
Local search for a
cargo assembly planning problem

G. Belov1 and N. Boland2 and M.W.P. Savelsbergh2 and P.J. Stuckey1

1 Department of Computing and Information Systems
University of Melbourne, 3010 Australia

2 School of Mathematical and Physical Sciences
University of Newcastle, Callaghan 2308, Australia.

Abstract. We consider a real-world cargo assembly planning problem
arising in a coal supply chain. The cargoes are built on the stockyard
at a port terminal from coal delivered by trains. Then the cargoes are
loaded onto vessels. Only a limited number of arriving vessels is known in
advance. The goal is to minimize the average delay time of the vessels over
a long planning period. We model the problem in the MiniZinc constraint
programming language and design a large neighbourhood search scheme.
We compare against (an extended version of) a greedy heuristic for the
same problem.

Keywords: packing, scheduling, resource constraint, large neighbourhood
search, constraint programming, adaptive greedy, visibility horizon

1 Introduction

The Hunter Valley Coal Chain (HVCC) refers to the inland portion of the coal
export supply chain in the Hunter Valley, New South Wales, Australia. Coal
from different mines with different characteristics is ‘mixed’ in a stockpile at a
terminal at the port to form a coal blend that meets the specifications of a cus-
tomer. Once a vessel arrives at a berth at the terminal, the stockpiles with coal
for the vessel are reclaimed and loaded onto the vessel. The vessel then trans-
ports the coal to its destination. The coordination of the logistics in the Hunter
Valley is challenging as it is a complex system involving 14 producers operating
35 coal mines, 27 coal load points, 2 rail track owners, 4 above rail operators, 3
coal loading terminals with a total of 8 berths, and 9 vessel operators. Approx-
imately 1700 vessels are loaded at the terminals in the Port of Newcastle each
year. For more information on the HVCC see the overview presentation of the
Hunter Valley Coal Chain Coordinator (HVCCC), the organization responsible
for planning the coal logistics in the Hunter Valley [6].

We focus on the management of a stockyard at one of the coal loading termi-
nals. It acts as a cargo assembly terminal where the coal blends assembled and
stockpiled are based on the demands of the arriving ships. Our cargo assembly
planning approach aims to minimize the delay of vessels, where the delay of a

2

vessel is defined as the difference between the vessel’s departure time and its ear-
liest possible departure time, that is, the departure time in a system with infinite
capacity. Minimizing the delay of vessels is used as a proxy for maximizing the
throughput, i.e., the maximum number of tons of coal that can be handled per
year, which is of crucial importance as the demand for coal is expected to grow
substantially over the next few years. We investigate the value of information
given by the visibility horizon — the number of future vessels whose arrival time
and stockpile demands are known in advance.

The solving technology we apply is Constraint Programming (CP) using lazy
clause generation (LCG) [11]. Constraint programming has been highly success-
ful in tackling complex packing and scheduling problems [17, 18]. Cargo assem-
bly is a combined scheduling and packing problem. The specific problem is first
described by Savelsbergh and Smith [14]. They propose a greedy heuristic for
solving the problem and investigate some options concerning various character-
istics of the problem. We present a Constraint Programming model implemented
in the MiniZinc language [9]. To solve the model efficiently, we develop iterative
solving methods: greedy methods to obtain initial solutions and large neighbour-
hood search methods [13] to improve them.

2 Cargo assembly planning

The starting point for this work is the model developed in [14] for stockyard
planning.

The stockyard studied has four pads, A, B, C, and D, on which cargoes are
assembled. Coal arrives at the terminal by train. Upon arrival at the terminal,
a train dumps its contents at one of three dump stations. The coal is then
transported on a conveyor to one of the pads where it is added to a stockpile by
a stacker. There are six stackers, two that serve pad A, two that serve both pads
B and C, and two that serve pad D. A single stockpile is built from several train
loads over several days. After a stockpile is completely built, it dwells on its pad
for some time (perhaps several days) until the vessel onto which it is to be loaded
is available at one of the berths. A stockpile is reclaimed using a bucket-wheel
reclaimer and the coal is transferred to the berth on a conveyor. The coal is then
loaded onto the vessel by a shiploader. There are four reclaimers, two that serve
both pads A and B, and two that serve both pads C and D. Both stackers and
reclaimers travel on rails at the side of a pad. Stackers and reclaimers that serve
the same pads cannot pass each other. A scheme of the stockyard is given in
Figure 1.

The cargo assembly planning process involves the following steps. An incom-
ing vessel defines a set of cargoes (different blends of coal) to be assembled and
an estimated time of arrival (ETA). The cargoes are assembled in the stockyard
as different stockpiles. The vessel cannot arrive at berth earlier than its ETA.
Once at a berth, and once all its cargoes have been assembled, the reclaiming
of the stockpiles (the loading of the vessel) begins. The stockpiles are reclaimed
onto the vessel in a specified order to maintain physical balancing constraints.

3

Pad A

Pad B

Pad C

Pad D

S1 S2

R1 R2

S3 S4

R3 R4

S5 S6

Fig. 1. A scheme of the stockyard with 4 pads, 6 stackers, and 4 reclaimers

The goal of the planning process is to maximize the throughput without causing
unacceptable delays for the vessels.

When assigning each cargo of a vessel to a location in the stockyard we need to
schedule the stacking and reclaiming of the stockpile taking into account limited
stockyard space, stacking rates, reclaiming rates, and reclaimer movements. We
model stacking and reclaiming at different levels of granularity. All reclaimer
activities, e.g., the reclaimer movements along its rail track and the reclaiming
of a stockpile, are modelled in time units of one minute. Stacking is modelled
only at a coarse level of detail in 12 hour periods.

We assume that the time to build a stockpile is derived from the locations of
the mines that contribute coal to the blend (the distance of the mines from the
port). We allocate 3, 5, or 7 days to stacking of different stockpiles depending
on the blend. We assume that the tonnage of the stockpile is stacked evenly over
the stacking period. Since the trains that transport coal from the mines to the
terminal are scheduled closer to the day of operations, this is not unreasonable.
We assume that all stockpiles for a vessel are assembled on the same pad, since
that leads to better results (already observed in [14]). In practice, however, there
is no such restriction.

For each stockpile we need to decide a location, a stacking start time, a re-
claiming start time, and which reclaimer will be used. Note that reclaiming does
not have to start as soon as stacking has finished; the time between the comple-
tion of stacking and the start of reclaiming is known as dwell time. Stockpiles
cannot overlap in time and space, reclaimers can only be used on pads they
serve, and reclaimers cannot cross each other on the shared track. The waiting
time between the reclaiming of two consecutive stockpiles of one vessel is limited
by the continuous reclaim time limit. The reclaiming of a stockpile, a so-called
reclaim job, cannot be interrupted.

A cargo assembly plan can conveniently be represented using space-time di-
agrams; one space-time diagram for each of the pads in the stockyard. A space-
time diagram for a pad shows for any point in time which parts of the pad are
occupied by stockpiles (and thus also which parts of the pad are not occupied by
stockpiles and are available for the placement of additional stockpiles) and the
locations of the reclaimers serving that pad. Every pad is rectangular; however
its width is much smaller than its length and each stockpile is spread across
the entire width. Thus, we model pads as one-dimensional entities. The location
of a stockpile can be characterized by the position of its lowest end called its

4

 0

 500

 1000

 1500

 2000

 0 50
 100

 150
 200

 250
 300

 350
 400

 450

H
e
ig

h
t

Time (hours)

Machine Schedule On Pad A

1000389-340(3)

465726-10(6)

463112-10(8)

466254-10(9)

465038-10(16)

1000339-290(19)

1000339-291(19)

467002-10(26)

1000181-180(28)

1000181-181(28)

1000181-182(28)
467706-10(32)

1000389-130(36)

1000332-140(42)

1000108-130(44)

1000108-131(44)

1000389-100(47)

463112-30(51)

1000108-260(54)

1000108-261(54)
464250-20(56)

462364-10(63)

462364-11(63)

462364-12(63)

1000389-540(66)

1000108-80(69)

1000108-81(69)

1000339-130(78)

1000339-131(78)

462608-10(79)

464406-10(81)

462052-10(88)

462020-30(92)

462020-31(92)

1000062-80(94)

1000062-81(94)

1000146-230(95)

1000146-231(95)

1000389-330(99)

R459 R460

Fig. 2. A space-time diagram of pad A showing also reclaimer movements. Reclaimer
R459 has to be after R460 on the pad. Both reclaimers also have jobs on pad B.

height. A stockpile occupies space on the pad for a certain amount of time. This
time can be divided into three distinct parts: the stacking part, i.e., the time
during which the stockpile is being built; the dwell part, i.e., the time between
the end of stacking and the start of reclaiming; and a reclaiming part, i.e., the
time during which the stockpile is reclaimed and loaded on a waiting vessel at
a berth. Thus, each stockpile can be represented in a space-time diagram by a
three-part rectangle as shown in Figure 2.

2.1 The basic Constraint Programming model

We present the model of the cargo assembly problem below; the structure cor-
responds directly to the implementation in MiniZinc [?]. The unit for time pa-
rameters is minutes, and for space parameters is meters. In addition, stacking
start times are restricted to be multiples of 12 hours.

Parameter sets
S — set of stockpiles of all vessels, ordered by vessels’ ETAs

and reclaim sequence of each vessel’s stockpiles
V — set of vessels, ordered by ETAs

Parameters
vs — vessel for stockpile s ∈ S
etav — estimated time of arrival of vessel v ∈ V , minutes
dSs ∈ {4320, 7200, 10080} — stacking duration of stockpile s ∈ S, minutes
dRs — reclaiming duration of stockpile s ∈ S, minutes
ls — length of stockpile s ∈ S, meters

5

(H1, . . . ,H4) = (2142, 1905, 2174, 2156) — pad lengths, meters
speedR = 30 — travel speed of a reclaimer, meters / minute
tonndaily

s — daily stacking tonnage of stockpile s ∈ S, tonnes
tonnDIT = 537,600 — daily inbound throughput (total daily stacking capac-

ity), tonnes
tonnSS

k = 288,000 — daily capacity of stacker stream k ∈ {1, 2, 3}, tonnes

Decisions
pv ∈ {1, . . . , 4} — pad on which the stockpiles of vessel v ∈ V are

assembled
hs ∈ {0, . . . ,Hpvs

− ls} — position of stockpile s ∈ S (of its ‘closest to pad
start’ boundary) on the pad

tSs ∈ {0, 720, . . . } — stacking start time of stockpile s ∈ S
rs ∈ {1, . . . , 4} — reclaimer used to reclaim stockpile s ∈ S
tRs ∈ {etavs , etavs +1, . . . }— reclaiming start time of stockpile s ∈ S

Constraints. Reclaiming of a stockpile cannot start before its vessel’s ETA:

tRs ≥ etavs , ∀s ∈ S

Stacking of a stockpile starts no more than 10 days before its vessel’s ETA:

tSs ≥ etavs −14400, ∀s ∈ S

Stacking of a stockpile has to complete before reclaiming can start:

tSs + dSs ≤ tRs , ∀s ∈ S

The reclaim order of the stockpiles of a vessel has to be respected:

tRs + dRs ≤ tRs+1, ∀s ∈ S where vs = vs+1

The continuous reclaim time limit of 5 hours has to be respected:

tRs+1 − 300 ≤ tRs + dRs , ∀s ∈ S where vs = vs+1

A stockpile has to fit on the pad it is assigned to:

0 ≤ hs ≤ Hpvs
− ls, ∀s ∈ S

Stockpiles cannot overlap in space and time:

pvs 6= pvt ∨ hs + ls ≤ ht ∨ ht + lt ≤ hs ∨ tRs + dRs ≤ tSt ∨ tRt + dRt ≤ tSs ,
∀s < t ∈ S

Reclaimers can only reclaim stockpiles from the pads they serve:

pvs ≤ 2⇔ rs ≤ 2, ∀s ∈ S

6

Reclaim jobs

JJ

JJ

JJ

JJ

JJ

Reclaimer 1 s s1

 J

J
J
J
J
JJs s2

Reclaimer 2 s s
3

s s
4 J
Js s

5

s s
6 J
J
J
J
J
J
JJ s s

7

Fig. 3. A schematic example of space (vertical)-time (horizontal) location of Reclaimers
1 and 2 with some reclaim jobs. Reclaimer 2 has to stay spatially before Reclaimer 1.

If two stockpiles s < t are reclaimed by the same reclaimer, then the time
between the end of reclaiming the first and the start of reclaiming the second
should be enough for the reclaimer to move from the middle of the first to the
middle of the second:

rs 6= rt ∨max
{

(tRt − tRs − dRs), (tRs − tRt − dRt)
}

speedR ≥
∣∣∣hs +

ls
2
− ht −

lt
2

∣∣∣
To avoid clashing, at any point in time, the position of Reclaimer 2 should be
before the position of Reclaimer 1 and the position of Reclaimer 4 should be
before the position of Reclaimer 3. An example of the position of Reclaimers
1 and 2 in space and time is given in Figure 3 (see also Figure 2). Because
Job 3 is spatially before Job 1, there is no concern for a clash. However, since
Job 6 is spatially after Job 2, we have to ensure that there is enough time for the
reclaimers to get out of each other’s way. The slope of the dashed line corresponds
to the reclaimer’s travel speed (speedR), so we see that the time between the
end of Job 6 and the start of Job 2 has to be at least (h6 + l6 − h2)/ speedR.

We model clash avoidance by a disjunction: for any two stockpiles s 6= t, one
of the following conditions must be met: either (rs ≥ 3 ∧ rt ≤ 2), in which case
rs and rt serve different pads; or rs < rt, in which case rs does not have to
be before rt; or hs + ls ≤ ht, in which case stockpile s is before stockpile t; or,
finally, enough time between the reclaim jobs exists for the reclaimers to get out
of each other’s way:

max
{

(tRt − tRs − dRs), (tRs − tRt − dRt)
}

speedR ≥ hs + ls − ht
∨ rs < rt ∨ (rs ≥ 3 ∧ rt ≤ 2) ∨ hs + ls ≤ ht, ∀s 6= t ∈ S

Redundant cumulatives on pad space usage improved efficiency. They require
derived variables lps giving the ‘pad length of stockpile s on pad p’:

lps =

{
ls, if pvs = p,

0, otherwise,
∀s ∈ S, p ∈ {1, . . . , 4}

cumulative(tS , tR + dR − tS , lp, Hp), p ∈ {1, . . . , 4}

7

The stacking capacity is constrained day-wise. If a stockpile is stacked on day
d and the stacking is not finished before the end of d, the full daily tonnage of
that stockpile is accounted for using derived variables

tS1 = btS/1440c, dS1 = bdS/1440c

The daily stacking capacity cannot be exceeded:

cumulative(tS1, dS1, tonndaily, tonnDIT)

The capacity of stacker stream k (a set of two stackers serving the same pads)
is constrained similar to pad space usage:

tonndaily
ks =

{
tonndaily

s , if (pvs , k) ∈ {(1, 1), (2, 2), (3, 2), (4, 3)}
0, otherwise,

∀s, k

cumulative(tS1, dS1, tonndaily
k , tonnSS

k), k ∈ {1, 2, 3}

The maximum number of simultaneously berthed ships is 4. We introduce de-
rived variables for vessels’ berth arrivals and use a decomposed cumulative:

tBerth
v = tRsfirst(v), sfirst(v) = min{s|vs = v}, ∀v ∈ V

card({u ∈ V | u 6= v, tBerth
u ≤ tBerth

v ∧ tBerth
v < tDepart

u }) ≤ 3, ∀v ∈ V

Objective function. The objective is to minimize the sum of vessel delays.
To define vessel delays, we introduce the derived variables tDepart

v for vessel
departure times:

depEarliestv = etav +
∑

s|vs=v

dRs , ∀v ∈ V

tDepart
v = tRslast(v) + dRslast(v), slast(v) = max{s|vs = v}, ∀v ∈ V

delayv = tDepart
v − depEarliestv, ∀v ∈ V

objective =
∑
v

delayv (1)

2.2 Solver search strategy

Many Constraint Programming models benefit from a custom search strategy for
the solver. Similar to packing problems [5], we found it advantageous to separate
branching decisions by groups of variables. We start with the most important
variables — departure times of the ships (equivalently, delays). Then we fix
reclaim starts, pads, reclaimers, stack starts, and pad positions. For most of the
variables, we use the dichotomous strategy indomain split for value selection,
which divides the current domain of a variable in half and tries first to find a
solution in the lower half. However, pads are assigned randomly, and reclaimers

8

are assigned preferring lower numbers for odd vessels and higher numbers for
even vessels. Pad positions are preferred so as to be closer to the native side of
the chosen reclaimer, which corresponds to the idea of opportunity costs in [14].

In the greedy and LNS heuristics described next, some of the variables are
fixed and the model optimizes only the remaining variables. For those free vari-
ables, we apply the search strategy described above.

2.3 A greedy search heuristic with Constraint Programming

It is difficult to obtain even feasible solutions for large instances in a reasonable
amount of time. Moreover, even for smaller instances, if a feasible solution is
found, it is usually bad. Therefore, we apply a divide-and-conquer strategy which
schedules vessels by groups (e.g., solve vessels 1–5, then vessels 6–10, then vessels
11–15, etc.). For each group, we allow the solver to run for a limited amount of
time, and, if feasible solutions are found, take the best of these, or, if no feasible
solution is found, we reduce the number of vessels in the group and retry. We
refer to this scheme as the extending horizon (EH) heuristic. This heuristic is
generalized in Section 2.5.

2.4 Large neighbourhood search

After obtaining a feasible solution, we try to improve it by re-optimizing subsets
of variables while others are fixed to their current values, a large neighbour-
hood search approach [13]. We can apply this improvement approach to both
complete solutions (global LNS) or only for the current visibility horizon (see
Section 2.5). The free variables used in the large neighbourhood search are the
decision variables associated with certain stockpiles.

Neighbourhood construction methods. We consider a number of methods
for choosing which stockpile groups to re-optimize (the neighbourhoods):

Spatial Groups of stockpiles located close to each other on one pad, measured
in terms of their space-time location.

Time-based (finish) Groups of stockpiles on at most two pads with similar
reclaim end times.

Time-based (ETA) Groups of stockpiles on at most two pads belonging to
vessels with similar estimated arrival times.

Examples of a spatial and a time-based neighbourhood are given in Figure 4.
First, we randomly decide which of the three types of neighbourhood to use.

Next, we construct all neighbourhoods of the selected type. Finally, we randomly
select one neighbourhood for resolving.

Spatial neighbourhoods are constructed as follows. In order to obtain many
different neighbourhoods, every stockpile seeds a neighbourhood containing only
that stockpile. Then all neighbourhoods are expanded. Iteratively, for each neigh-
bourhood, and for each direction right, up, left, and down, independently, we

9

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

H
e
ig

h
t

Time (Tunits)

LNS iteration 278, NBH kind=0, pad 4 schedule, group value 396, N piles=15

3,0

4,0

8,0

8,0

18,0

35,3
35,3

37,0

43,0

45,0

49,0

54,0

58,0

59,0

59,0

73,4

73,4

76,0

79,0

82,4

82,4

84,4

84,4

88,0

88,0

92,2

92,2

95,3

95,3

98,5
98,5

**9,0:1;0;1

**17,0:2;12;6

**19,0:2;12;5

**19,0:2;0;7

**22,4:2;12;4

**22,4:2;12;3

**27,128:2;0;2

**32,0:-1;-1;0

**38,0:1;11;9

**40,0:1;11;12

**40,0:1;11;10

**42,0:1;11;14

**48,0:1;11;11

**49,0:1;11;13

**54,0:1;0;8

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

H
e
ig

h
t

Time (Tunits)

LNS iteration 275, NBH kind=2, pad 3 schedule, group value 12, N piles=15

12,0

14,25
14,25

16,0

23,93
23,93

26,341

26,341

28,0

28,0

31,4
31,4

86,58
86,58

91,3
91,3

97,0

99,0

99,0

**53,0:-5;3;0

**53,0:-5;3;1

**55,0:-5;3;2

**57,0:-5;1;3

**60,0:-5;1;4

**62,0:-5;1;5

**63,0:-5;3;6

**64,0:-5;1;7

**64,0:-5;1;8

**65,0:-5;1;9

**67,0:-5;3;10

**68,4:-5;3;11

**68,4:-5;3;12
**70,0:-5;3;13

**70,0:-5;3;14

Fig. 4. Examples of LNS neighbourhoods: spatial (left) and time-based (right)

add the stockpile on the same pad that is first met by the sweep line going in
that direction, after the sweep line has touched the smallest enclosing rectan-
gle of the stockpiles currently in the neighbourhood. We then add all stockpiles
contained in the new smallest enclosing rectangle. We continue as long as there
are neighbourhoods containing fewer than the target number of stockpiles.

Time-based neighbourhoods are constructed as follows. Stockpiles are sorted
by their reclaim end time or by the ETA of the vessels they belong to. For each
pair of pads, we collect all maximal stockpile subsequences of the sorted sequence
of up to a target length, with stockpiles allocated to these pads.

Having constructed all neighbourhoods of the chosen type, we randomly se-
lect one neighborhood of the set. The probability of selecting a given neighbor-
hood is proportional to its neighborhood value: if the last, but not all stockpiles
of a vessel is in the neighborhood, then add the vessel’s delay; instead, if all
stockpiles of a vessel are in the neighborhood, then add 3 times the vessel’s
delay.

We denote the iterative large neighbourhood search method by
LNS(kmax, nmax, δ), where for at most kmax iterations, we re-optimize neigh-
borhoods of up to nmax stockpiles chosen using the principles outlined above,
requiring that the total delay decreases at least by δ minutes in each iteration.
The objective is again to minimize the total delay (1).

2.5 Limited visibility horizon

In the real world, only a limited number of vessels is known in advance. We model
this as follows: the current visibility horizon is N vessels. We obtain a schedule
for the N vessels and fix the decisions for the first F vessels. Then we schedule
vessels F + 1, . . . , F + N (making the next F vessels visible) and so on. Let us
denote this approach by VH N/F . Our default visibility horizon setting is VH
15/5, with the schedule for each visibility horizon of 15 vessels obtained using EH
from Section 2.3 and then (possibly) improved by LNS(30, 15, 12), i.e., 30 LNS
iterations with up to 15 stockpiles in a neighbourhood, requiring a total delay
improvement of at least 12 minutes. We used only time-based neighbourhoods
in this case, because for small horizons, spatial neighbourhoods on one pad are

10

too small. (Note that the special case VH 5/5 without LNS is equivalent to the
heuristic EH.)

3 An adaptive scheme for a heuristic from the literature

The truncated tree search (TTS) greedy heuristic [14] processes vessels according
to a given sequence. It schedules a vessel’s stockpiles taking the vessel’s delay
into account. It performs a partial lookahead by considering opportunity costs
of a stockpile’s placement, which are related to the remaining flexibility of a
reclaimer. However, it does not explicitly take later vessels into account; thus,
the visibility horizon of the heuristic is one vessel. The heuristic may perform
backtracking of its choices if the continuous reclaim time limit cannot be satisfied.

The default version of TTS processes vessels in their ETA order. We propose
an adaptive framework for this greedy algorithm. This framework might well
be used with the Constraint Programming heuristic from Section 2.3, but the
latter is slower. Below we present the adaptive framework, then highlight some
modelling differences between CP and TTS.

3.1 Two-phase adaptive greedy heuristic (AG)

The TTS greedy heuristic processes vessels in a given order. We propose an
adaptive scheme consisting of two phases. In the first phase, we iteratively adapt
the vessel order, based on vessels’ delays in the generated solutions. In the sec-
ond phase, earlier generated orders are randomized. Our motivation to add the
randomization phase was to compare the adaptation principle to pure random-
ization.

For the first phase, the idea is to prioritize vessels with large delays. We in-
troduce vessels’ “weights” which are initialized to the ETAs. In each iteration,
the vessels are fed to TTS in order of non-decreasing weights. Based on the gen-
erated solution, the weights are updated to an average of previous values and
ETA minus a randomized delay; etc. We tried several variants of this principle
and the one that seemed best is shown in Figure 5, Phase 1. The variable “old-
WFactor” is the factor of old weights when averaging them with new values,
starting from iteration 1 of Phase 1.

In the second phase, we randomize the orderings obtained in Phase 1. Each it-
eration in Phase 1 generated a vessel order o = (v1, . . . , v|V |). Let O = (o1, . . . , ok)
be the list of orders generated in Phase 1 in non-decreasing order of TTS solution
value. We select an order with index k0 from O using a truncated geometric dis-
tribution with parameter p = p1, TGD(p), which has the following probabilities
for indexes {1, . . . , k}:

P [1] = p+(1−p)k, P [2] = p(p−1), P [3] = p(p−1)2, . . . , P [k] = p(p−1)k−1

The rationale behind this distribution is to respect the ranking of obtained so-
lutions. A similar order randomization principle was used, e.g., in [7]. Then we

11

Algorithm AG(k1, k2)
INPUT: Instance with V set of vessels; k1, k2 parameters
FUNCTION rnd(a, b) returns a pseudo-random number uniformly distributed in [a, b)
Initialize weights: Wv = etav, v ∈ V
for k = 0, k1 [PHASE 1]

Sort vessels by non-decreasing values of Wv,
giving vessels’ permutation o = (v1, . . . , v|V |)

Run TTS Greedy on o
Add o to the sorted list O
Set oldWFactor = rnd(0.125, 1) // “Value of history”
Set Dv to be the delay of vessel v ∈ V
Let Wv = oldWFactor ·

(
Wv + (etav − rnd(0, 1) · Dv)

)
, v ∈ V

end for

for k = 1, k2 [PHASE 2]
Select an ordering o from O according to TGD(0.5)

Create new ordering õ from o,
extracting each new vessel according to TGD(0.85)

Run TTS Greedy with the vessel order õ
Add the new ordering õ to the sorted list O

end for

Fig. 5. The adaptive scheme for the greedy heuristic.

modify the selected order ok0
: vessels are extracted from it, again using the trun-

cated geometric distribution with parameter p = p2, and are added to the end
of the new order õ. Then TTS is executed with õ and õ is inserted into O in
the position corresponding to its objective value. We denote the algorithm by
AG(k1, k2), where k1, k2 are the number of iterations in Phases 1 and 2, respec-
tively. Note that AG(k1, 0) is a pure Phase 1 method, while AG(0, k2) is a pure
randomization method starting from the ETA order.

3.2 Differences between the approaches

The model used by both methods is essentially identical, but there are small
technical differences: the CP model uses discrete time and space and tonnages
(minutes, meters, and tons), and discretizes possible stacking start times to be
12 hours apart. The discretized stacking start times reduce the search space, and
may diminish solution quality, but seem reasonable given the coarse granularity
of the stacking constraints imposed. The greedy method does not implement the
berth constraints. If we remove them from the CP model it is solved slower, but
the delay is hardly affected, so we always include them.

4 Experiments

After describing the experimental set-up, we illustrate the test data. We present
numerical results starting with the value of information represented by the vis-

12

ibility horizon. Using the model from Section 2.1 we compare the Constraint
Programming approach to the TTS heuristic and the adaptive scheme from Sec-
tion 3.

The Constraint Programming models in the MiniZinc language were created
by a master program written in C++, which was compiled in GNU C++.

The adaptive framework for the TTS heuristic and the TTS heuristic itself
were implemented in C++ too. The MiniZinc models were processed by the
finite-domain solver Opturion CPX 1.0.2 [12] which worked single-threaded on

an Intel R© Core
TM

i7-2600 CPU @ 3.40GHz under Kubuntu 13.04 Linux.
The Lazy Clause Generation [11] technology seems to be essential for our

approach because our efforts to use another CP solver, Gecode 4.2.0 [15], failed
even for 5-vessel subproblems. Packing problems are highly combinatorial, and
this is where learning is the most advantageous. Moreover, some other LCG
solvers than CPX did not work well, since this problem relies on lazy literal
creation.

The solution of a MiniZinc model works in 2 phases. At first, it is flattened,
i.e., translated into a simpler language FlatZinc. Then the actual solver is called
on the flattened model. Time limits were imposed only on the second phase; in
particular, we allowed at most 60 seconds in the EH heuristic and 30 seconds in
an LNS iteration, see Section 2 for their details. However, reported times contain
also the flattening which took a few seconds per model on average.

In EH and LNS, when writing the models with fixed subsets of the variables,
we tried to omit as many irrelevant constraints as possible. In particular, this
helped reduce the flattening time. For that, we imposed an upper bound of 200
hours on the maximal delay of any vessel (in the solutions, this bound was never
achieved, see Figure 6 for example).

The default visibility horizon setting for our experiment, see Section 2.5, is
VH 15/5: 15 vessels visible, they are approximately solved by EH and (possibly)
improved by LNS(30, 15, 12); then the first 5 vessels are fixed, etc. Given the
above time limits on an EH or LNS iteration, this takes less than 20 minutes to
process each current visibility horizon and has shown to be usually much less
because many LNS subproblems are proved infeasible rather quickly.

Our test data is the same as in [14]. It is historical data with compressed
time to put extra pressure on the system. It has the following key properties:

– 358 vessels in the data file, sorted by their ETAs.
– One to three stockpiles per vessel, on average 1.4.
– The average interarrival time is 292 minutes.
– All ETAs are moved so that the first ETA = 10080 (7 days, to accommodate

the longest build time).
– Optimizing vessel subsequences of 100 or up to 200 vessels, starting from

vessels 1, 21, 41, . . . , 181.

Figure 6 illustrates the test data giving the delay profile in a solution for all
358 vessels. The solution is obtained with the default visibility horizon setting
VH 15/5. The most difficult subsequences seem to be the vessel groups 1..100
and 200..270.

13

 0

 10

 20

 30

 40

 50

 60

 70

 0 50
 100

 150
 200

 250
 300

 350

D
u
ra

ti
o
n
 (

h
o
u
rs

)

Vessels

Vessel Delays and Minimum Total Reclaim Times. Average Delay: 2.97h, first 100 vessels: 6.17h

Minimum reclaim time
Actual departure - ETA

Fig. 6. Vessel delay profile in a solution of the instance 1..358.

Table 1. Solutions for the 100- and up to 200-vessel instances, obtained with EH, TTS,
ALL, and VH 15/5.

100 vessels Up to 200 vessels

EH TTS ALL VH 15/5 EH TTS ALL VH 15/5

1st obj t obj t obj t obj t obj t obj t obj t obj t

1 11.77 71 9.87 73 13.31 275 6.17 1509 6.15 170 5.09 90 7.06 356 3.19 1934
21 7.01 69 6.11 33 9.46 275 4.19 1758 3.75 142 3.25 68 5.08 352 2.23 2101
41 2.54 46 1.68 12 2.93 271 1.31 702 2.02 175 1.60 62 2.62 348 1.26 1465
61 0.64 42 0.61 18 0.98 273 0.51 214 3.59 252 3.25 60 5.39 351 2.63 1719
81 0.46 35 0.39 18 0.54 272 0.32 236 3.81 139 3.40 310 5.73 352 2.71 2084

101 0.33 29 0.23 7 0.52 272 0.19 202 3.39 140 3.21 62 5.14 352 1.91 2444
121 0.40 27 0.38 8 0.54 272 0.26 169 4.79 108 4.23 46 4.45 360 2.33 1815
141 2.82 154 1.44 20 2.59 273 1.35 612 4.72 220 3.26 47 4.45 353 2.45 2184
161 5.13 43 5.26 11 7.68 273 3.67 2031 3.53 101 3.26 42 5.15 352 2.25 2350
181 5.45 35 5.16 10 8.23 273 3.84 1438 3.13 70 2.93 33 4.72 328 2.17 1519

Mean 3.65 55 3.11 21 4.68 273 2.18 887 3.89 152 3.35 82 4.98 350 2.31 1961

4.1 Initial solutions

First we look at basic methods to obtain schedules for longer sequences of vessels.
This is the EH heuristic from Section 2.3 and the TTS Greedy described in
Section 3, which fit into the visibility horizon schemes VH 5/5 and VH 1/1,
respectively. We compare them to an approach to construct schedules in a single
MiniZinc model (method “ALL”) and to the standard visibility horizon setting
VH 15/5, Section 2.5. The results are given in Table 1 for the 100-vessel and
200-vessel instances.

Method “ALL”, obtaining feasible solutions for the whole 100-vessel and 200-
vessel instances in a single run of the solver, became possible after a modification
of the default search strategy from Section 2.2. This did not produce better re-
sults however, so we present its results only as a motivation for iterative methods
for initial construction and improvement.

The default solver search strategy proved best for the iterative methods EH
and LNS. But feasible solutions of complete instances in a single model only
appeared possible with a modification. Let us call the strategy from Section 2.2

14

LayerSearch(1,. . . ,|V |) because we start with all vessels’ departure times,
continue with reclaim times, pads, etc. The alternative strategy can be expressed
as

LayerSearch(1,. . . ,5);LayerSearch(6,. . . ,10); . . .

which means: search for departure times of vessels 1, . . . , 5; then for the reclaim
times of their stockpiles; then for their pad numbers; . . . departure times of vessels
6, . . . , 10; etc. It is similar to the iterative heuristic EH with the difference that
the solver has the complete model and (presumably) takes the first found feasible
solution for every 5 vessels.

We had to increase the time limit per solver call: 4 minutes. But the flattening
phase took longer than finding a first solution (there are a quadratic number of
constraints). Feasible solutions were found in about 1–2 minutes after flattening.
We also tried running the solver for longer but this did not lead to better results:
the solver enumerates near the leaves of the search tree, which is not efficient
in this case. Switching to the solver’s default strategy after 300 seconds (search
annotation cpx warm start [12]) gave better solutions, comparable with the EH
heuristic.

In Table 1 we see that the solutions obtained by the “ALL” method are infe-
rior to EH. Thus, for all further tests we used strategy LayerSearch(1,. . . ,|V |)
from Section 2.2. Further, EH is inferior to TTS, both in quality and running
time. This proves the efficiency of the opportunity costs in TTS and suggests us-
ing TTS for initial solutions. However, TTS runs on original real-valued data and
we could not use its solutions in LNS because the latter works on rounded data
which usually has small constraint violations for TTS solutions. A workaround
would be to use the rounded data in TTS but given the majority of running time
spent in LNS, and for simplicity we stayed with EH to obtain starting solutions.
The results for VH 15/5 where LNS worked on every visibility horizon, support
this choice.

4.2 Visibility horizons

In this subsection, we look at the impact of varying the visibility horizon settings
(Section 2.5), including the complete horizon (all vessels visible). More specifi-
cally, we compare N = 1, 4, 6, 10, 15, 25, or∞ visible vessels and various numbers
F of vessels to be fixed after the current horizon is scheduled. For N = ∞, we
can apply a global solution method. Using Constraint Programming, we obtain
an initial solution and try to improve it by LNS, denoted by global LNS, because
it operates on the whole instance. Using Adaptive Greedy (Section 3), we also
operate on complete schedules.

To illustrate the behaviour of global methods, we pick the difficult instance
with vessels 1..100, cf. Figure 6. A graphical illustration of the progress over time
of the global methods AG(130,0) and VH 15/5 + LNS(500, 15, 12) is given in
Figure 7.

To investigate the value of various visibility horizons, for limited horizons, we
applied the same settings as the standard one (Section 2.5): an initial schedule

15

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

O
b
je

ct
iv

e
 v

a
lu

e

Time, sec.

All Best

 0

 1

 2

 3

 4

 5

 6

 7

 0 2000

 4000

 6000

 8000

 10000

 12000

 0

 1

 2

 3

 4

 5

 6

 7

O
b
je

ct
iv

e
 v

a
lu

e

Time, sec.

VisHrz

5

10

1520

25303540
45

50

55

60

65
7075

80

85

90
95100

Global

Fig. 7. Progress of the objective value in AG(130,0) (left) and VH 15/5 + LNS(500,
15, 12) (right), vessels 1..100

Table 2. Visibility horizon trade-off: all 100-vessel instances

N/F 1/1 4/2 6/3 10/5 15/7 15/1 25/12 25/5 15/5+GLNS

Delay, h 5.36 3.51 3.16 2.55 2.28 2.16 2.29 1.96 1.73
%∆ 210% 103% 83% 48% 32% 25% 33% 13%

Time, s 114 188 202 267 916 2896 1823 3354 4236
%∆ -97% -96% -95% -94% -78% -32% -57% -21%

for the current horizon is obtained with EH and then improved with LNS(30, 15,
12). Table 2 gives the average results for all 100-vessel instances. On average,
the global Constraint Programming approach (500 LNS iterations) gives the
best results, but VH 25/5 is close. Moreover, the setting VH 15/1 which invests
significant effort by fixing only one vessel in a horizon, is slightly better than VH
25/12, which shows that with a smaller horizon, more computational effort can
be fruitful.

The visibility horizon setting 1/1 produces the worst solutions. The TTS
heuristic of Section 3 also uses this visibility horizon, but produces better results,
see Table 3. The reason is probably the more sophisticated search strategy in
TTS, which minimizes ‘opportunity costs’ related to reclaimer flexibility. At
present, it is impossible to implement this complex search strategy in MiniZinc,
the search sublanguage would need significant extension to do so.

4.3 Comparison of Constraint Programming and Adaptive Greedy

To compare the Constraint Programming and the AG approaches, we select the
following methods: VH 15/5 Visibility horizon 15/5; VH 15/5+G Visibility
horizon 15/5, followed by global LNS 500; VH 25/5 Visibility horizon 25/5; AG1

TTS Greedy, one iteration on the ETA order; AG500/500 Adaptive greedy, 500
iterations in both phases; AG1000/0 Adaptive greedy, 1000 iterations in Phase I
only. The results for the 100-vessel instances are in Table 3. The pure-random
configuration of the Adaptive Greedy, AG0/1000, showed inferior performance,
and its results are not given.

16

Table 3. 100 vessels: VH and LNS vs. (adaptive) greedy

Constraint Programming TTS Greedy and Adaptive Greedy

VH 15/5 VH 15/5∗+G VH 25/5 AG1 AG500/500 AG1000/0

1st obj t obj t iter obj t obj t obj t iter obj t iter

1 6.17 1509 4.72 10204 338 5.44 7507 9.87 73 5.67 9992 130 5.67 7500 130
21 4.19 1758 3.17 10529 494 3.30 6626 6.11 33 3.63 10433 333 3.25 23051 991
41 1.31 702 1.24 922 0 1.24 3256 1.68 12 1.00 11253 667 1.02 12660 903
61 0.51 214 0.50 279 0 0.51 912 0.61 18 0.54 2713 126 0.54 2769 126
81 0.32 236 0.32 299 0 0.32 1266 0.39 18 0.34 11972 696 0.36 5794 344

101 0.19 202 0.19 285 2 0.18 943 0.23 7 0.21 7764 771 0.22 15 1
121 0.26 169 0.26 258 3 0.26 971 0.38 8 0.28 3589 525 0.29 201 28
141 1.35 612 0.73 4883 469 0.90 1364 1.44 20 0.80 4895 255 0.76 12969 652
161 3.67 2031 2.50 8172 369 3.51 4241 5.26 11 3.24 12574 845 3.78 4166 284
181 3.84 1438 3.64 6525 311 3.89 6450 5.16 10 3.83 6818 422 3.65 13843 809

Mean 2.18 887 1.73 4236 199 1.96 3354 3.11 21 1.95 8200 477 1.95 8297 427

∗ For limited visibility horizons, LNS(20,12,12) was applied

5 Conclusions

We consider a complex problem involving scheduling and allocation of cargo
assembly in a stockyard, loading of cargoes onto vessels, and vessel scheduling.
We designed a Constraint Programming (CP) approach to construct feasible
solutions and improve them by Large Neighbourhood Search (LNS).

Investigation of various visibility horizon settings has shown that larger num-
bers of known arriving vessels lead to better results. In particular, the visibility
horizon of 25 vessels provides solutions close to the best found. The new ap-
proach was compared to an existing greedy heuristic. The latter works with a
visibility horizon of one vessel and, under this setting, produces better feasible
solutions in less time. The reason is probably the sophisticated search strategy
which cannot be implemented in the chosen CP approach at the moment. To
make the comparison fairer, an adaptive iterative scheme was proposed for this
greedy heuristic, which resulted in a similar performance to LNS.

Overall the CP approach using visibility horizons and LNS generated the best
overall solutions in less time than the adaptive greedy approach. A significant
advantage of the CP approach is that it is easy to include additional constraints,
which we have done in work not reported here for space reasons.

Acknowledgments The research presented here is supported by ARC linkage
grant LP110200524. We would like to thank the strategic planning team at
HVCCC for many insightful and helpful suggestions, Andreas Schutt for hints
on efficient modelling in MiniZinc, as well as to Opturion for providing their
version of the CPX solver under an academic license.

Bibliography

[1] Bay, M., Crama, Y., Langer, Y., Rigo, P.: Space and time allocation in a
shipyard assembly hall. Annals of Operations Research 179(1), 57–76 (2010)

[2] Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP.
Mathematical and Computer Modelling 20(12), 97–123 (1994)

[3] Boland, N., Gulczynski, D., Savelsbergh, M.: A stockyard planning problem.
EURO Journal on Transportation and Logistics 1(3), 197–236 (2012)

[4] Boland, N.L., Savelsbergh, M.W.P.: Optimizing the Hunter Valley Coal
Chain. In: Gurnani, H., Mehrotra, A., Ray, S. (eds.) Supply Chain Disrup-
tions, pp. 275–302. Springer London (2012)

[5] Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint pro-
gramming approach for the orthogonal packing problem. Computers & Op-
erations Research 35(3), 944–959 (2008)

[6] HVCCC: Hunter valley coal chain — overview presentation (2013),
http://www.hvccc.com.au/

[7] Lesh, N., Mitzenmacher, M.: BubbleSearch: A simple heuristic for improv-
ing priority-based greedy algorithms. Information Processing Letters 97(4),
161–169 (2006)

[8] Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin
packing problems. Discrete Applied Mathematics 123(1–3), 379–396 (2002)

[9] Marriott, K., Stuckey, P.J.: A MiniZinc tutorial (2012),
http://www.minizinc.org/

[10] Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause gen-
eration. In: Bessière, C. (ed.) Principles and Practice of Constraint Pro-
gramming — CP 2007, Lecture Notes in Computer Science, vol. 4741, pp.
544–558. Springer Berlin Heidelberg (2007)

[11] Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause gener-
ation. Constraints 14(3), 357–391 (2009)

[12] Opturion Pty Ltd: Opturion CPX user’s guide: version 1.0.2 (2013),
www.opturion.com

[13] Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M.,
Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Op-
erations Research & Management Science, vol. 146, pp. 399–419. Springer
US (2010)

[14] Savelsbergh, M., Smith, O.: Cargo assembly planning. Tech. rep., University
of Newcastle (2013), accepted

[15] Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with
Gecode (2013), www.gecode.org

[16] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumu-
lative propagator. Constraints 16(3), 250–282 (2011)

[17] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max
by lazy clause generation. Journal of Scheduling 16(3), 273–289 (2013)

18

[18] Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee,
J. (ed.) Principles and Practice of Constraint Programming — CP 2011,
Lecture Notes in Computer Science, vol. 6876, pp. 69–84. Springer Berlin
Heidelberg (2011)

[19] Singh, G., Sier, D., Ernst, A.T., Gavriliouk, O., Oyston, R., Giles, T., Wel-
gama, P.: A mixed integer programming model for long term capacity ex-
pansion planning: A case study from the hunter valley coal chain. European
Journal of Operational Research 220(1), 210–224 (2012)

[20] Thomas, A., Singh, G., Krishnamoorthy, M., Venkateswaran, J.: Distributed
optimisation method for multi-resource constrained scheduling in coal sup-
ply chains. International Journal of Production Research 51(9), 2740–2759
(2013)

	Local search for a cargo assembly planning problem

