)/ā]F
where Skai

’s are some fresh Skolem constructors. We apply this step repeatedly
on implication constraints in pre-normal form until we reach the Skolemized,
pre-normal form

C0 ∧ ∃b̄.((D′
1 ⊃ C ′

1) ∧ . . . ∧ (D′
n ⊃ C ′

n))

For solutions C of Skolemized implication constraints, we additionally demand
that no Skolem constructor appears in C.

The Skolemization preserves the set of solutions. It is sufficient to verify this
statement for a single branch.

Lemma 2 (Solution Equivalence). Let P be a MPTC program logic, S a
constraint, Q.(D ⊃ C) a implication constraint and ∃b̄.(D′ ⊃ C ′) its Skolemized
form. Then, S is a solution of Q.(D ⊃ C) iff S is a solution of ∃b̄.(D′ ⊃ C ′).

In the last normalization step we drop the outermost existential quantifier
∃b̄. However, the choice of variables b̄ may not be unique. If this is the case we
face the ambiguity problem mentioned in Section 3. Therefore, we only consider
unambiguous implication constraints where we can safely drop the existential
quantifier.

We say that C0 ∧ ∃b̄.((D1 ⊃ C1) ∧ ... ∧ (Dn ⊃ Cn)) is unambiguous iff
fv(φ(Di), φ(Ci)) ⊆ fv(φ(C0)) for each i = 1, ..., n where φ is the m.g.u. of type
equations in C0.4 The above says that fixing the variables in C0 will fix the
variables in each branch. Checking for ambiguity is obviously decidable.

Next, we introduce a solving procedure for implication constraints in normal
form, i.e. unambiguous, Skolemized, pre-normal implications constraints of the
form

C0 ∧ (D1 ⊃ C1) ∧ ... ∧ (Dn ⊃ Cn)

Solving Method. We formalize the solving method motivated in Section 3.3.
In Figure 1, we define a solver F �∗

P C for implication constraints F in normal

4 We assume that fv(a = Int) = ∅ because a type is bound by the monomorphic type
Int .

12

Primitive: We define F �∗
P C′ where C �∗

P C′ if F ≡ C.
General: Otherwise F ≡ C0∧ (D ⊃ C)∧F ′. We assume that the most general unifier

of type equations in C0 has been applied to D and C. We execute C0, D, C �∗
P C′

for some C′. We distinguish among the following cases:
Fail: If False ∈ C′ we immediately fail.
Solved: If C′ − (C0 ∧ D) yields the empty set (i.e. C′ and C0 ∧ D are logically

equivalent), we consider D ⊃ C as solved. We define F �∗
P C′′ if C0 ∧ F ′ �∗

P

C′′.
Add: Otherwise, we set S to be the subset of all constraints in C′ − (C0 ∧ D)

which do not refer to a Skolem constructor.
(a) In case S is non-empty, we define F �∗

P C′′ if C0 ∧S ∧ (D ⊃ C)∧F ′ �∗
P

C′′.
(b) In case S is empty, we pick some (D1 ⊃ C1) ∈ F ′ and define F �∗

P C′′ if
C0 ∧ (D1 ⊃ C1) ∧ (F ′ − (D1 ⊃ C1)) ∧ (D ⊃ C) �∗

P C′′.
(c) Otherwise, we fail.

Fig. 1. MPTC Implication Solver

form w.r.t. the program logic P which, if successful, yields a solution C. The case
Add subcase (b) deals with the situation where we cannot make any further
progress, hence, we switch to a different branch. We assume that if none of the
branches makes progress we reach subcase (c).

We can establish soundness by a straightforward application of the CHR
Soundness and Solution Equivalence Lemma.

Lemma 3 (Soundness of Solving). Let P be a program logic If F �∗
P C for

some C then C is a solution of F .

4.3 Main result

In addition to the Well-Behaved Instances and the Fixed Assumption Constraint
Conditions, GHC imposes a third condition on programs.

Definition 3 (GHC MPTC Conditions). We say a program satisfies the
GHC MPTC Conditions iff

– Instances are well-behaved (see Definition 1).

– Each implication constraint in normal-form arising out of a program is un-
ambiguous and has a solution which satisfies the Fixed Assumption Con-
straint Conditions (see Definition 2).

– Each data type definition satisfies the Bound Type Class Context Condition.
That is, for any

data T a1 ... am = forall b1,...,bn. D => K t1 ... tl

and each TC t′ ∈ D we have that fv(t′) ∩ fv(b̄) 6= ∅.

13

In fact, GHC 6.4.1 accepts data T a = forall b. F a => Mk a b which
breaks the Bound Type Class Context Condition. However, in GHC such dec-
larations are interpreted as data F a => T a = forall b. Mk a b. That is, F
a needs to be satisfied when building any value of type T a, but F a will not
appear in a local assumption constraint.

Our main result says:

Theorem 1 (Principal Types for GHC MPTC Programs). If successful,
our solving method computes principal solutions for programs satisfying the GHC
MPTC Conditions.

Before we explain the proof steps necessary to verify the above result, we
highlight the importance of the GHC MPTC Conditions.

The Well-Behaved Instances Conditions are not essential. We could replace
them with alternative conditions as long as we the type class constraint solver
remains confluent and terminating.

GHC imposes the Fixed Assumption Constraint Condition because of dictionary-
passing translation scheme. The next example shows that without this condition
we may infer non-principal types.

class Bar a b c d where bar ::d->c->a->b
class Bar2 a b
class Foo a b d
class Foo2 a
instance Bar2 a b => Bar a b c T2 -- (B)
instance Foo2 a => Foo a b T2 -- (F)
instance Foo2 a => Bar2 a [a] -- (B2)
data T2 = K
data Erk a d = forall c. Foo a c d => Mk a c d
f (Mk a c K) = bar K c a

The program logic P consists of the following rules.

rule Bar a b c T2 <==> Bar2 a b -- (B)
rule Foo a b T2 <==> Foo2 a -- (F)
rule Bar2 a [a] <==> Foo2 a -- (B2)

The program text of f yields the (simplified) implication constraint (Foo a Sk T2 ⊃
Bar a b Sk T2).

Application of our solving method yields the solution Bar2 a b which implies
the type ∀a, b.Bar2 a b ⇒ Erk a T2 → b for f. However, this solution is not
principal. We claim there is another incomparable solution b = [a] which corre-
sponds to the type ∀a.Erk a T2 → [a]. Both solutions (types) are incomparable
and there is no more general solution (type).

We verify that b = [a] is indeed a solution by checking that b = [a] ∧
(Foo a Sk T2 ⊃ Bar a b Sk T2) holds w.r.t. P . From the earlier Section 3,
we know that the checking problem b = [a]∧(Foo a Sk T2 ⊃ Bar a b Sk T2) can
equivalently be phrased as an equivalence testing problem (b = [a]∧Foo a Sk T2) ↔
(b = [a] ∧ Foo a Sk T2 ∧ Bar a b Sk T2). Then, we rewrite the left-hand and

14

right-hand side and check whether resulting constraints are logically equivalent.

(1) b = [a],Foo a Sk T2
�F b = [a],Foo2 a (∗)

(2) b = [a],Foo a Sk T2 ,Bar a b Sk T2
↔ b = [a],Foo a Sk T2 ,Bar a [a] Sk T2
�B b = [a],Foo a Sk T2 ,Bar2 a [a]
�B2 b = [a],Foo a Sk T2 ,Foo2 a
�F b = [a],Foo2 a

The final constraints b = [a],Foo2 a are equivalent. Hence, b = [a] is a solution.
However, b = [a] is not a valid solution under the GHC MPTC Conditions. To
obtain the solution b = [a], it is crucial to rewrite the assumption constraint, see
the derivation step (∗). This violates the Fixed Assumption Constraint Condi-
tion.

The Bound Type Class Context Condition is essential as well. Here are ex-
cerpts of an example which we have seen earlier in Section 3.3.

data T a = F a => Mk a -- (T)
f (Mk x) = b x

The definition (T) violates the Bound Type Class Context Condition. Variable
a is not bound by the forall quantifier. Our solving procedure infers the type
∀tx, b.B tx b ⇒ T tx → b. But this type is not principal. Function f can also be
given the incomparable type ∀a.T a → [a] and there is no more general type.

We conclude this section by stating the essential result to verify the above
theorem. The crucial observation is that under the GHC MPTC Conditions, the
“incremental” solutions S which we compute in solving step Add are part of
the principal solution (if one exists). Here is the formal result.

Lemma 4 (Principal Progress). Let P be a program logic derived from in-
stance declarations which satisfy the GHC MPTC Conditions. Let (D ⊃ C) be
a implication constraint in normal form such that (a) D �∗ D and (b) each
primitive constraint in D contains at least one Skolem constructor. Let S be a
Skolem-free subset of C ′−D where C �∗

P C ′ from some C ′ and False 6∈ C ′−D.
If (D ⊃ C) has a principal solution, then S is a subset of this principal solution.

Assumption (a) effectively represents the Fixed Assumption Condition and as-
sumption (b) represents the Bound Type Class Context Condition. The Bound
Type Class Context Condition guarantees that for all implication constraints
(D ⊃ C) in normal form we have that each type class constraint in D contains
at least one Skolem constructor. Implication constraints resulting from type an-
notations always satisfy this property.

In combination with Lemma 3, the above results guarantee that our solving
method makes progress towards a principal solution. Thus, we can verify the
above theorem.

Under the GHC Conditions, we can also verify that the final result is inde-
pendent of the order of solving. Recall that in solver case Add, subcase (b) the
choice which implication (D1 ⊃ C1) to consider next is not fixed. Effectively, the
result below is saying that the implication solver is confluent.

Lemma 5 (Deterministic Progress). Under the GHC MPTC Conditions,
different runs of the MPTC implication solver will yield the same result where
we either report a solution or reach one of the failure states. Every implication
constraint is considered at most twice.

15

5 Conclusion

We have pointed out subtle problems when performing type inference for multi-
parameter type classes with existential types and type annotations. In general,
we lose principality and decidability of type inference. Under the GHC MPTC
Conditions, we give a procedure that infers principal types. To the best of our
knowledge, there is no formal description available of the GHC type inference
engine or any of the other systems which we have mentioned. Nevertheless, we
believe that our procedure is fairly close to the actual GHC implementation.
Formalizing the GHC type inference engine based on the principles and methods
introduced in this paper is something which we plan to pursue in the future.

Our main result guarantees that every inferred type is principal. The question
is whether failure of our inference method implies that no principal type exists?

class Foo a b where foo :: a->b
data Bar a = forall b. Foo b a => Mk b
f (Mk x) = foo x

Function f’s program text generates t = Bar a → c ∧ (Foo Sk a ⊃ Foo Sk c).
Our solving method fails (and so does GHC). It almost seems that t = Bar a → a
is a principal solution. Hence, f has the principal type ∀a.Bar a → a. But this is
only true if we assume a “closed” world where the set of instances (here none) are
fixed. Haskell type classes follow the open world assumption. At some later stage,
we may introduce instance Foo b Int. Then, f can be given the incomparable
type Bar a → Int . The point is that the principal types inferred by our MPTC
implication solving method are “stable”. That is, they remain principal if we add
further instances (which must satisfy the GHC MPTC Conditions of course).
Failure of our inference method seems to imply that no stable principal type
exists. This is something which we plan to investigate further.

Acknowledgments

We thank the reviewers for their comments.

References

1. L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc.
of POPL’82, pages 207–212. ACM Press, January 1982.

2. B. Demoen, M. Garćıa de la Banda, W. Harvey, K. Marriott, and P.J. Stuckey.
An overview of HAL. In J. Jaffar, editor, Proceedings of the Fourth International
Conference on Principles and Practices of Constraint Programming, LNCS, pages
174–188. Springer-Verlag, October 1999.

3. K. F. Faxén. Haskell and principal types. In Proc. of Haskell Workshop’03, pages
88–97. ACM Press, 2003.

4. T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and
Trends, LNCS. Springer-Verlag, 1995.

5. Glasgow haskell compiler home page. http://www.haskell.org/ghc/.
6. C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type classes in

Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109–
138, 1996.

16

7. F. Henderson et al. The Mercury language reference manual, 2001.
http://www.cs.mu.oz.au/research/mercury/.

8. Fritz Henglein. Type inference with polymorphic recursion. Transactions on Pro-
gramming Languages and Systems, 15(1):253–289, April 1993.

9. Hugs home page. haskell.cs.yale.edu/hugs/.
10. D. Jeffery, F. Henderson, and Z. Somogyi. Type classes in Mercury. In J. Edwards,

editor, Proc. Twenty-Third Australasian Computer Science Conf., volume 22 of
Australian Computer Science Communications, pages 128–135. IEEE Computer
Society Press, January 2000.

11. M. P. Jones. Coherence for qualified types. Research Report YALEU/DCS/RR-
989, Yale University, Department of Computer Science, September 1993.

12. M. P. Jones. Type classes with functional dependencies. In Proc. of ESOP’00,
volume 1782 of LNCS. Springer-Verlag, 2000.

13. S. Peyton Jones, M. P. Jones, and E. Meijer. Type classes: an exploration of the
design space. In Haskell Workshop, June 1997.

14. V. Kuncak and M. Rinard. Structural subtyping of non-recursive types is decidable.
In Proc. of LICS’03, pages 96–107. IEEE Computer Society, 2003.

15. J. Lassez, M. Maher, and K. Marriott. Unification revisited. In Foundations of
Deductive Databases and Logic Programming. Morgan Kauffman, 1987.

16. K. Läufer. Type classes with existential types. Journal of Functional Programming,
6(3):485–517, 1996.

17. K. Läufer and M. Odersky. Polymorphic type inference and abstract data types.
ACM Trans. Program. Lang. Syst., 16(5):1411–1430, 1994.

18. Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321–358,
1992.

19. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, Dec 1978.

20. M. Odersky and K. Läufer. Putting type annotations to work. In Proc. of POPL’96,
pages 54–67. ACM Press, 1996.

21. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

22. M.J. Plasmeijer and M.C.J.D. van Eekelen. Language report Con-
current Clean. Technical Report CSI-R9816, Computing Science In-
stitute, University of Nijmegen, Nijmegen, The Netherlands, June 1998.
ftp://ftp.cs.kun.nl/pub/Clean/Clean13/doc/refman13.ps.gz.

23. J.R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
24. P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM Transactions on

Programming Languages and Systems (TOPLAS), 27(6):1–54, 2005.
25. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding

functional dependencies via constraint handling rules. Journal of Functional Pro-
gramming, 2006. To appear.

26. M. Sulzmann, T. Schrijvers, and P.J.Stuckey. Principal type inference for GHC-
style multi-parameter type classes. Technical report, The National University of
Singapore, 2006.

27. M. Sulzmann, J. Wazny, and P.J.Stuckey. A framework for extended algebraic data
types. In Proc. of FLOPS’06, volume 3945 of LNCS, pages 47–64. Springer-Verlag,
2006.

17

