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Abstract

Model counting is the problem of computing the num-
ber of models that satisfy a given propositional theory.
It has recently been applied to solving inference tasks
in probabilistic logic programming, where the goal is to
compute the probability of given queries being true pro-
vided a set of mutually independent random variables, a
model (a logic program) and some evidence. The core of
solving this inference task involves translating the logic
program to a propositional theory and using a model
counter. In this paper, we show that for some problems
that involve inductive definitions like reachability in a
graph, the translation of logic programs to SAT can be
expensive for the purpose of solving inference tasks. For
such problems, direct implementation of stable model
semantics allows for more efficient solving. We present
two implementation techniques, based on unfounded
set detection, that extend a propositional model counter
to a stable model counter. Our experiments show that
for particular problems, our approach can outperform a
state-of-the-art probabilistic logic programming solver
by several orders of magnitude in terms of running time
and space requirements, and can solve instances of sig-
nificantly larger sizes on which the current solver runs
out of time or memory.

1 Introduction
Consider the counting version of graph reachability prob-
lem: given a directed graph, count the number of subgraphs
in which node t is reachable from node s (Valiant 1979).
This problem can be naturally modeled as a logic pro-
gram under stable model semantics (Gelfond and Lifschitz
1988). Let us say that the input is given by two predicates:
node(X) and edge(X,Y ). For each node, we can intro-
duce a decision variable in that models whether the node
is in the subgraph. Furthermore, we can model reachabil-
ity (reach) from s as an inductive definition using the fol-
lowing two rules: reach(s) ← in(s) and reach(Y ) ←
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in(Y ), reach(X), edge(X,Y ). The first rule says that s it-
self is reachable if it is in the subgraph. The second rule is
the inductive case, specifying that a node Y is reachable if
it is in the subgraph and there is a reachable node X that
has an edge to it. Additionally, say there are arbitrary con-
straints in our problem, e.g., only consider subgraphs where
a certain y is also reachable from s etc. This can be done
using the integrity constraint: ← ¬reach(y). The number
of stable models of this program is equal to the number of
solutions of the problem.

There are at least two approaches to counting the sta-
ble models of a logic program. The first is to translate a
given logic program to a propositional theory such that there
is a one-to-one correspondence between the propositional
models of the translated program and the stable models of
the original program, and use SAT model counting (Gomes,
Sabharwal, and Selman 2008). We show that this approach
does not scale well in practice since such translations, if
done a priori, can grow exponentially with the input size.
The second approach is to use an answer set programming
(ASP) solver like CLASP (Gebser et al. 2007) or DLV (Leone
et al. 2006) and enumerate all models. This approach is ex-
tremely inefficient since model counting algorithms have
several optimizations like caching and dynamic decompo-
sition that are not present in ASP solvers. This motivates
us to build a stable model counter that can take advantage
of state-of-the-art ASP technology which combines partial
translation and lazy unfounded set (Van Gelder, Ross, and
Schlipf 1988) detection. However, we first show that it is
not correct to naively combine partial translation and lazy
unfounded set detection with SAT model counters due to the
aforementioned optimizations in model counters. We then
suggest two approaches to properly integrate unfounded set
propagation in a model counter.

We show that we can apply our algorithms to solve proba-
bilistic logic programs (Raedt and Kimmig 2013). Consider
the probabilistic version of the above problem, also called
the graph reliability problem (Arora and Barak 2009). In
this version, each node can be in the subgraph with a cer-
tain probability 1 − p, or equivalently, fail with the prob-
ability p. We can model this by simply attaching probabil-
ities to the in variables. We can model observed evidence
as constraints. E.g., if we have evidence that a certain node
y is reachable from s, then we can model this as the unary



constraint (not rule): reach(y). The goal of the problem is
to calculate the probability of node t being reachable from
node s given the evidence. The probabilistic logic program-
ming solver PROBLOG2 (Fierens et al. 2011) approaches
this inference task by reducing it to weighted model count-
ing of the translated propositional theory of the original logic
program. We extend PROBLOG2 to use our implementation
of stable model counting on the original logic program and
show that our approach is more scalable.

2 Preliminaries
We consider propositional variables V . Each v ∈ V is (also)
a positive literal, and ¬v, v ∈ V is a negative literal. Nega-
tion of a literal, ¬l is ¬v if l = v, and v if l = ¬v. An assign-
ment θ is a set of literals which represents the literals which
are true in the assignment, where ∀v ∈ V.{v,¬v} 6⊆ θ.
If o is a formula or assignment, let vars(o) be the sub-
set of V appearing in o. Given an assignment θ, let θ+ =
{v ∈ θ | v ∈ V} and θ− = {¬v ∈ θ | v ∈ V}. Two
assignments θ1 and θ2 agree on variables V ⊆ V , writ-
ten θ1 =V θ2, if vars(θ+1 ) ∩ V = vars(θ+2 ) ∩ V and
vars(θ−1 ) ∩ V = vars(θ−2 ) ∩ V . Given a partial assign-
ment θ and a Boolean formula F , let F |θ be the residual
of F w.r.t. θ. F |θ is constructed from F by substituting
each literal l ∈ θ with true and each literal ¬l ∈ θ with
false and simplifying the resulting formula. For a formula
F , count(F ) is the number of assignments to vars(F ) that
satisfy F .

2.1 DPLL-based model counting
State of the art SAT model counters are very similar to SAT
solvers, but have three important optimisations. The first op-
timisation is to count solution cubes (i.e., partial assignments
θ, vars(θ) ⊆ V whose every extension is a solution) in-
stead of individual solutions. Consider the Boolean formula:
F1 = {¬b∨a,¬c∨¬a∨b,¬d∨c,¬e∨c}. Suppose the current
partial assignment is {a, b, c}. The formula is already satis-
fied irrespective of values of d and e. Instead of searching
further and finding all 4 solutions, we can stop and record
that we have found a solution cube containing 2k solutions,
where k is the number of unfixed variables.

The second important optimisation is caching. Differ-
ent partial assignments can lead to identical subproblems
which contain the same number of solutions. By caching
such counts, we can potentially save significant repeated
work. For a formula F and an assignment θ, the number
of solutions of F under the subtree with θ is given by
2|vars(F )|−|vars(θ)|−|vars(F |θ)| × count(F |θ). We can use
the residual as the key and cache the number of solutions the
subproblem has. For example, consider F1 again. Suppose
we first encountered the partial assignment θ1 = {d, c}.
Then F1|θ1 = {¬b ∨ a,¬a ∨ b}. After searching this sub-
tree, we find that this subproblem has 2 solutions and cache
this result. The subtree under θ1 thus has 25−2−2 × 2 = 4
solutions. Suppose we later encounter θ2 = {¬d, e, c}. We
find that F1|θ2 is the same as F1|θ1 . By looking it up in the
cache, we can see that this subproblem has 2 solutions. Thus
the subtree under θ2 has 25−3−2 × 2 = 2 solutions.

The last optimisation is dynamic decomposition. Suppose
after fixing some variables, the residual decomposes into
two or more formulas involving disjoint sets of variables.
We can count the number of solutions for each of them in-
dividually and multiply them together to get the right result.
Consider F2 = {a ∨ ¬b ∨ c, c ∨ ¬d ∨ e, e ∨ f} and a partial
assignment {¬c}. The residual program can be decomposed
into two components {a∨¬b} and {¬d∨e, e∨f} with vari-
ables {a, b} and {¬d ∨ e, e ∨ f} respectively. Their counts
are 3 and 5 respectively, therefore, the number of solutions
for F2 that extend the assignment {¬c} is 3 × 5 = 15. The
combination of the three optimisations described above into
a DPLL style backtracking algorithm has been shown to be
very efficient for model counting. See (Bacchus, Dalmao,
and Pitassi 2003; Gomes, Sabharwal, and Selman 2008;
Sang et al. 2004) for more details.

2.2 Answer Set Programming
We consider V split into two disjoint sets of variables
founded variables (VF ) and standard variables (VS ). An
ASP-SAT program P is a tuple (V, R, C) whereR is a set of
rules of form: a← b1∧ . . .∧ bn∧¬c1∧ . . .∧¬cm such that
a ∈ VF and {b1, . . . , cm} ⊆ V and C is a set of constraints
over the variables represented as disjunctive clauses. A rule
is positive if its body only contains positive founded liter-
als. The least assignment of a set of positive rulesR, written
Least(R) is one that that satisfies all the rules and contains
the least number of positive literals. Given an assignment θ
and a program P , the reduct of θ w.r.t. P , written, P θ is a set
of positive rules that is obtained as follows: for every rule r,
if any ci ∈ θ, or ¬bj ∈ θ for any standard positive literal,
then r is discarded, otherwise, all negative literals and stan-
dard variables are removed from r and it is included in the
reduct. An assignment θ is a stable model of a program P iff
it satisfies all its constraints and θ =VF Least(P θ). Given
an assignment θ and a set of rules R, the residual rules R|θ
are defined similarly to residual clauses by treating every
rule as its logically equivalent clause. A program is stratified
iff it admits a mapping level from VF to non-negative inte-
gers where for each rule in the program s.t., referring to the
above rule form, level(a) > level(ci) whenever ci ∈ VF for
1 ≤ i ≤ m and level(a) ≥ level(bi) whenever bi ∈ VF for
1 ≤ i ≤ n. In ASP terms, standard variables, founded vari-
ables and constraints are equivalent to choice variables, reg-
ular ASP variables, and integrity constraints resp. We opt for
the above representation because it is closer to SAT-based
implementation of modern ASP solvers.

3 SAT-based stable model counting
The most straight forward approach to counting the stable
models of a logic program is to translate the program into
propositional theory and use a propositional model counter.
As long as the translation produces a one-to-one correspon-
dence between the stable models of the program and the
solutions of the translated program, we get the right sta-
ble model count. Unfortunately, this is not a very scal-
able approach. Translations based on adding loop formu-
las (Lin and Zhao 2004) or the proof-based translation used



in PROBLOG2 (Fierens et al. 2011) require the addition of an
exponential number of clauses in general (see (Lifschitz and
Razborov 2006) and (Vlasselaer et al. 2014) respectively).
Polynomial sized translations based on level rankings (Jan-
hunen 2004) do exist, but do not produce a one to one corre-
spondence between the stable models and the solutions and
thus are inappropriate for stable model counting.

Current state of the art SAT-based ASP solvers do not
rely on a full translation to SAT. Instead, they rely on lazy
unfounded set detection. In such solvers, only the rules are
translated to SAT. There is an extra component in the solver
which detects unfounded sets and lazily adds the corre-
sponding loop formulas to the program as required (Gebser,
Kaufmann, and Schaub 2012). Such an approach is much
more scalable for solving ASP problems. However, it cannot
be naively combined with a standard SAT model counter al-
gorithm. This is because the SAT model counter requires the
entire Boolean formula to be available so that it can check
if all clauses are satisfied to calculate the residual program.
However, in this case, the loop formulas are being lazily gen-
erated and many of them are not yet available to the model
counter. Naively combining the two can give the wrong re-
sults, as illustrated in the next example.

Example 1. Consider a program P1 with founded variables
{a, b}, standard variables {s} and rules: {a ← b, b ←
a, a ← s}. There are only two stable models of the pro-
gram {a, b, s} and {¬a,¬b,¬s}. If our partial assignment
is {a, b}, then the residual program contains an empty the-
ory which means that the number of solutions extending
this assignment is 2 (or 2|{s}|). This is clearly wrong, since
{a, b,¬s} is not a stable model of the program.

Now consider P2 which is equal to P1 with these ad-
ditions: founded variable c, standard variables {t, u} and
two rules: c ← a ∧ t and b ← u. Consider the partial
assignment {u, a, b, s}, the residual program has only one
rule: c ← t. It has two stable models, {c, t} and {¬c,¬t}.
Now, with the partial assignment {¬u, a, b}, we get the same
residual program and the number of solutions should be:
2× 2|{s}| = 4 which is wrong since s cannot be false in or-
der for a, b to be true when u is false, i.e., {¬u, c, t, a, b,¬s}
and {¬u,¬c,¬t, a, b,¬s} are not stable models of P2.

In order to create a stable model counter which can take
advantage of the scalability of lazy unfounded set detec-
tion, we need to do two things: 1) identify the conditions for
which the ASP program is fully satisfied and thus we have
found a cube of stable models, 2) identify what the resid-
ual of an ASP program is so that we can take advantage of
caching and dynamic decomposition.

3.1 Searching on standard variables for stratified
programs

The first strategy is simply to restrict the search to standard
variables. If the program is stratified, then the founded vari-
ables of the program are functionally defined by the stan-
dard variables of the program. Once the standard variables
are fixed, all the founded variables are fixed through prop-
agation (unit propagation on rules and the unfounded set
propagation). It is important in this approach that the propa-

gation on the founded variables is only carried out on the
rules of the program, and not the constraints. Constraints
involving founded variables should only be checked once
the founded variables are fixed. The reader can verify that
in Example 1, if we decide on standard variables first, then
none of the problems occur. E.g., in P1, if s is fixed to ei-
ther true or false, then we do not get any wrong stable model
cubes. Similarly, in P2, if we replace the second assignment
with {¬u, s} which propagates {a, b}, we still get the same
residual program, but in this case, it is correct to use the
cached value. Note that stratification is a requirement for all
probabilistic logic programs under the distribution seman-
tics (Sato 1995). For such programs given an assignment to
standard variables, the well-founded model of the resulting
program is the unique stable model.

3.2 Modifying the residual program
In ASP solving, it is often very useful to make decisions
on founded variables as it can significantly prune the search
space. For this reason, we present a more novel approach to
overcome the problem demonstrated in Example 1.

The root problem in Example 1 in both cases is the fail-
ure to distinguish between a founded variable being true and
being justified, i.e., can be inferred to be true from the rules
and current standard and negative literals. In the example,
in P1, a and b are made true by search (and possibly prop-
agation) but they are not justified as they do not necessar-
ily have externally supporting rules (they are not true under
stable model semantics if we set ¬s). In ASP solvers, this
is not a problem since the existing unfounded set detection
algorithms guarantee that in complete assignments, a vari-
able being true implies that it is justified. This is not valid
for partial assignments, which we need for counting stable
model cubes. Next, we show that if we define the residual
rules (not constraints) of a program in terms of justified sub-
set of an assignment, then we can leverage a propositional
model counter augmented with unfounded set detection to
correctly compute stable model cubes of a program. In or-
der to formalize and prove this, we need further definitions.

Given a program P = (V, R, C) and a partial assign-
ment θ, the justified assignment JA(P, θ) is the subset of θ
that includes all standard and founded negative literals plus
all the positive founded literals implied by them using the
rules of the program. More formally, let J0(θ) = θ− ∪ {v ∈
θ|v ∈ VS}. Then, JA(P, θ) = J0(θ) ∪ {v ∈ VF |v ∈ θ, v ∈
Least(R|J0(θ))}.
Definition 1. Given a program P = (V, R, C) and a partial
assignment θ, let J = JA(P, θ) and U = vars(θ)\vars(J).
The justified residual program of P , w.r.t. θ is written P |jθ
and is equal to (W,S,D) where S = R|J , D = C|θ ∪
{u|u ∈ U} and W = vars(S) ∪ vars(D).
Example 2. Consider a program P with founded variables
{a, b, c, d, e, f}, standard variables {s, t, u, x, y, z} and the
following rules and constraints:

a← b. c← d. e← ¬f. ¬s ∨ ¬t
b← a. d← u. f ← ¬e. a ∨ b
a← s. f ∨ x
b← t.



Let θ = {a, b, d, u,¬e, c, f}. Then, J0(θ) = {u,¬e} and
JA(P, θ) = J0(θ) ∪ {d, f, c}. The justified residual pro-
gram w.r.t. θ has all the rules in the first column and has the
constraints: {¬s ∨ ¬t, a, b}.
Theorem 1. Given an ASP-SAT program P = (V, R, C)
and a partial assignment θ, let P |jθ = (W,S,D) be denoted
byQ. Let the remaining variables be Vr = V\(W∪vars(θ))
and π be a complete assignment over W . Assume any
founded variable for which there is no rule in S is false in θ.

1. If π is a stable model of Q, then for any assignment θr
over the remaining variables, θ∪π ∪ θr is a stable model
of P .

2. For a given assignment θr over remaining variables, if
θ∪π∪ θr is a stable model of P , then π is a stable model
of Q.

Corollary 2. Let the set of rules and constraints
of Q decompose into k ASP-SAT programs Q1 =
(W1, S1, D1), . . . , Qk = (Wk, Sk, Dk) where Wi =
vars(Si) ∪ vars(Di) s.t. for any distinct i, j in 1 . . . k,
Wi ∩ Wj = ∅. Let the remaining variables be: Vr =
V\(W1∪. . .∪Wk∪vars(θ)) and let π1, . . . , πk be complete
assignments over W1, . . . ,Wk respectively.

1. If π1, . . . , πk are stable models of Q1, . . . , Qk resp., then
for any assignment θr over the remaining variables, θ ∪
π1 ∪ . . . ∪ πk ∪ θr is a stable model of P .

2. For a given assignment θr over remaining variables, if
θ ∪ π1 ∪ . . .∪ πk ∪ θr is a stable model of P , then πi is a
stable model of Qi for each i ∈ 1 . . . k.

The first part of Theorem 1 shows that we can solve the
justified residual program independently (as well as cache
the result) and extend any of its stable model to a full stable
model by assigning any value to the remaining variables of
the original program. The second part of the theorem estab-
lishes that any full stable model of the original program is
counted since it is an extension of the stable model of the
residual program. The corollary tells us that if the justified
residual program decomposes into disjoint programs, then
we can solve each one of them independently, and multiply
their counts to get the count for justified residual program.
Example 3. In Example 2, the justified residual program
has only two stable models: π1 = {s, a, b,¬t} and π2 =
{t, a, b,¬s}. It can be verified that the only stable assign-
ments extending θ of P are θ ∪ π1 ∪ θxyz and θ ∪ π2 ∪ θxyz
where θxyz is any assignment on the standard variables
x, y, z. Therefore, the total number of stable models below θ
is 2× 2|{x,y,z}| = 16.

Now say we have another assignment θ′ =
{a, b, c, d, u, e,¬f, x}. It can be seen that it produces
the same justified residual program as that produced by θ
for which we know the stable model count is 2. Further-
more, the set of remaining variables is {y, z}. Therefore, the
number of stable assignments below θ′ is 2× 2|{y,z}| = 8.

In order to convert a model counter to a stable model
counter, we can either modify its calculation of the residual
program as suggested by Theorem 1, or, we can modify the
actual program and use its existing calculation in a way that

residual of the modified program correctly models the justi-
fied residual program. Let us describe one such approach and
prove that it is correct. We post a copy of each founded vari-
able and each rule such that the copy variable only becomes
true when the corresponding founded variable is justified.
More formally, for each founded variable v, we create a stan-
dard variable v′, add the constraint ¬v′∨v, and for each rule
a← f1∧ . . . fn∧sn1∧ . . .∧snm where each fi is a positive
founded literal and each sni is a standard or negative literal,
we add the clause a′ ∨¬f ′1 ∨ . . .¬f ′n ∨¬sn1 ∨ . . .∨¬snm.
Most importantly, we do not allow search to take decisions
on any of these introduced copy variables. Let this transfor-
mation of a program P be denoted by copy(P ).

We now show that it is correct to use the above approach
for stable model counting. For the following discussion
and results, let P = (V, R, C) be an ASP-SAT program,
copy(P ) = (W,R,D) be denoted by Q. Let π, π1, π2 be
assignments over W and θ, θ1, θ2 be their projections over
non-copy variables (V). Let Q|π (similarly for π1, π2) be a
shorthand for (vars(R|θ) ∪ vars(D|θ), R|θ, D|θ). The re-
sults assume that assignments π, π1, π2 are closed under
unit propagation and unfounded set propagation, i.e., both
propagators have been run until fixpoint in the solver.

To prove the results, we define a function prj that takes
the copy program Q and π and maps it to the justified
residual program w.r.t. to the projection of that π on non-
copy variables and then argue that Q|π correctly models the
justified residual program. Formally, prj (Q, π) is an ASP-
SAT program P ′ = (V ′, R′, C ′) constructed as follows. Add
every constraint in D|π that does not have a copy variable in
C ′. For every constraint v′ ∨ ¬f ′1 ∨ . . .¬f ′n ∨ ¬sn1 ∨ . . . ∨
¬snm inD|π , add the rule v ← f1∧. . .∧fn∧sn1∧. . .∧snm
in R′. Let U be the set of founded variables v such that v is
true but v′ is unfixed in π. For every v in U , add the con-
straint v in C ′. Define V ′ as variables of R′ and C ′. Propo-
sition 3 proves that we cannot miss any stable model of the
original program if we use the copy approach.
Proposition 3. If π cannot be extended to any stable model
of Q, then θ cannot be extended to any stable model of P .

Theorem 4 establishes that we can safely use Q|π to emu-
late the justified residual program P |jθ. Corollary 5 says that
if we detect a stable model cube of Q|π , then we also detect
a stable model cube of the same size for the justified resid-
ual program. This corollary and Proposition 3 prove that the
stable model count of the actual program is preserved.

Theorem 4. P |jθ = prj (Q, π).
Corollary 5. If Q|π has no rules or constraints and there
are k unfixed variables, then θ is a stable model cube of P |jθ
of size 2k.

The next two corollaries prove that the copy approach can
be used for caching dynamic decomposition respectively.

Corollary 6. If Q|π1
= Q|π2

, then P |jθ1 = P |jθ2 .

Corollary 7. If Q|π decomposes into k disjoint components
Q1, . . . , Qk, then P |jθ decomposes into k disjoint compo-
nents P1, . . . , Pk such that Pi = prj (Qi, πi) where πi is
projection of π on vars(Qi).



Figure 1: Execution of PROBLOG2

4 PROBLOG2 via stable model counting
In this section, we describe how we apply stable model
counting in the probabilistic logic programming solver
PROBLOG2 (Fierens et al. 2013). A probabilistic logic pro-
gram is a collection of mutually independent random vari-
ables each of which is annotated with a probability, defined
variables, evidence constraints and rules for the defined vari-
ables. The distribution semantics (Sato 1995) says that for a
given assignment over the random variables, the values of
the defined variables is given by the well-founded model.
Furthermore, the weight of that world is equal to the prod-
uct of probabilities of values of the random variables. In
our setting, it is useful to think of random variables, de-
fined variables, evidence constraints, and rules as standard
variables, founded variables, constraints and rules respec-
tively. PROBLOG2 handles various inference tasks, but the
focus of this paper is computing the marginal probability of
query atoms given evidence constraints. The probability of
a query atom is equal to the sum of weights of worlds where
a query atom and evidence are satisfied divided by the sum
of weights of worlds where the evidence is satisfied.

Figure 1 shows the execution of a PROBLOG2 program.
The input is a non-ground probabilistic logic program which
is given to the grounder that cleverly instantiates only parts
of the program that are relevant to the query atoms, simi-
lar to how magic set transformation (Bancilhon et al. 1985)
achieves the same goal in logic programming. The ground
program and the evidence is then converted to CNF using the
proof based encoding that we discussed earlier. This CNF is
passed on to a knowledge compiler like DSHARP (Muise et
al. 2012). DSHARP is an extension of SHARPSAT (Thurley
2006) where the DPLL-style search is recorded as d-DNNF.
The d-DNNF produced by the knowledge compiler is given
to the parser of PROBLOG2 along with the ground queries
and probabilities of the random variables. The parser evalu-
ates the probability of each query by crawling the d-DNNF
as described in (Fierens et al. 2013).

Our contribution is in the components in the dotted box
in Figure 1. We have implemented stable model counting
by extending the propositional model counter SHARPSAT
as described in the previous section. Since SHARPSAT is
part of the knowledge compiler DSHARP, our extension
of SHARPSAT automatically extends DSHARP to a stable
model knowledge compiler. The CNF conversion compo-
nent in PROBLOG2 chain is replaced by a simple process-
ing of the ground program and evidence to our desired input
format. In the first approach where the search is restricted to
standard variables, the evidence needs to be passed on to our

stable model counter which posts a nogood (the current as-
signment of standard variables) each time an evidence atom
is violated. In approach given in Section 3.2, however, we
post each evidence as a unit clause, much like PROBLOG2
does in its CNF conversion step. Including evidence in con-
straints in the second approach is safe since our residual pro-
gram relies on the justified assignment only, and propagation
on founded literals that makes them true due to constraints
does not change that. Outside the dotted box in the figure,
the rest of the PROBLOG2 logic remains the same.

5 Experiments
We compare the two approaches based on implementa-
tion of unfounded set detection as explained in Section 3
against the proof based encoding of PROBLOG2. We use
two well-studied benchmarks: Smokers Friends (Smokers-
Friends) (Fierens et al. 2011) problem and the graph reli-
ability problem (GraphRel ) (Arora and Barak 2009) with
evidence constraints.

In both problems, the graph is probabilistic. In GraphRel ,
the nodes are associated with probabilities while in Smok-
ersFriends , the edges have probabilities. Naturally, for n
nodes, the number of random variables is in O(n) and
O(n2) for GraphRel and SmokersFriends respectively.
Due to this, GraphRel has significantly more loops per
random variables in the dependency graph which makes it
more susceptible to the size problems of eager encoding.
We refer to the fixed search approach of Section 3.1 as AS-
PROBLOGS and the proper integration of unfounded set de-
tection through the use of copy variables of Section 3.2 as
ASPROBLOG. All experiments were run on a machine run-
ning Ubuntu 12.04.1 LTS with 8 GB of physical memory
and Intel(R) Core(TM) i7-2600 3.4 GHz processor.

Table 1 shows the comparison between PROBLOG2, AS-
PROBLOG and ASPROBLOGS on GraphRel on random di-
rected graphs. The instance is specified by N , the num-
ber of nodes, and P , the probability of an edge between
any two nodes. The solvers are compared on the follow-
ing parameters: time in seconds (Time), number of vari-
ables and clauses in the input program of DSHARP (V and
C resp.), number of decisions (D), average decision level
of backtrack due to conflict or satisfaction (A), the size in
megabytes of the d-DNNF produced by DSHARP (S), and
for ASPROBLOG and ASPROBLOGS, the number of loops
produced during the search (L). Each number in the table
represents the median value of that parameter from 10 ran-
dom instances of the size in the row. The median is only de-
fined if there are at least (6) output values. A ‘—’ represents
memory exhaustion or a timeout of 5 minutes, whichever
occurs first. A ‘—’ in columns Time, D, A, L, S means
that the solver ran out of memory but the grounding and en-
coding was done successfully, while a ‘—’ in all columns
of a solver means that it never finished encoding the prob-
lem. We show the comparison on three types of instances:
small graphs with high density, medium graphs with high to
medium density, and large graphs with low density.

Clearly ASPROBLOG and ASPROBLOGS are far more
scalable than PROBLOG2. While PROBLOG2 requires less
search (since it starts with all loop formulae encoded) the



Instance PROBLOG2 ASPROBLOG ASPROBLOGS
N P Time V C D A S Time V C D A L S Time V C D A L S

10 0.5 11.33 2214 7065 199 7.68 1.21 1.08 72 226 233 8.88 13 .057 1.13 60 171 333 8.75 124 .10

11 0.5 115.75 6601 21899 353 8.61 7.62 1.11 86 283 382 9.76 23 .10 1.12 73 216 354 9.38 107 .10

12 0.5 — 16210 55244 — — — 1.20 101 348 675 10.81 21 .19 1.32 87 267 904 10.47 405 .28

13 0.5 — 59266 204293 — — — 1.41 117 414 1395 12.16 44 .41 2.61 102 320 2737 11.33 1272 1.28

15 0.5 — — — — — — 2.05 142 514 3705 13.42 59 1.23 4.78 125 398 7542 12.88 2028 2.71

20 0.5 — — — — — — 31.82 246 966 83091 18.37 189 38.11 82.21 224 757 143188 18.31 32945 62.02

25 0.25 — — — — — — 22.44 225 800 62871 18.70 231 27.23 53.63 198 620 128534 19.55 41811 43.06

30 0.1 — — — — — — 3.71 168 468 7347 15.89 129 2.99 13.22 137 351 43968 19.31 2833 10.40

31 0.1 — 37992 115934 — — — 2.84 171 473 5054 15.06 52 2.23 12.67 140 356 19585 17.53 1293 11.18

32 0.1 — — — — — — 7.93 185 528 17006 17.06 173 7.75 35.97 153 398 108916 21.42 5405 32.10

33 0.1 — — — — — — 25.13 191 533 67929 18.49 343 31.06 — 157 403 — — — —

34 0.1 — — — — — — 12.97 201 566 33338 19.41 155 14.66 112.27 165 429 324304 23.20 5502 124.21

35 0.1 — — — — — — 101.40 222 663 249512 21.78 1567 123.62 — 186 503 — — — —

36 0.1 — — — — — — 100.20 228 683 279273 21.41 1542 124.73 — 190 518 — — — —

37 0.1 — — — — — — 65.86 227 659 159056 20.55 658 77.57 — 188 499 — — — —

38 0.1 — — — — — — — 240 712 — — — — — 200 540 — — — —

Table 1: Comparison of PROBLOG2, ASPROBLOG, and ASPROBLOGS on the Graph Reliability problem

Figure 2: SmokersFriends with 31 random variables

overhead of the eager encoding is prohibitive. For all solved
instances, ASPROBLOG has the best running time and d-
DNNF size, illustrating that the search restriction of AS-
PROBLOGS degrades performance significantly. While the
encoding for ASPROBLOGS is always smallest, the encod-
ing with copy variables and rules of ASPROBLOG is not sig-
nificantly greater, and yields smaller search trees and fewer
loop formulae. It is clearly the superior approach.

Figure 2 compares the performance of PROBLOG2 and
ASPROBLOG on SmokersFriends when the number of ran-
dom variables is fixed to 31 and the problem size is in-
creased. In the problem description, there are two sets of
random variables, the stress and the influences variables.
The first one exists for each person in the graph, while the
latter exists for every edge in the graph. In our setting, for

an instance with n persons, the number of influences ran-
dom variables is equal to 31− n. The rest of the influences
variables are fixed to true or false at run time. For the small-
est instances of sizes 7 and 8, PROBLOG2 and ASPROBLOG
have similar performance. For instances 9 to 12, PROBLOG2
does better than ASPROBLOG where the latter cannot solve
instances 11 and 12 due to memory exhaustion. The reason
is that the complete encoding in PROBLOG2 propagates bet-
ter and the extra unfounded set check at each node in the
search tree in ASPROBLOG does not pay off. But as the
number of people increases and the number of probabilis-
tic edges becomes less, the problem becomes easier for AS-
PROBLOG but not for PROBLOG2. The reason is that by fix-
ing the probabilistic edges, we are just left with n external
rules, and many internal rules, making many founded vari-
ables logically equivalent to each other. In the last instance,
the number of loop formulas required for the problem is
only one! Our lazy approach benefits from this structure in
the problem, while PROBLOG2 does not. Our experiments
with the same range of instances but with number of ran-
dom variables fixed to 33 and 35 show similar behaviour of
PROBLOG2 and ASPROBLOG where initially, PROBLOG2
does better, followed by hard instances for both, and finally,
ASPROBLOG detecting the structure and solving the last few
instances in less than 2 seconds.

6 Conclusion
Stable model counting is required for reasoning about prob-
abilistic logic programs with positive recursion in their rules.
We demonstrate that the current approach of translating
logic programs eagerly to propositional theories is not scal-
able because the translation explodes when there is a large
number of recursive rules in the ground program. We give
two methods to avoid this problem which enables reasoning
about significantly bigger probabilistic logic programs.
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A Proofs of theorems and their corollaries
Theorem 1. Given an ASP-SAT program P = (V, R, C)
and a partial assignment θ, let P |jθ = (W,S,D) be denoted
byQ. Let the remaining variables be Vr = V\(W∪vars(θ))
and π be a complete assignment over W . Assume any
founded variable for which there is no rule in S is false in θ.

1. If π is a stable model of Q, then for any assignment θr
over the remaining variables, θ∪π ∪ θr is a stable model
of P .

2. For a given assignment θr over remaining variables, if
θ∪π∪ θr is a stable model of P , then π is a stable model
of Q.

Proof. Let J = JA(P, θ). Note that there cannot be a
founded variable in the remaining variables Vr since if a
founded variable is not true in θ and does not have a rule
in S, then it must be false in θ due to the given assumption.

The key point is to view R as two separate sets of rules,
S and R \ S and argue that we can treat them separately for
the purpose of least models. If there is any assignment that
extends θ, then from R \ S, we can safely delete the rules
whose bodies intersect withW or θr as these rules are redun-
dant since all assignments in J0(θ) are sufficient to imply
the founded literals in J . Furthermore, the least assignment
of reduct of R \ S w.r.t. any assignment that extends θ will
be exactly equal to the founded literals in J . Therefore:

Least(Rθ∪π∪θR) =VF J ∪ Least(Sπ∪θR)

Since θR does not have any founded variables and we
just argued that we can delete the rules in R \ S that have
any variable from θR and θR is completely disjoint from
S by definition, we can simplify the above equality to:
Least(Rθ∪π) =VF J ∪ Least(Sπ).

1. We are given that π is a stable model of Q, i.e., π |= S,
π |= D and Least(Sπ) =VF π. It is easy to show that this
implies that θ ∪ π |= R ∪ C. Moreover, from the above
equality, we get Least(Rθ∪π) =VF J ∪ π. Since, due to
constraints added in D, θ and π are consistent on founded
variables in V \vars(J), we get Least(Rθ∪π) =VF θ∪π.
It is easy to see that any assignment θR can be used to
extend θ ∪ π without affecting satisfiability or the least
model, which means that θ ∪ π ∪ θR is a stable model of
P .

2. We are given that θ∪π∪θR is a stable model ofP . By defi-
nition of residual programs, we know that θ |= C \D and
the intersection of variables in D and θ is empty, which
means that if D is non-empty, then θ is not sufficient to
satisfy D which implies that π |= D (if D is empty,
then trivially π |= D). A similar argument for the case
π |= R|θ can be made. Given that θ and π are consistent,
we can also see that π |= S\R|θ which means that π |= S.
For least model, from the equality that we discussed pre-
viously, we are given that θ ∪ π =VF J ∪ Least(Sπ).
Again, since θ ∪ π =VF J ∪ π, we can derive that
π =VF Least(Sπ) which means that π is a stable model
of Q.

Corollary 2. Let the set of rules and constraints
of Q decompose into k ASP-SAT programs Q1 =
(W1, S1, D1), . . . , Qk = (Wk, Sk, Dk) where Wi =
vars(Si) ∪ vars(Di) s.t. for any distinct i, j in 1 . . . k,
Wi ∩ Wj = ∅. Let the remaining variables be: Vr =
V\(W1∪. . .∪Wk∪vars(θ)) and let π1, . . . , πk be complete
assignments over W1, . . . ,Wk respectively.

1. If π1, . . . , πk are stable models of Q1, . . . , Qk resp., then
for any assignment θr over the remaining variables, θ ∪
π1 ∪ . . . ∪ πk ∪ θr is a stable model of P .

2. For a given assignment θr over remaining variables, if
θ ∪ π1 ∪ . . .∪ πk ∪ θr is a stable model of P , then πi is a
stable model of Qi for each i ∈ 1 . . . k.

Proof. Theorem 1 says that the justified residual program
can be solved in isolation and its results can be combined
with the parent program. Furthermore, since all ASP pro-
grams Q1, . . . , Qk are completely disjoint, both 1 and 2 fol-
low from the Module Theorem (Theorem 1) as given in (Jan-
hunen et al. 2007) which says that two mutually compatible
assignments that are stable models of two respective pro-
grams can be joined to form a stable model of their union
program and conversely, a stable model of the combined
program can be split into stable models of individual pro-
grams, as long as there are no positive interdependencies
between the two programs. Ours is a simple special case of
Corollary 1 in (Janhunen et al. 2007) where all programs and
their sets of variables are completely disjoint.

For the following discussion and results, let P =
(V, R, C) be an ASP-SAT program, copy(P ) = (W,R,D)
be denoted by Q. Let π, π1, π2 be assignments over W
and θ, θ1, θ2 be their projections over non-copy variables
(V). Let Q|π (similarly for π1, π2) be a shorthand for
(vars(R|θ)∪ vars(D|θ), R|θ, D|θ). The results assume that
assignments π, π1, π2 are closed under unit propagation and
unfounded set propagation, i.e., both propagators have been
run until fixpoint in the solver.

To prove the results, we define a function prj that takes
the copy program Q and π and maps it to the justified
residual program w.r.t. to the projection of that π on non-
copy variables and then argue that Q|π correctly models the
justified residual program. Formally, prj (Q, π) is an ASP-
SAT program P ′ = (V ′, R′, C ′) constructed as follows. Add
every constraint in D|π that does not have a copy variable in
C ′. For every constraint v′ ∨ ¬f ′1 ∨ . . .¬f ′n ∨ ¬sn1 ∨ . . . ∨
¬snm inD|π , add the rule v ← f1∧. . .∧fn∧sn1∧. . .∧snm
in R′. Let U be the set of founded variables v such that v is
true but v′ is unfixed in π. For every v in U , add the con-
straint v in C ′. Define V ′ as variables of R′ and C ′.

Proposition 3. If π cannot be extended to any stable model
of Q, then θ cannot be extended to any stable model of P .

Proof sketch. Say θ has an extensionE that is a stable model
of P . We can show that running unit propagation on Q and
E yields a solution of Q that is an extension of π, which
contradicts what is given.

Theorem 4. P |jθ = prj (Q, π).



Proof. Recall the definition of justified assignment:
JA(P, θ) = J0(θ) ∪ {v ∈ VF |v ∈ θ, v ∈ Least(R|J0(θ))}.
Also recall that any copy constraint r′ in Q has the
form: v′ ∨ ¬f ′1 ∨ . . .¬f ′n ∨ ¬sn1 ∨ . . .¬snm and by
definition, each r′ is the copy of a rule r in P , which is
v ← f1∧ . . . fn∧sn1∧ . . .∧snm. Recall that v′, f ′1, . . . , f

′
n

are copy variables of v, f1, . . . , fn respectively, f1, . . . , fn
are positive literals in r and sn1, . . . , snm are either stan-
dard or negative literals in r. We show that the sets of rules,
constraints, and variables of prj (Q, π) and P |jθ are equal,
therefore, they are equal. We begin by reasoning about the
sets of rules.

Let us focus on the seed of the justified assignment J0(θ).
It is easy to see that J0(π) ∩ V = J0(θ). Since r′ and r
share all standard and negative literals, their residuals w.r.t.
these literals will be simplified in exactly the same way, i.e.,
if r′|J0(π) = v′ ∨ ¬f ′1 ∨ . . .¬f ′n ∨ ¬sn1 ∨ . . .¬snk, then
r|J0(θ) = v ← f1∧. . . fn∧sn1∧. . .∧snk. The core point of
the proof is that running unit propagation on the set of copy
rules r′|J0(π) is analogous to computing Least(R|J0(θ)).
Each application of unit propagation on r′ that derives v′
must also derive v in r|J0(θ). This means that if, due to this
propagation, the set of copy variables J ′ = {v′1, . . . , v′j} is
derived, then JA(P, θ)\J0(θ) = {v1, . . . , vj}. Furthermore,
since no decisions on copy variables are allowed, and there
is no other constraint that can possibly derive a literal v′,
unit propagation cannot derive any other positive copy lit-
eral. Now, let us view prj (Q, π) as individual applications
of a function prjcopy on each copy rule r′ to produce r. We
can see that prjcopy(r|J0(π)∪J′) = r|JA(P,θ). Therefore, the
set of rules in prj (Q, π) and P |jθ is exactly the same.

From above, it also follows that the set U in the construc-
tion of prj (Q, π) and the set U in Definition 1 are equal.
Since θ is just the restriction of π on non-copy variables, the
residual of any constraint that has non-copy variables only
is the same and since the consistency constraints due to U
are also the same, the set of constraints C ′ and C are equal.
Since the rules and constraints are equal in prj (Q, π) and
P |jθ, their variables are also equal.

Corollary 5. If Q|π has no rules or constraints and there
are k unfixed variables, then θ is a stable model cube of P |jθ
of size 2k.

Proof. Since Q|π is empty, prj (Q, π) is also empty, and
since P |jθ = prj (Q, π), this means that P |jθ is a stable model
cube. Furthermore, we can show that all founded variables
and their copies must be fixed in Q|π , which means all k
variables must be standard variables, therefore, the size of
stable model cube of P |jθ is 2k.

Corollary 6. If Q|π1
= Q|π2

, then P |jθ1 = P |jθ2 .

Proof. Follows directly from Theorem 4 and definition of
prj function.

Corollary 7. If Q|π decomposes into k disjoint components
Q1, . . . , Qk, then P |jθ decomposes into k disjoint compo-

nents P1, . . . , Pk such that Pi = prj (Qi, πi) where πi is
projection of π on vars(Qi).

Proof. Note that the disjointness of components of Q|π is
really determined by its constraints, and not its rules. The
residual rules are always stronger (have fewer variables)
than their respective residual copy constraints, because it is
possible that a founded variables v is true in π but its copy
variable v′ is unfixed. The opposite is not possible and more-
over, standard and negative literals are shared in a rule and
its corresponding copy constraint. This property of residual
rules is important since prj (Q, π) works by projecting each
individual copy rule to its original form in P |jθ and com-
pletely ignores the residual set of rules in Q|π .

It is clear from definition of prj (Q, π) that the projec-
tion of each rule merely replaces the copy variables with
their corresponding founded variables. This means that we
can take each disjoint component of Q|π and map it to its
counterpart in P |jθ using the projection function. Non-copy
constraint translation in prj (Q, π) is also straight-forward
and cannot combine multiple disjoint components in Q|π
to one component in P |jθ or split one component in Q|π to
multiple components in P |jθ. Finally, addition of the unary
clauses for all variables in U (as used in the definition of
prj (Q, π)) also does not affect the components; by defini-
tion, a variable v in U must have at least one copy constraint
v′ ∨ ¬f ′1 ∨ . . .¬f ′n ∨ ¬sn1 ∨ . . .¬snm which will be pro-
jected to v ← f1 ∧ . . . fn ∧ sn1 ∧ . . . snm in P |jθ. Adding
v as a constraint does not affect the component Pi in which
this projected rule appears in P |jθ.


