
Explaining alldifferent

Nicholas Downing Thibaut Feydy Peter J. Stuckey

National ICT Australia∗ and the University of Melbourne, Victoria, Australia
Email: {ndowning@students.,tfeydy@,pjs@}csse.unimelb.edu.au

Abstract

Lazy clause generation is a powerful approach to re-
ducing search in constraint programming. For use in a
lazy clause generation solver, global constraints must
be extended to explain themselves. Alternatively they
can be decomposed into simpler constraints which
already have explanation capability. In this paper
we examine different propagation mechanisms for the
alldifferent constraint, and show how they can be ex-
tended to explain themselves. We compare the dif-
ferent explaining implementations of alldifferent on
a variety of problems to determine how explanation
changes the trade-offs for propagaton. The combi-
nation of global alldifferent propagators with expla-
nation leads to a state-of-the-art constraint program-
ming solution to problems involving alldifferent .

1 Introduction

Lazy clause generation (Ohrimenko et al. 2009) is a
hybrid approach to constraint solving that combines
features of finite domain propagation and Boolean
satisfiability. Finite domain propagation is instru-
mented to record the reasons for each propagation
step. This creates an implication graph like that built
by a SAT solver, which may be used to create ef-
ficient nogoods that record the reasons for failure.
These learnt nogoods can be propagated efficiently
using SAT unit propagation technology.

The resulting hybrid system combines some of the
advantages of finite domain constraint programming
(CP): high level model and programmable search;
with some of the advantages of SAT solvers: reduced
search by nogood creation, and effective autonomous
search using variable activities. Lazy clause genera-
tion provides state of the art solutions to a number
of combinatorial optimization problems.

The alldifferent global constraint is one of the
most common global constraints appearing in con-
straint programming models. alldifferent(x1, . . . , xn)
requires that each of the variables x1, . . . , xn takes
a different value. It is logically equivalent to∧

1≤i<j≤n xi 6= xj . It succinctly encodes assignment
subproblems occurring in a model. Such assignment
subproblems occur frequently in real-world scheduling

∗NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.
Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

and rostering problems, such as the insn sched, tal-
ent sched and social golfer problems discussed
in the experiments section of this paper.

Various implementations for the alldifferent con-
straint are available, some relying on specific propa-
gation algorithms that enforce value, bounds and
domain consistency, and some relying on decomposi-
tion of alldifferent into simpler constraints.

Learning changes the trade-offs for propagation.
It may well be worth spending more time calculating
stronger propagation, if the results can be reused else-
where using learning, thus amortizing the cost over
multiple uses. Conversely, it may be worth spending
less time on propagation, if we can rely on the glob-
ality of learning to learn the stronger consequences of
a constraint that are useful to the search in any case.
Hence it is worthwhile studying what form of propa-
gation of alldifferent is best for a learning solver.

Propagation algorithms for alldifferent have been
quite well-studied, see the survey of van Hoeve (2001)
for details. But until recently, global alldifferent
propagators have not been used in learning solvers.
Katsirelos (2008) describes a method for implement-
ing the domain-consistent algorithm (Régin 1994)
with explanations for use in a learning solver, but
without experiments. We present for the first time
an implementation of the method (with slight en-
hancements), and also we describe and implement
for the first time an explained version of the bounds-
consistent propagator (Lopez-Ortiz et al. 2003).

As well as the new propagators a further impor-
tant contribution is a comprehensive suite of exper-
iments using over 4000 hours of computer time to
compare the learning vs. non-learning and global vs.
decomposition approaches over a large set of struc-
tured problems that use alldifferent , and to find the
best search strategy and solver combination for each
problem, with comparison to previous state-of-the-art
CP approaches to verify our results. We find learn-
ing to be enormously beneficial, so much so that new
harder problems needed to be created to exercise our
propagators, and that using the correct global or de-
composed constraint is important on most models.

2 Lazy clause generation

We give a brief description of propagation-based solv-
ing and lazy clause generation, for more details see
Ohrimenko et al. (2009). We consider constraint sat-
isfaction problems (CSPs), consisting of constraints
over integer variables x1, . . . , xn, each with a given
finite domain Dorig(xi). A feasible solution is a valu-
ation to the variables such that each xi is within its
allowable domain and all constraints are satisfied.

A propagation solver maintains a domain restric-
tion D(xi) ⊆ Dorig(xi) for each variable and consid-

(a) Pre analysis (b) Post analysis

Figure 1: Conflict analysis on the implication graph of a 5× 5 qg completion problem

ers only solutions that lie within D(x1)×· · ·×D(xn).
Solving interleaves propagation, which repeatedly ap-
plies propagators to remove unsupported values, and
search which splits the domain of some variable and
considers the resulting sub-problems. This continues
until all variables are fixed (success) or failure is de-
tected (backtrack and try another subproblem).

Lazy clause generation is implemented in the
above framework by defining an alternative model for
the domains D(xi), which is maintained simultane-
ously. Specifically, Boolean variables are introduced
for each potential value of a variable, named [xi = j]
and [xi ≥ j]. Negating them gives the opposite,
[xi 6= j] and [xi ≤ j − 1]. Fixing such a literal mod-
ifies domains to make the corresponding fact true in
D(xi) and vice versa. Hence these literals give an al-
ternate Boolean representation of the domain, which
can support SAT reasoning.

In a lazy clause generation solver, the actions
of propagators (and search) to change domains are
recorded in an implication graph over the literals.
Whenever a propagator changes a domain it must
explain how the change occurred in terms of liter-
als, that is, each literal l that is made true must be
explained by a clause L→ l where L is a (set or) con-
junction of literals. When the propagator causes fail-
ure it must explain the failure as a nogood, L→ false,
with L a conjunction of literals which cannot hold si-
multaneously. Conflict analysis reduces L to a form
suitable to use as a clausal propagator to avoid re-
peating the same search (Moskewicz et al. 2001).

Example 2.1 (conflict analysis) Figure 1a shows
a simple 5 × 5 Quasigroup Completion problem. Ini-
tially 11 of the 25 cells are filled in. The learning
solver attempts to fill in the remaining 14 cells in
such a way that the same digit does not appear twice
in any row or column. In the (initially) blank cells
is depicted a domain representation ‘1 2 3 4 5’ which
shows the possible values for the cell.

A value can be removed from a domain (shown
in lightweight italics) when that value is assigned to
another cell in the same row or column. A value can
be assigned to a cell when (i) the domain of the cell
has been reduced to a single possibility, or (ii) it is
the only cell in the same row (or column) that can
take this value. Such reasoning is depicted graphically

by arrows showing, for each assignment/removal, its
preconditions (a set of previous assignments/removals
which must hold simultaneously).

Since the original problem was at fixed-point with
respect to the above reasoning, search had to ‘pencil
in’ the value 1 in the top-left corner, depicted ‘?’ (first
decision level). Resulting implications are shown as
solid arrows. Fixed-point being reached again (under
this assumption), search pencilled in the value 2 in
the next cell, depicted ‘??’ (second decision level).
Resulting implications are shown as dotted arrows, to
show they occurred at the second level.

These assumptions (1 and 2 in the initial cells),
lead to a conflict because no cell in the first column
can now take the value 4. The resulting conflict clause
L→ false is depicted graphically. L simply expresses
a rule of the puzzle and hence is useless as a learnt
clause, so we have to look back in the implication
graph to see the underlying causes of the conflict.

We use 1UIP conflict analysis (Moskewicz et al.
2001) to find the ‘cut’, depicted in the figures, which
(i) contains the conflict, (ii) is as small as possible,
and (iii) traces the conflict back to a single precon-
dition at the current decision level, here [x43 = 2].
Observe that there are 3 implication arrows entering
the cut (of which only one can be dotted). It is easy
to see that only these preconditions need to exist si-
multaneously for failure to be inevitable.

The learnt nogood is simply a list of preconditions
to the cut, here [x11 6= 4] ∧ [x44 6= 0] ∧ [x43 = 2].
After undoing all work at decision level 2, this new
clause must propagate, as [x11 6= 4] ∧ [x44 6= 0] →
[x43 6= 2], which removes the immediate reason for
the conflict. Inevitably this also propagates back as
shown in Figure 1b, to undo the bad decision marked
‘??’. Due to this clause learning mechanism, search
never makes the same mistake again.

3 Hall Sets

The alldifferent constraint requires that each ar-
gument takes a different value. The key to all
propagation algorithms for alldifferent is the detec-
tion of Hall sets (Hall 1935). Given a constraint
alldifferent(x1, . . . , xn), H ⊆ {1, . . . , n} is a Hall set
if |H| ≥ |V | where V = ∪h∈HD(xh). If the inequality

(a) Initial domains (b) Singleton interval (c) Merging intervals (d) Finding Hall interval (e) Pruning lower bound

Figure 2: Example of bounds-consistent propagator execution for pruning lower bounds

holds strictly, that is |H| > |V |, then the constraint
is unsatisfiable. If it holds as an equality, |H| = |V |,
then no variable xi, i /∈ H can take a value from V .

Example 3.1 (Hall sets) Given x1 ∈ {1, 2}, x2 ∈
{1, 3} and x3 ∈ {1, 3} are all different, H = {2, 3} is
a Hall set with V = {1, 3}. Since 3 different variable-
values can’t fit in a domain containing only 2 values,
x1 must be outside this domain, that is x1 6= 1.

In the next sections we examine various propagators
for alldifferent and how they can be extended to ex-
plain their propagations. The explanation clauses are
essentially descriptions of the well-known conditions
for pruning. Usually these clauses also suffice to de-
scribe failure (because they wake up implicit clauses
requiring domains to be non-empty) but in some cases
explicit failure nogoods can also be produced.

4 Global value-consistent propagator

The simplest form of alldifferent(x1, . . . , xn) is a de-
composition that enforces xi 6= xj for all 1 ≤ i <
j ≤ n. Let E = ∪ni=1Dorig(xi) be the union of the
domains of all variables appearing in the alldifferent
constraint. An equivalent decomposition based on a
linear constraint is

∑n
i=1 bool2int([xi = v]) ≤ 1 for all

v ∈ E. Since the size of the decomposition is O(n|E|)
we implement this as a single global propagator that
wakes upon variable fixing, i.e. when D(xh) = {v} for
some h, v, it prunes all D(xi), i 6= v with explanation

[xh = v]→ [xi 6= v].

The complexity of this propagator is O(n|E|).
When |E| = n, there are no spare values and

we also enforce the clauses
∨n

i=1[xi = v] for all
v ∈ E, equivalent to changing the upper bound of
1 to equality with 1 in the above linear constraints.
These clauses are standard in the SAT community
(e.g. in the CNF output of Gomes’s lsencode genera-
tor for qg completion problems) but their impor-
tance isn’t widely recognised for CSPs.

5 Global bounds-consistent propagator

Given the constraint alldifferent(x1, . . . , xn) over do-
mains D(x1), . . . , D(xn), bounds consistency en-
sures for each xi, both ai = min(D(xi)) and bi =
max(D(xi)) have a support over Πj 6=iaj ..bj , i.e. a so-
lution to the constraint relaxed to range domains,
which uses the value xi = ai or bi.

The best bounds-consistent alldifferent propaga-
tor is by Lopez-Ortiz et al. (2003). It rests on two key
observations, (i) a solution to the constraint may be

found greedily, if one exists, by allocating each vari-
able its minimum possible value, treating variables in
the order most- to least-constrained; and (ii) a union-
find data structure (Tarjan 1975) can efficiently en-
code the dependencies between interval domains, to
build Hall intervals incrementally and inform us when
a complete Hall interval has been identified.

Example 5.1 (pruning bounds) Suppose x1 ∈
1..2, x2 ∈ 2..3, x3 ∈ 1..3 and x4 ∈ 3..4. These inter-
vals, along with a representation of the overall domain
1..4, are shown in Figure 2a. Initially, all cells of the
domain representation are unoccupied. The variables
are sorted in order of increasing upper bound, which
is the criterion for constrainedness, since for example
it would not make sense to allocate x3 = 1, x2 = 2
and then find all possibilities for x1 occupied.

The first variable to allocate is x1 = 1, shown in
Figure 2b. A new singleton interval is created in the
union-find data structure, shown below the domain-
representation. The endpoints of the interval are indi-
cated by [], whereas the upper bound of the contained
variable extends further, shown shaded and dotted. At
present the new interval is not Hall; when its right-
hand endpoint increases to take in the shaded region
then it will become a Hall interval.

Referring to Figure 2c, we next allocate x3 = 2.
Because we had to jump over the value 1 to allocate
x3, the interval containing 1 is merged in the union-
find data structure with the newly created interval.
This merging preserves the invariant that for each in-
terval in the data structure, a value in the interval can
be freed up if and only if one of the variables in the
interval has its bounds relaxed. The merged interval
is still not a Hall interval since it contains x3 which
has the highest upper bound, 3, shown.

Then, allocating x2 = 3 discovers a Hall inter-
val (Figure 2d). Since the value 2 was passed over,
the corresponding interval is merged with the new in-
terval, including the value 1 which could only affect
the new allocation indirectly. The upper bound of the
newly merged interval has caught up with the upper
bounds of the variables in it, so the interval is marked
‘Hall’. Then when processing x4 (Figure 2e), we no-
tice its lower bound falls into a Hall interval, and
should be pruned before attempting any allocation.

Due to the order of discovering Hall intervals relative
to the processing of variables, the algorithm as de-
scribed above will only prune lower bounds. We use
the original algorithm with minimal change, which
includes a second pass of recomputing all Hall inter-
vals to prune the upper bounds, though there is no
reason in principle why the information discovered on
the first pass should not be reused to save effort.

The algorithm of Lopez-Ortiz et al. (2003) is
O(n log n) to sort the variables, plus O(n log n) to

scan variables and construct/maintain their (special-
ized) union-find data structures, overall O(n log n).

The only changes we made to the algorithm were
(i) to use insertion sort for the variables at cost
O(n2), in practice this takes only linear time since
the variables are already sorted, and the algorithm
is dominated by the union-find operations hence still
O(n log n); and (ii) to collect the set H, required for
explanations. Given H with V = a..b we can explain
the increased lower bound for a variable xi /∈ H as

[xi ≥ a] ∧
∧
h∈H

([xh ≥ a] ∧ [xh ≤ b])→ [xi ≥ b + 1].

This requires O(n) literals per explanation.

6 Global domain-consistent propagator

For alldifferent(x1, . . . , xn) over domains D(x1), . . . ,
D(xn), domain consistency ensures that for each xi,
each value in D(xi) has a support, i.e. a solution to
the entire constraint, which uses the value.

The best domain-consistent alldifferent propaga-
tor is by Régin (1994) with improvements by Gent
et al. (2008). For alldifferent as bipartite graph
matching problem, we can find a feasible solution
(or prove that none exists) using Ford & Fulker-
son’s (1956) augmenting paths algorithm. The arcs
(variable-value pairs) used in this solution are obvi-
ously supported. Support for another arc depends on
whether there exists an augmenting cycle containing
it, which we can check efficiently using Tarjan’s (1972)
strongly connected components (SCC) algorithm.

Example 6.1 (augmenting paths) Suppose x1 ∈
{1, 2}, x2 ∈ {2, 3}, x3 ∈ {2, 3, 4}. Then a feasible
solution is x1 = 1, x2 = 2, x3 = 4, illustrated in
Figure 3a. The corresponding residual graph, shown
in Figure 3b, has a forward arc where a variable/value
pair could be added to the matching or a backward arc
where a variable/value pair could be removed.

Now suppose x1 6= 1. The alldifferent propagator
wakes up and removes the illegal assignment from the
graph as shown in Figure 3c, where unmatched nodes
are double-circled. To repair the matching, a path is
found in the residual graph (Figure 3d), from the un-
matched variable x1 to an unmatched value 3. Aug-
menting along this path means adding to the matching
when traversing forward arcs or removing for back-
ward arcs (Figures 3e and 3f), so that x1 becomes 2
and x2 moves onto 3 in the proposed solution.

The actions of Régin’s propagator may be explained
by Hall sets. When Régin’s propagator fails or prunes
we can easily identify the failure set or Hall set which
caused it. For infeasibility, the set of nodes searched
for an augmenting path (the cut) consists of H∪V and
is a failure set as necessarily |H| > |V |. For pruning,
the most recently discovered SCC consists of H ∪ V
and is a Hall set. We instrumented the propagator to
use this knowledge to explain its failures and prun-
ings. Note that we use SCC-splitting (Gent et al.
2008), and we generate explanations lazily.

Example 6.2 (failure) Continuing example 6.1,
suppose x1 6= 1 and also x3 6= 4. When the propa-
gator wakes up it can repair x1 as shown previously
(Figure 4a), but there is no augmenting path from
x3 to an unused value, which the algorithm proves by
searching the nodes indicated in Figure 4b before con-
cluding that no further search is possible.

(a) Feasible solution (b) Residual graph

(c) Partial solution if x1 6= 1 (d) Augmenting path

(e) Feasibility restored (f) Flipped along the path

Figure 3: alldifferent as bipartite matching problem

(a) Partial solution if x3 6= 4 (b) Set of nodes searched

Figure 4: Deriving an explanation for failure

(a) Feasible solution if x3 6= 4 (b) SCC connectivity (c) After pruning [x1 = 2]

Figure 5: Isolating SCCs in depth-first manner while deriving explanations for the prunings

The resulting cut-set, partitioned into variables
H = {1, 2, 3} and values V = {2, 3}, proves infeasi-
bility since |H| > |V |, and suggests the failure nogood∧

h∈{1,2,3}(xh ∈ {2, 3}). Since we do not have liter-

als to express that xh ∈ {2, 3}, we use an equivalent
clausal representation xh 6= 1 ∧ xh 6= 4. By removing
the literals that are false in the original domains, we
obtain the nogood [x1 6= 1]∧ [x3 6= 4]→ false. This fi-
nal nogood is simply the list of dotted arcs leaving the
cut; this is intuitive since the search stops precisely
because those arcs are dotted.

Example 6.3 (pruning) Alternatively, suppose
x3 6= 4 while x1 = 1 remains possible. The propaga-
tor wakes up and repairs x3, resulting in the feasible
solution of Figure 5a. Using Tarjan’s algorithm it
determines the SCCs of the resulting residual graph,
shown in Figure 5b. The arc x1 = 2 crosses SCCs, so
can’t be augmented (it is not part of any augmenting
cycle in the residual graph), and may be removed.

The target of the arc being pruned is SCC #2
which gives the Hall set H = {2, 3}, V = {2, 3} as
evidence for the pruning, suggesting the explanation∧

h∈{2,3}(xh ∈ {2, 3})→ [x1 6= 1]. Once again we can

express this as the list of dotted arcs leaving the SCC,
giving [x3 6= 4]→ [x1 6= 1].

For the sake of simplicity we glossed over the distinc-
tion between augmenting paths and cycles. An arc
may be augmented if it is part of any augmenting
path, whereas the SCC-algorithm can only eliminate
its appearing in an augmenting cycle. We get around
this difficulty with a slight modification to Tarjan’s
algorithm which makes used values reachable from
unused values, so that freeing up a value by taking
another value is considered to be a cycle.

In the worst case the edges are removed from the
graph one by one, so there are n|E| propagator ex-
ecutions, each computing a single augmenting path
at cost O(n|E|) and re-running the SCC-algorithm at
cost O(n), so the cost is O(n2|E|2) down a branch. In
practice, repairing the matching is very fast (because
it seldom explores the whole graph), and most time
is spent in the SCC-algorithm.

Given H and V the explanation that we use for
pruning values in j ∈ V from xi 6∈ H is∧

h∈H,d∈E\V

[xh 6= d]→ [xi 6= j] (1)

It requires |H|(|E| − |V |), or O(n|E|) literals per ex-
planation in the worst case.

Our explanations are the same as Katsire-
los’s (2008) except that, our explanations based on
the list of dotted arcs leaving an SCC are quite gen-
eral, so we naturally deduce and propagate equalities,
rather than just disequalities as Katsirelos does.

Example 6.4 (deducing equalities) Pruning the
arc from SCC #2 → #3 as described in Example 6.3
gives the residual graph of Figure 5c. Further pruning
is possible: x1 may be fixed to 1, using SCC #3 as
evidence, yielding explanation [x1 6= 2]→ [x1 = 1].

7 alldifferent by decomposition

alldifferent can also be implemented by decompo-
sition into simpler constraints which already have
explanation capability. The obvious decomposition
is the conjunction of disequalities discussed in Sec-
tion 4. A decompositions which prunes the same
as the bounds-consistent global propagator is avail-
able (Bessiere et al. 2009b). There is no polynomially
sized decomposition of alldifferent into clauses which
enforces domain consistency (Bessiere et al. 2009a).

The attraction of decomposition is the ease of
understanding, implementation and experimentation.
We also cannot rule out that decompositions may per-
form better, by channelling the problem into more ap-
propriate variables, or by making intermediate vari-
ables and implications available for conflict analysis
which would otherwise have remained implicit.

A new decomposition of alldifferent , as a special
case of gcc (Global Cardinality Constraint), was in-
troduced by Feydy & Stuckey (2009). It is defined in
MiniZinc (Nethercote et al. 2007) as follows:

predicate alldifferent_feydy_decomp(
array[int] of var int: x) =

let { int: L = lb_array(x),
int: C = ub_array(x) + 1 - L,
int: N = length(x),
array[1..C] of var 0..1: c,
array[0..C] of var 0..N: s } in

s[0] = 0 /\ s[C] = N /\
forall (i in 1..C) (

s[i] = s[i - 1] + c[i] /\
c[i] = sum (j in 1..N) (bool2int(x[j] = i)) /\
s[i] = sum (j in 1..N) (bool2int(x[j] <= i)));

The new decomposition is efficient because it uses the
literals [xi = v] and [xi ≤ v], which are native in a
lazy clause generation solver, as they are part of the
integer variable encoding.

To see how this works consider the simplest case
when there are no spare values. Then the constraints
si = si−1 +ci simplify to ci = 1 and si = i. This gives
the consistency level described in Section 4, plus the
detection of Hall intervals aligned to the start or end
of the domain interval min(E)..max(E) where E is
the union of the domains of the variables.

Example 7.1 Suppose x1 ∈ 1..2, x2 ∈ 1..3, x3 ∈
2..3. No propagation is possible, e.g. considering the

constraint s1 =
∑3

i=1 bool2int([xi ≤ 1] = 1, we find

min(bool2int([x1 ≤ 1]))

+ max(bool2int([x2 ≤ 1]))

+ max(bool2int([x3 ≤ 1])) = 0 + 1 + 0 ≥ 1

which supports bool2int([x1 ≤ 1]) = 0. But if the
interval for x2 becomes 2..3, then the preceding test
gives 0 + 0 + 0 which is no longer ≥ 1, therefore
bool2int([x1 ≤ 1]) = 0 is unsupported, and is pruned
with explanation [x2 ≥ 2] ∧ [x3 ≥ 2]→ [x1 ≤ 1].

8 Experiments

We implemented the alldifferent constraint in
Chuffed , a state-of-the-art lazy clause generation
solver. Hardware was a cluster of Dell PowerEdge
1950 with 2 × 2.0 GHz Intel Quad Core Xeon E5405,
2×6MB Cache, and 16 GB RAM. Timeouts were
1800s, and each core was limited to 1 GB RAM in
our experiments. Data files are available from http:
//www.csse.unimelb.edu.au/~pjs/alldifferent.

The alldifferent implementations we compare in
Chuffed were value, the global value consistent prop-
agator described in Section 4; bounds, the global
bounds consistent propagator of Section 5; domain,
the global domain consistent propagator of Section 6;
and feydy, the gcc-based decomposition of Section 7.
We also examined value-consistent alldifferent by de-
composition to disequalities or linear constraints, and
the bounds consistent decomposition of Bessiere et al.
(2009b), but found them universally worse than the
corresponding globals of equal propagation strength.

The search strategies were: io, input order, an
appropriate static search depending on the model;
dwd, dom/wdeg search (Boussemart et al. 2004); and
act, activity-based (VSIDS) search (Moskewicz et al.
2001). We use Luby restarts (Luby et al. 1993) for
dynamic search strategies (dwd and act) if learning.
Note that act is inapplicable without learning since
it is the process of conflict analysis which collects ac-
tivity counts, hence was only run with learning.

In the first experiment we take all benchmarks
involving the global alldifferent constraint from the
Third International CSP Solver Competition (CSP
2008) plus the CSP2008 qcp and qwh benchmarks
which were only available in extensional form and
had to be converted to use alldifferent directly. On
these benchmarks the leading CSP2008 solvers were
cpHydra, Mistral and Sugar, and we compare
against the published results of the competition, not-
ing that they use an older Xeon architecture, but as
they run at 3.0 GHz the performance should be com-
parable. We excluded the trivial pigeons instances,
and certain bqwh instances where for some reason
published results were not available. The CSP2008
solvers use their default strategy as in the published
results, shown as io in the table.

Table 1 reports the geometric mean of runtimes
for the first experiment (using the timeout for timed-
out instances), with the number of timeouts appear-
ing as a superscript. For each model we show how
many solved instances were unsatisfiable or satisfiable
and how many were indeterminate as not solved by
any solver. These latter instances aren’t included in
the runtime or timeouts statistics. In each block the
solver with the fewest timeouts is highlighted, with
ties broken by runtimes. Memory-outs were treated
as timeouts (these occur on feydy only). Referring to
Table 1 our solver is clearly far superior to the winners
of the CSP2008 competition (patat is an exception

which arises because MiniZinc produced a particu-
larly poor decomposition for the (x0 6= x1)∨(x2 6= x3)
constraints appearing in this model, a problem we did
not address due to time constraints).

Since our runtimes were so small as to be barely
measurable in most cases, we compiled a new set
of much harder problems, based on the MiniZinc
1.1.6 benchmark suite (Nethercote et al. 2007) and
the suite of Gent et al. (2008), with some additional
models and additional harder instances. We com-
pare on these models versus the state-of-the-art con-
straint programming system Gecode (Gecode Team
2006), running the same MiniZinc models as Chuffed .
Gecode has won every MiniZinc Challenge (G12
Project 2010) run so far! The models are:

golomb ruler (prob006 in CSPLib (Gent &
Walsh 1999)), n = 8..11 is a problem of placing n
marks on a rule so that all the distances between the
marks are distinct.

insn sched, instruction scheduling for single-
issue pipelined CPUs, similar to Lopez-Ortiz et al.
(2003). Instances were obtained by compiling Me-
diaBench benchmarks with gcc 4.5.2, switches -O3
-march=barcelona -fsched-verbose=5, and taking all
sequences with 250..999 instructions. These problems
are interesting as the AMD Barcelona-core CPUs
have instructions with various latencies. These CPUs
are multiple-issue, requiring a gcc constraint, so we
consider a hypothetical single-issue version of the
CPU requiring only alldifferent . We omit redundant
constraints, they can improve performance, but their
number grows quadratically, hurting scalability.

kakuro, a grid-based puzzle similar to a cross-
word but with a numeric grid and arithmetic
clues. We used the grid generator at http://
www.perlmonks.org/?node_id=550884 to generate
10 puzzles of size 25×25 with coverage 50%. We use
the redundant alldifferent-sum constraints of Simonis
(2008), but not Simonis’s interact constraints.

knights tour, finding a cyclic knight’s tour of
length 56, 58, . . . , 64 on an 8×8 chessboard.

langford, Langford’s number problem (prob024
in CSPLib) which is to sequence k sets of numbers 1..n
such that each occurence of a number i is i numbers
apart from the next i in the sequence. The selected
instances are from k = 2..4 × n = 3..24, taken from
the MiniZinc benchmarks.

qg completion, Quasigroup Completion (QCP)
is given an n × n array where some cells are filled
in with numbers from 1 to n, fill in the rest of
the cells so that each row and each column con-
tains the set of numbers 1..n. We used Gomes’s
lsencode generator, http://www.cs.cornell.edu/
gomes/SOFT/lsencode-v1.1.tar.Z, to generate 160
problems of sizes 30×30..45×45. An arbitrary ran-
dom problem generated in this way is also usually
too easy, so we used picoSAT 936 from http://fmv.
jku.at/picosat to test the problems, keeping only
those which were still being solved after 10 seconds
on all of 10 randomized attempts. For example, on
size 30×30 we generated 27855 instances to find 10
which were hard enough.

qg existence, Quasigroup Existence (prob003 in
CSPLib) looks for a quasigroup of size n which satis-
fies various other criteria. We use sizes 8×8..13×13,
variants QG3..7 × {idempotent, nonidempotent},
except that QG6..7 are always idempotent. Redun-
dant constraints are from Colton & Miguel (2001).

social golfer (prob010 in CSPLib) is to
schedule a golf tournament for n × m golfers
over p weeks playing in groups of size m so
that no pair of golfers plays twice in the same
group. We use instances taken from http:

model CSP2008, solver= nolearn, alldiff = learn, alldiff=
unsat, sat, ? cpHydra Mistral Mistral′ Sugar value bounds domain feydy value bounds domain feydy

bqwh io 0.09s 0.16s 0.08s 1.29s 0.24s 0.53s 0.00s 0.01s 0.02s 0.04s 0.01s 0.02s
dwd 0.02s 0.04s 0.00s 0.01s 0.01s 0.02s 0.00s 0.01s

0, 20, 0 act 0.02s 0.04s 0.00s 0.02s

costas- io 6.28s1 5.42s2 1.92s1 21.23s2 1.49s1 3.12s1 8.16s2 12.23s2 5.34s2 9.94s3 11.38s3 24.97s4

Array dwd 0.77s1 1.60s1 2.18s1 38.16s4 1.78s1 1.25s2 2.31s1 17.51s3

0, 10, 1 act 5.24s2 11.34s2 15.68s2 19.19s3

latin- io 6.27s5 4.49s5 4.35s5 2.09s1 0.99s5 1.42s5 1.62s5 1.75s5 0.16s 0.49s1 0.55s1 2.18s3

Square dwd 0.74s4 1.09s4 1.32s4 1.78s5 0.11s1 0.27s1 0.49s 0.97s2

7, 3, 0 act 0.00s 0.01s 0.01s 0.03s

magic- io 53.35s9 11.22s6 36.46s9 65.72s9 165.73s14 170.30s14 172.82s14 179.22s14 170.85s14 190.90s14 172.51s14 194.31s14

Square dwd 103.31s13 121.10s13 120.84s13 130.61s13 15.97s9 27.82s9 107.06s12 48.64s11

0, 17, 1 act 2.81s1 5.86s4 5.08s 36.64s9

ortho- io 6.18s2 2.72s1 3.91s2 25.77s1 0.28s1 0.82s1 2.07s1 0.88s1 0.58s1 0.94s1 0.88s1 1.07s1

latin dwd 0.34s 1.02s2 1.16s2 1.26s2 0.15s 0.24s 0.06s 0.54s1

1, 3, 5 act 0.22s 0.20s1 0.33s1 0.98s1

patat io 272.80s2 351.82s15 59.18s1 375.50s18 1800.00s42 1800.00s42 1800.00s42 1800.00s42 771.11s35 845.78s35 921.16s35 1228.48s38

dwd 1272.96s40 1377.46s41 1406.26s41 1216.18s39 170.75s12 230.99s13 429.64s20 831.64s33

0, 42, 4 act 518.98s31 632.88s29 532.62s32 1348.48s36

qcp io 10.48s5 9.44s18 11.50s21 6.08s 0.05s2 0.06s3 0.05s 0.22s5 0.02s 0.03s 0.03s 0.14s
dwd 0.01s 0.02s 0.02s 0.06s 0.01s 0.01s 0.01s 0.06s

20, 40, 0 act 0.01s 0.01s 0.01s 0.05s

quasi- io 0.86s2 0.87s3 0.53s2 2.91s1 0.06s 0.06s 0.05s 0.07s 0.08s1 0.08s1 0.07s1 0.09s1

group dwd 0.03s 0.03s 0.03s 0.03s 0.03s1 0.03s1 0.03s1 0.05s1

18, 12, 5 act 0.06s2 0.06s2 0.05s2 0.08s2

qwh io 3.68s 2.10s5 2.68s10 2.85s 0.03s 0.04s 0.03s 0.14s 0.02s 0.02s 0.02s 0.10s
dwd 0.01s 0.01s 0.01s 0.04s 0.01s 0.01s 0.01s 0.04s

0, 40, 0 act 0.01s 0.01s 0.01s 0.05s

other io 2.28s 9.75s1 0.64s 17.28s 6.34s1 7.40s1 13.17s1 54.72s2 0.38s1 5.00s1 10.38s1 62.23s2

dwd 12.22s1 15.18s1 21.63s1 70.45s2 0.02s 0.22s 0.18s 81.70s2

0, 3, 0 act 0.03s 0.42s 1.22s 92.14s2

Table 1: Models from the CSP2008 solver competition, against published results

//www.cs.brown.edu/~sello/solutions.html and
http://www.cril.univ-artois.fr/~lecoutre/
benchmarks.html. The model has 2 alldifferent
constraints, referred to as alldiff0 between players in
a group, and alldiff1 between pairs of players overall.
Symmetries are broken lexicographically. We use
integer variables, whereas most CSP approaches use
set variables, e.g. Gange et al. (2010), and we don’t
claim state-of-the-art results, only that the model
exercises our propagators.

talent sched (prob039 in CSPLib) schedules the
scenes in a film to minimize the cost of the schedule
in terms of actors’ fees, where an actor is paid for
the time from the first scene they are in until the
last scene they are in. We use the three instances
from CSPLib (a rehearsal problem plus film1 and
film2 based on real data), plus the randomly gen-
erated film1?? instances of Smith (2005). The input-
order (static) search is based on Smith’s but due to
time constraints we haven’t yet implemented the re-
dundant constraints described by Smith.

Since Gecode supports the search strategies io and
dwd we also give the geometric means for conflict
counts for each benchmark under the times in Ta-
bles 2 and 3 where we comparing against Gecode.

Since the higher-consistency propagators can be
slow to execute, our default approach is to include a
value propagator at the same time, at a high priority
(including, when there are no spare values, the clauses
described in Section 4, noting that clauses have higher
priority than propagators). So the strong propaga-
tor only executes after obvious propagation has been
done, and is avoided entirely if failure is obvious.

To see whether these default redundant propaga-
tors were really an improvement, we took the best
solver for each model and tried removing each type
of redundant constraint (novalue and noclause),
at least where it made sense to do so, which resulted
in the matrix of Table 4. Note that the ‘sat, unsat,
?’ summary numbers do not exactly match Table 2
since the set of solveable instances is recomputed for

each table based on the solvers attempted.

9 Discussion

In the first experiment Chuffed comprehensively beats
the CSP2008 solver competition winners. The im-
provement is partly just from adding learning, but
Sugar also has learning, and the improvement here is
from lazy clause generation, because Sugar is based
on SAT decompositions which are large on global con-
straints such as element , and also because Sugar has
only bounds literals rather than the more advanced
dual model discussed in Section 2. The new explained
global propagators for alldifferent also played an im-
portant role in defeating the CSP2008 solvers.

In the second experiment Chuffed without learn-
ing is equivalent to, or slightly better than, the
state-of-the-art publically available solver, Gecode.
With learning it is comprehensively better. All
problems except golomb ruler, langford and
qg existence benefit from learning in our experi-
ments. When learning, all problems except kakuro
and qg completion benefit from higher consistency
levels (bounds, domain or feydy). Thus, on 4 of the
9 problems selected, we demonstrate the usefulness of
explained higher-consistency propagators.

Learning changes the tradeoffs for propagation.
dwd allows the best comparison. For the models
qg completion (Table 2), and social golfer (in
particular the constraint alldiff1 ; Table 3), a strong
propagator (domain) was best without learning but
a simpler decomposition (value) was best with learn-
ing, suggesting that learning can recover some of the
global knowledge lost through decomposition.

Indeed for constraint alldiff1 of social golfer
the conflict count was worse with the stronger prop-
agator, which we do not normally expect. The issue
seems to be nogood reuse: The strong domain prop-
agator produces a weaker nogood than value, since
the nogood involves many variables and describes a
situation that might not recur often enough to pay

m
o
d
e
l

G
ec

o
d
e

n
o
l
e
a
r
n

l
e
a
r
n

u
n
sa

t,
sa

t,
?

a
ll

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

g
o
l
o
m
b
r
u
l
e
r

io
3
0
.9

0
s

1
4
.4

0
s

2
2
.2

8
s

1
4
7
.1

0
s1

6
6
.7

3
s

2
9
.3

6
s

4
6
.8

9
s

1
1
1
.9

9
s

2
7
4
.4

8
s1

1
0
3
.9

5
s
1

1
7
5
.9

8
s1

1
4
6
.0

8
s1

0
,

3
,

1
7
4
6
0
7
8

2
1
9
0
9
2

2
1
9
0
9
2

1
9
5
9
5
2

7
9
4
3
5
8

2
4
3
7
6
9

2
4
3
7
6
9

2
4
3
8
4
0

4
1
2
4
7
1

1
7
0
5
9
0

1
5
9
3
5
9

1
3
4
7
9
1

d
w
d

5
9
.9

1
s

2
2
.5

8
s

4
2
.8

8
s

3
0
3
.1

0
s1

1
5
2
.0

3
s

4
9
.6

6
s

9
8
.8

5
s

2
0
6
.3

9
s1

5
1
4
.7

6
s2

1
8
3
.7

6
s1

4
1
3
.4

6
s2

2
4
5
.1

9
s1

1
5
5
1
7
9
4

4
0
4
7
3
3

4
6
9
2
8
5

4
0
2
8
0
4

1
9
1
7
9
4
8

4
7
1
8
9
9

5
6
1
9
9
2

5
2
7
3
3
3

5
2
1
5
3
6

2
8
2
7
8
6

2
9
9
6
3
9

2
0
8
2
7
2

a
c
t

1
0
2
2
.2

8
s2

5
6
0
.3

2
s2

9
7
6
.1

8
s2

6
3
7
.8

3
s2

1
2
9
9
3
2
6

7
4
0
2
1
6

7
1
2
1
7
3

6
0
9
0
4
5

in
sn

sc
h
e
d

io
8
3
9
.7

2
s3

6
1
5
9
.7

2
s
2
9

2
7
9
.1

5
s2

9
6
7
8
.1

1
s3

2
8
4
1
.9

0
s3

6
1
9
5
.6

7
s
2
9

2
8
5
.4

4
s2

9
2
8
4
.5

7
s2

9
2
0
.0

5
s1

4
5
.6

2
s7

1
1
.3

1
s9

3
0
.6

5
s1

2

0
,

3
9
,

0
2
3
0
2
2
8
3
3

1
0
1
9
9
6
0

9
5
1
3
0
3

1
4
0

2
5
2
7
1
4
7
6

4
9
2
1
9
4

5
5
4
8
6
9

2
2
9
4
3

6
2
2
7

6
0
1

7
4
1

2
3
9

d
w
d

1
0
1
1
.3

8
s3

7
2
1
9
.1

5
s3

0
3
6
8
.1

5
s3

0
8
1
7
.1

2
s3

3
1
0
2
7
.0

0
s3

7
2
8
7
.0

6
s3

0
4
1
7
.9

3
s3

0
4
9
0
.8

1
s3

0
4
2
.4

8
s1

5
4
.1

1
s

3
0
.6

7
s9

3
7
.6

6
s8

6
1
7
6
3
1
4

6
1
7
2
8
0

1
3
8
3
6
7

9
2
0

1
4
4
8
3
8
0
5

7
0
6
9
1
4

1
9
0
6
3
7

4
4
5
4
3

1
9
8
6
7

5
7
4

2
2
6
3

4
6
3

a
c
t

1
8
.6

5
s1

2
5
.0

6
s

7
.0

1
s1

1
2
.5

5
s4

2
0
9
3
9

1
0
8
3

1
6
7
3

3
0
4

k
a
k
u
r
o

io
1
8
0
0
.0

0
s
1
0

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
4
7
3
.3

2
s7

5
0
8
.8

5
s7

5
1
4
.2

8
s7

7
4
5
.4

0
s7

0
,

1
0
,

0
2
7
1
1
1
4
8
0

2
2
1
5
0
9
4
5

2
1
1
6
6
8
0
3

7
7
0
8
7
2

8
2
2
9
7
5
0
6

6
2
9
5
0
0
1
7

4
8
4
8
5
2
8
3

9
2
7
6
6
9
4

5
8
0
5
4
7

5
8
4
2
3
3

6
1
4
9
9
8

3
6
6
7
6
1

d
w
d

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
5
7
1
.1

8
s9

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
0
6
1
.9

9
s
9

1
.9

0
s

3
.6

4
s

3
.3

4
s1

8
.2

9
s1

2
9
8
1
7
0
8
2

2
3
8
1
9
5
1
2

2
3
3
4
3
8
2
8

1
3
2
5
4
3
8

5
7
4
1
7
7
9
4

5
2
3
8
7
8
3
0

3
7
9
5
5
3
9
4

4
9
7
4
8
0
4

2
1
1
0
1

3
2
4
4
1

2
8
9
9
2

1
7
9
4
3

a
c
t

2
4
.1

3
s

2
7
.1

4
s

2
7
.1

2
s

2
3
4
.3

8
s2

2
0
0
7
6
6

1
7
8
2
3
2

1
5
3
5
7
4

4
1
2
2
4
3

k
n
ig
h
t
s
t
o
u
r

io
2
5
6
.5

9
s
2

2
7
1
.0

1
s2

2
6
4
.7

8
s2

5
1
1
.8

5
s3

2
0
5
.7

3
s2

2
1
8
.4

1
s2

2
1
6
.6

0
s2

3
2
8
.5

1
s2

2
4
4
.6

6
s3

2
6
3
.6

2
s3

2
7
0
.1

5
s3

3
1
6
.4

8
s3

0
,

5
,

0
2
6
7
6
1
2
7

2
5
2
8
8
7
8

2
5
3
0
9
6
5

1
2
6
8
0
2
4

3
1
8
2
1
9
4

3
0
9
3
5
2
1

3
0
7
7
3
3
4

2
5
2
5
0
1
5

1
1
6
0
4
5

1
1
3
6
3
8

1
1
2
7
8
9

1
2
2
2
0
5

d
w
d

5
5
4
.6

3
s4

5
6
1
.5

9
s4

6
5
5
.8

4
s4

1
0
2
4
.3

1
s4

1
0
2
.2

3
s
2

1
1
7
.1

2
s2

1
0
8
.5

7
s2

1
6
4
.2

5
s2

5
5
.7

4
s2

8
4
.0

0
s2

1
0
.5

7
s2

2
8
.2

6
s1

9
6
2
8
1
4
3

7
9
3
0
3
8
2

8
3
8
6
7
7
4

2
6
0
3
5
9
0

1
6
1
6
8
6
8

1
5
1
7
1
4
1

1
5
6
0
9
3
0

1
2
7
4
2
4
3

9
0
9
5
1

1
1
8
8
4
1

2
6
1
5
4

4
2
7
0
0

a
c
t

4
5
.6

4
s1

2
0
.5

6
s1

4
2
.6

1
s1

3
1
.7

9
s

1
7
0
2
8
3

6
0
2
8
5

1
3
3
3
8
4

8
3
0
6
8

l
a
n
g
f
o
r
d

io
0
.4

7
s3

0
.3

1
s2

0
.3

2
s2

0
.7

0
s3

0
.3

3
s2

0
.2

5
s1

0
.2

6
s1

0
.4

1
s2

1
.0

8
s4

0
.6

2
s3

0
.7

4
s4

0
.8

8
s4

5
,

1
6
,

4
6
0
5
7

2
6
0
1

2
5
9
6

2
2
5
7

6
7
5
2

2
6
7
9

2
6
7
8

2
5
5
8

2
4
3
3

1
3
4
0

1
3
4
1

1
3
0
0

d
w
d

0
.0

5
s

0
.0

6
s

0
.0

6
s

0
.0

5
s1

0
.0

3
s

0
.0

4
s

0
.0

4
s

0
.0

7
s

0
.0

5
s1

0
.0

5
s1

0
.0

6
s1

0
.0

9
s1

3
7
9

3
5
9

3
5
5

7
2

2
9
7

2
8
8

2
8
8

2
8
8

1
9
4

1
8
2

1
8
9

1
9
3

a
c
t

0
.0

4
s1

0
.0

4
s
1

0
.0

5
s1

0
.0

6
s1

2
4
1

1
8
7

2
1
4

2
0
5

q
g

c
o
m
p
l
e
t
io
n

io
3
8
8
.5

7
s7

6
3
8
5
.3

8
s7

6
3
0
9
.9

0
s7

4
4
5
5
.8

5
s7

5
3
6
4
.2

6
s7

4
3
6
6
.3

6
s7

4
3
9
0
.8

5
s7

4
6
4
5
.9

9
s7

5
3
5
8
.6

4
s7

3
3
5
7
.8

3
s7

3
3
8
9
.9

5
s7

3
6
5
9
.2

5
s7

4

2
1
,

6
4
,

7
5

3
6
0
4
2
8
5

1
5
4
5
9
7
6

9
9
6
2
4
5

5
7
2
8
5

2
8
7
1
1
2
5

1
9
0
7
1
7
5

1
3
5
0
3
0
3

1
6
7
9
0
8

1
3
8
6
3
0

1
3
4
5
7
4

1
1
9
2
2
4

5
6
0
6
8

d
w
d

3
4
5
.1

3
s7

5
3
4
2
.1

6
s7

5
2
2
0
.4

3
s
5
5

4
5
1
.2

0
s7

4
2
7
3
.6

1
s5

4
2
8
5
.3

1
s5

7
2
7
0
.9

6
s
4
6

6
3
3
.4

4
s7

2
2
2
5
.2

5
s3

8
1
9
0
.2

4
s4

3
1
8
8
.4

2
s3

6
4
7
8
.3

7
s6

1

2
7
7
8
5
5
5

1
1
2
1
6
7
5

6
0
8
2
3
1

5
1
3
7
6

1
5
7
6
1
3
7

1
0
0
3
8
5
1

7
1
3
5
0
5

1
2
8
8
7
2

8
5
7
9
0

7
3
4
8
6

5
9
6
1
5

4
0
3
4
6

a
c
t

8
9
.0

1
s
1
1

9
0
.4

9
s1

5
8
4
.0

6
s1

3
3
5
7
.2

5
s3

8

4
3
0
1
4

4
1
4
0
2

3
0
8
1
2

2
9
4
1
0

q
g

e
x
is
t
e
n
c
e

io
1
2
7
.0

1
s1

9
9
3
.5

7
s1

7
8
1
.8

7
s1

6
1
1
0
.0

9
s1

7
7
3
.4

9
s1

7
7
2
.0

9
s1

7
6
8
.0

4
s1

6
8
2
.4

1
s1

7
2
8
.0

8
s1

3
2
4
.7

5
s1

3
2
4
.0

0
s1

3
2
8
.1

7
s1

3

1
2
,

2
3
,

1
3

3
7
0
8
4
2

1
8
1
6
4
6

1
3
3
8
0
5

1
2
5
4
0
6

2
2
8
0
3
1

1
8
8
6
5
7

1
6
5
3
3
5

1
6
9
9
4
0

1
6
9
7
0

1
4
2
0
4

1
2
7
1
1

1
4
2
8
1

d
w
d

9
.2

5
s1

0
1
0
.2

7
s9

9
.0

8
s
8

1
6
.4

9
s1

0
3
.2

1
s5

3
.4

3
s5

3
.4

3
s5

4
.0

4
s
4

6
.1

6
s7

5
.0

8
s7

5
.7

2
s7

4
.8

3
s
6

2
0
2
8
5

1
8
1
7
5

1
3
8
0
2

1
4
7
3
1

7
1
3
2

6
9
1
6

6
1
8
2

6
1
6
6

4
6
2
1

3
9
3
3

3
9
7
5

3
0
8
2

a
c
t

7
.1

5
s8

1
0
.0

5
s1

1
8
.7

6
s1

0
1
3
.1

9
s1

1

5
0
8
6

6
3
0
1

5
0
4
6

7
6
9
8

t
a
l
e
n
t
sc

h
e
d

io
7
0
9
.0

6
s7

7
0
8
.3

5
s7

6
6
5
.8

9
s
7

7
1
5
.4

0
s7

6
1
4
.2

8
s
7

6
3
1
.6

9
s7

6
2
5
.5

0
s7

6
4
9
.7

0
s7

5
2
1
.2

4
s7

5
3
8
.3

8
s7

5
4
9
.0

9
s7

5
3
2
.2

0
s7

0
,

9
,

1
1
3
9
0
0
5
6
6

1
1
7
4
5
4
2
3

1
1
2
0
3
9
1
3

8
1
3
4
7
0
2

2
1
0
9
5
6
0
5

1
9
3
0
7
5
1
2

2
0
2
1
6
0
4
0

1
7
9
7
5
6
7
6

8
2
3
5
0
4

7
1
3
1
5
9

7
1
4
0
7
7

7
3
3
5
7
7

d
w
d

7
1
6
.4

6
s7

6
7
8
.8

8
s7

6
8
5
.6

4
s7

7
7
5
.0

7
s7

6
2
3
.2

5
s7

6
3
1
.9

3
s7

6
2
3
.3

2
s7

6
5
6
.4

8
s7

5
6
8
.2

2
s7

5
8
2
.3

1
s7

5
8
5
.7

4
s7

5
4
6
.2

5
s7

1
3
4
7
9
8
7
6

1
0
2
3
0
6
9
2

1
0
7
7
9
8
6
2

7
3
4
4
7
0
6

1
5
4
7
2
9
0
3

1
5
1
8
7
8
2
5

1
4
8
4
4
2
7
4

1
4
2
5
3
3
3
2

6
0
5
6
6
7

6
6
0
1
0
9

6
1
2
3
7
2

6
9
5
9
4
1

a
c
t

3
4
1
.4

5
s3

1
0
7
.0

7
s

5
2
.5

1
s

1
1
4
.0

5
s

5
7
6
2
7
0

1
8
5
4
0
5

1
0
4
5
6
2

1
9
0
9
2
5

T
ab

le
2:

M
o
d

el
s

co
n
ta

in
in

g
o
n

e
a
ll

d
iff

er
en

t
co

n
st

ra
in

t,
p

er
p
ro

p
a
g
a
to

r
a
n

d
se

a
rc

h
st

ra
te

g
y

0
,

3
9
,

7
G

ec
o
d
e

n
o
l
e
a
r
n

l
e
a
r
n

u
n
sa

t,
sa

t,
?

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

io
a
ll

d
iff

1
=
v
a
l
u
e

8
.6

1
s1

4
1
.2

6
s9

0
.9

7
s
9

1
.6

2
s1

0
3
.7

8
s1

3
0
.9

3
s9

0
.8

8
s
9

1
.0

9
s9

0
.9

1
s7

0
.6

0
s8

0
.4

9
s
7

0
.7

0
s7

1
3
6
8
6

1
0
6
6

6
6
0

7
2
2

1
0
0
8
7

1
0
1
0

8
4
8

9
7
8

7
2
5

2
3
3

1
9
3

2
3
1

b
o
u
n
d
s

9
.2

0
s1

4
1
.3

9
s9

1
.0

4
s9

1
.7

1
s9

4
.2

9
s1

3
1
.0

8
s9

0
.9

3
s9

1
.2

0
s9

1
.0

5
s7

0
.6

5
s8

0
.5

5
s7

0
.7

7
s7

1
3
0
6
0

1
0
4
5

6
3
9

7
1
5

9
2
0
2

9
8
3

7
9
3

9
5
2

7
3
8

2
3
5

1
9
3

2
3
9

d
o
m
a
in

1
0
.5

7
s1

5
1
.8

2
s1

0
1
.4

0
s1

0
2
.0

5
s1

0
5
.5

8
s1

3
1
.3

5
s9

1
.2

1
s9

1
.5

5
s9

1
.3

7
s8

0
.8

8
s8

0
.7

5
s7

1
.0

2
s8

7
5
1
2

9
1
8

5
7
2

6
5
2

7
0
9
9

8
6
7

7
2
6

8
5
6

7
0
7

2
2
8

1
8
6

2
3
6

f
e
y
d
y

3
9
.9

5
s1

9
1
2
.3

5
s1

4
9
.4

6
s1

3
1
1
.9

3
s1

4
1
0
.1

8
s1

6
4
.0

1
s1

3
3
.5

1
s1

3
4
.1

0
s1

3
4
.6

7
s1

1
3
.4

9
s1

2
2
.8

3
s1

1
3
.8

0
s1

2

4
9
4

1
1
9

7
7

9
3

4
9
0

9
8

8
0

9
7

8
1

3
8

3
0

3
8

d
w
d

a
ll

d
iff

1
=
v
a
l
u
e

9
3
.4

7
s2

6
1
.4

8
s7

1
.1

8
s7

2
.1

8
s8

1
0
.9

1
s1

4
1
0
.7

6
s1

5
9
.3

5
s1

0
9
.7

1
s1

2
0
.3

8
s3

0
.3

3
s
1

0
.3

0
s2

0
.3

7
s2

1
4
9
0
1
1

1
7
4
7

1
3
2
7

1
6
1
0

2
4
2
8
1

2
2
7
9
5

1
8
6
8
6

1
6
7
7
3

2
8
3

2
0
6

1
7
7

1
9
2

b
o
u
n
d
s

1
0
9
.2

6
s2

6
1
.5

8
s7

1
.3

6
s7

2
.1

3
s7

1
2
.1

4
s1

4
1
1
.4

1
s1

5
1
0
.4

5
s1

0
1
0
.1

2
s1

2
0
.4

2
s3

0
.3

4
s1

0
.3

3
s2

0
.4

0
s1

1
5
4
5
8
2

1
6
2
2

1
3
7
5

1
4
8
6

2
3
5
6
4

2
1
3
1
9

1
7
9
0
3

1
5
5
7
3

2
8
2

1
9
1

1
7
1

1
8
5

d
o
m
a
in

1
0
0
.6

1
s2

6
2
.0

3
s6

1
.1

4
s
5

1
.9

2
s5

4
.8

5
s8

4
.2

9
s9

3
.4

0
s
6

5
.0

2
s7

0
.7

1
s3

0
.5

8
s1

0
.5

7
s1

0
.5

7
s1

9
6
6
3
0

1
4
6
2

8
1
9

1
0
2
6

7
3
4
2

6
5
9
0

4
9
1
6

6
8
9
5

2
9
6

2
0
0

1
8
3

1
8
3

f
e
y
d
y

1
7
7
.3

5
s2

7
2
0
.8

8
s1

3
1
4
.6

4
s1

2
2
2
.9

0
s1

3
2
9
.7

4
s1

7
4
7
.3

4
s2

0
4
6
.1

3
s1

9
4
7
.1

1
s2

0
3
.1

5
s9

2
.7

6
s9

2
.7

1
s9

2
.5

5
s8

2
1
7
3

2
4
0

1
5
4

2
2
2

2
4
8
9

2
8
4
1

2
8
2
4

2
1
8
6

5
0

4
3

3
9

3
8

a
c
t

a
ll

d
iff

1
=
v
a
l
u
e

0
.3

8
s2

0
.3

1
s2

0
.2

7
s
1

0
.3

6
s2

3
8
2

2
1
3

1
8
2

2
0
2

b
o
u
n
d
s

0
.3

9
s1

0
.3

6
s2

0
.3

3
s2

0
.3

7
s1

3
5
0

2
0
2

2
0
2

2
0
1

d
o
m
a
in

0
.6

8
s2

0
.4

1
s2

0
.5

4
s2

0
.5

2
s2

3
9
6

1
6
2

2
1
9

2
0
0

f
e
y
d
y

4
.2

4
s9

3
.9

3
s9

3
.7

2
s9

3
.3

2
s8

1
0
8

9
5

8
3

9
5

Table 3: Model social golfer, propagator matrix
for the two alldifferent constraints, by search strategy

model
solver
unsat, sat, ? novalue value

golomb ruler noclauses 32.94s 243769 29.67s 243769
nolearn, bounds, io
0, 3, 1 clauses

insn sched noclauses 3.46s 417 4.41s 573
learn, bounds, dwd
0, 39, 0 clauses

kakuro noclauses 1.19s 147871

learn, value, dwd
0, 10, 0 clauses 1.90s 21101

knights tour noclauses 34.46s 77418 32.87s 77418
learn, feydy, act
0, 5, 0 clauses 34.00s 83068 31.79s 83068

langford noclauses 0.06s 416
nolearn, value, dwd
5, 16, 4 clauses 0.03s 297

qg completion noclauses 341.63s 15215562

learn, value, act
21, 53, 86 clauses 56.93s 28702

qg existence noclauses 2.13s 3318 2.20s 33781

nolearn, feydy, dwd
12, 19, 17 clauses 1.68s 28921 1.84s 2989

talent sched noclauses 79.24s 175839 66.76s 1641281

learn, domain, act
0, 9, 1 clauses 38.73s 105665 52.51s 104562

social golfer noclauses 0.18s 170 0.23s 1831

learn, domain/value, act
0, 38, 8 clauses 0.15s 1461 0.21s 151

Table 4: Removing default redundant propagators

the nogood’s propagation cost. The cases where do-
main is beneficial, such as the constraint alldiff0 of
social golfer, tend to be those where the domain
size is very small, so the nogoods are always highly
reuseable and also cheap to produce.

For insn sched where the bounds propagator is
best, we see the opposite effect than for domain,
the nogoods produced by bounds are stronger than
value because the domains are large and sparse, so
collisions between values (pruned by the value prop-
agator) are unlikely, whereas many different pruning
opportunities are compactly described by a bounds
nogood. These nogoods are also symmetric between
variables, since they describe a Hall interval rather
than any specific pruning resulting from the existence
of the Hall interval, which further promotes reuse.

For most models act is the best. In our experi-
ence the models for which act is the wrong approach,
tend to be those with a good static search order (here
insn sched), where gaps in the sequence of variable
assignments are difficult to resolve later on. In such
cases dwd is a useful compromise between activity-
based search (weighted degree is similar to activity)
and sequential search (domain size causes a domino
effect which makes the search ripple outwards from
previously fixed variables). But where act works it
is almost always significantly better, and allowing the
use of activity based search with strong propagators
is an important contribution of our work.

Our knights tour model relies on linear con-
straints propagated to bounds consistency which cre-
ates a 5×5 bounding box for each knight move. This
causes the most propagation at the edges of the board,
so it is intuitive that feydy, which efficiently detects
Hall intervals aligned to the edges of the board, should
perform best on this model. We don’t claim state-
of-the-art results since specialized techniques based
on lookahead can solve the problem greedily (von
Warnsdorff 1823), but the model is still very useful
in demonstrating that the feydy decomposition may
be best despite its (relative) simplicity.

Referring to Table 4, for most models it is im-
portant, indeed essential, to add the redundant
value propagator and the extra clauses if possible.

The exceptions are: insn sched, where value does
not prune very well as discussed above; and so-
cial golfer (in particular the alldiff0 constraint)
and talent sched, where domains are small and the
domain propagator is cheap as discussed above.

10 Conclusions and further work

We have shown how to extend propagators for alld-
ifferent to explain their propagation, in order to use
them in a lazy clause generation solver. We see that
for problems involving alldifferent , learning is usually
hugely beneficial. Each of the different propagation
methods is best for some problems, so having a range
of different propagators (or decompositions) that can
explain their propagation is valuable. Overall com-
bining learning and alldifferent leads to a highly com-
petitive approach to these problems. The combina-
tion of global alldifferent constraints with explanation
leads to a state-of-the-art constraint programming so-
lution to problems involving alldifferent .

In further work we would like to investigate why
learning isn’t effective on some of the models. We
conjecture it may be because the instances become
too hard too quickly, and that indeed learning may be
better on harder instances but this is academic when
the instances are out of reach for any solver. Further
work could also examine hybrid methods to see if our
work can be incorporated into the specialized solvers
for talent sched (Garcia de la Banda et al. 2010)
or social golfer (Gange et al. 2010).

References

Bessiere, C., Katsirelos, G., Narodytska, N., Quim-
per, C.-G. & Walsh, T. (2009a), Circuit Complex-
ity and Decompositions of Global Constraints, in
‘Procs. of IJCAI-2009’, pp. 412–418.

Bessiere, C., Katsirelos, G., Narodytska, N., Quim-
per, C.-G. & Walsh, T. (2009b), Decompositions of
All Different, Global Cardinality and Related Con-
straints, in ‘Procs. of IJCAI-2009’, pp. 419–424.

Boussemart, F., Hemery, F., Lecoutre, C. & Sais, L.
(2004), Boosting Systematic Search by Weighting
Constraints, in ‘Procs. of ECAI04’, pp. 146–150.

Colton, S. & Miguel, I. (2001), Constraint Genera-
tion via Automated Theory Formation, in ‘Procs.
of CP01’, pp. 575–579.

CSP (2008), ‘Third international csp solver com-
petition’. http://www.cril.univ-atrois.fr/
CPAI08.

Feydy, T. & Stuckey, P. (2009), Lazy Clause Genera-
tion Reengineered, in ‘Procs. of CP2009’, pp. 352–
366.

Ford, L. & Fulkerson, D. (1956), ‘Maximal flow
through a network’, Canad. J. Math. 8, 399–404.

G12 Project (2010), ‘MiniZinc Challenge’.
http://www.g12.cs.mu.oz.au/minizinc/
challenge2010/challenge.html.

Gange, G., Stuckey, P. & Lagoon, V. (2010), ‘Fast
set bounds propagation using a BDD-SAT hybrid’,
JAIR 38, 307–338.

Garcia de la Banda, M., Stuckey, P. J. & Chu,
G. (2010), ‘Solving Talent Scheduling with Dy-
namic Programming’, INFORMS J. on Computing
(preprint) .

Gecode Team (2006), ‘Gecode: Generic constraint
development environment’. http://www.gecode.
org.

Gent, I., Miguel, I. & Nightingale, P. (2008), ‘Gen-
eralised arc consistency for the AllDifferent con-
straint: An empirical survey’, AI 172(18), 1973 –
2000.

Gent, I. P. & Walsh, T. (1999), CSPLIB: A Bench-
mark Library for Constraints, in ‘Princ. and Prac.
of CP’, pp. 480–481. http://www.csplib.org.

Hall, P. (1935), ‘On Representatives of Subsets’, J.
London Math. Soc. s1-10(1), 26–30.

Katsirelos, G. (2008), Nogood processing in CSPs,
PhD thesis, University of Toronto, Canada.

Lopez-Ortiz, A., Quimper, C.-G., Tromp, J. &
Van Beek, P. (2003), A fast and simple algorithm
for bounds consistency of the all different con-
straint, in ‘Procs. of IJCAI-2003’, pp. 245–250.

Luby, M., Sinclair, A. & Zuckerman, D. (1993), ‘Op-
timal speedup of Las Vegas algorithms’, Inf. Proc.
Let. 47(4), 173 – 180.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L.
& Malik, S. (2001), Chaff: engineering an efficient
SAT solver, in ‘Procs. of DAC01’, pp. 530–535.

Nethercote, N., Stuckey, P., Becket, R., Brand, S.,
Duck, G. & Tack, G. (2007), MiniZinc: Towards
a Standard CP Modelling Language, in ‘Procs.
of CP2007’, Vol. 4741 of LNCS, Springer-Verlag,
pp. 529–543.

Ohrimenko, O., Stuckey, P. & Codish, M. (2009),
‘Propagation via lazy clause generation’, Con-
straints 14, 357–391.

Régin, J.-C. (1994), A filtering algorithm for con-
straints of difference in CSPs, in ‘Procs. of AAAI-
1994’, pp. 362–367.

Simonis, H. (2008), Kakuro as a Constraint Problem,
in P. Flener & H. Simonis, eds, ‘Procs. of MOD-
REF08’, Uppsala University, Computing Science.

Smith, B. (2005), Caching Search States in Permu-
tation Problems, in P. van Beek, ed., ‘Procs. of
CP2005’, Vol. 3709 of LNCS, Springer Berlin / Hei-
delberg, pp. 637–651.

Tarjan, R. E. (1972), ‘Depth-First Search and Linear
Graph Algorithms’, SIAM J. Computing 1(2), 146–
160.

Tarjan, R. E. (1975), ‘Efficiency of a Good But Not
Linear Set Union Algorithm’, J. ACM 22, 215–225.

van Hoeve, W. J. (2001), The alldifferent Con-
straint: A Survey, in ‘Procs. of the 6th ERCIM
Working Group on Constraints Workshop’, Vol.
cs.PL/0105015.

von Warnsdorff, H. C. (1823), Des Rösselsprungs ein-
fachste und allgemeinste Lösung, Th. G. Fr. Varn-
hagenschen Buchhandlung, Schmalkalden.

