
A Hybrid Algorithm for the Examination
Timetabling Problem

Liam T.G. Merlot1, Natashia Boland1, Barry D. Hughes1, and
Peter J. Stuckey2

1 Department of Mathematics and Statistics,
The University of Melbourne, Victoria 3010, Australia

merlot@ms.unimelb.edu.au, natashia@ms.unimelb.edu.au,

hughes@ms.unimelb.edu.au
2 Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia
pjs@cs.mu.oz.au

Abstract. Examination timetabling is a well-studied combinatorial op-
timization problem. We present a new hybrid algorithm for examination
timetabling, consisting of three phases: a constraint programming phase
to develop an initial solution, a simulated annealing phase to improve the
quality of solution, and a hill climbing phase for further improvement.
The examination timetabling problem at the University of Melbourne
is introduced, and the hybrid method is proved to be superior to the
current method employed by the University. Finally the hybrid method
is compared to established methods on the publicly available data sets,
and found to perform well in comparison.

1 Introduction

The difficulty of developing appropriate examination timetables for tertiary
education institutions is increasing. Institutions are enrolling more students into
a wider variety of courses including an increasing number of combined degree
courses. For example, at the University of Melbourne, approximately 20 000 stu-
dents have to be fitted into about 650 exams over a two and a half week period.
For these 20 000 students, there exist approximately 8 000 different individual ex-
amination timetables. Consequently examination timetabling is a difficult com-
binatorial optimization problem and too complex an issue to be resolved by
manual means. Appropriate algorithms are required to provide adequate exam-
ination timetables for universities.

The development of an examination timetable requires the institution to
schedule a number of examinations (‘exams’) in a given set of exam sessions
(‘time slots’, or simply ‘sessions’), so as to satisfy a given set of constraints. A
common constraint for universities is that no student may have two exams sched-
uled at the same time. However, some universities allow a student to have two
examinations scheduled at the same time (a ‘clash’), as long as an appropriate
arrangement can be made (such as ‘quarantining’ students between exams). This



2 Liam T.G. Merlot et al.

is the situation at the University of Melbourne, where every semester students
are scheduled with two exams in the same session. As quarantining is expensive
and inconvenient, we propose a different examination timetabling method for
the University of Melbourne that avoids these ‘clashes’.

This paper discusses key features of examination timetabling problems and
reviews existing methods for publicly available and other data sets in Section 2.
A new hybrid exam scheduling method is presented in Section 3. This hybrid
method seeks good quality schedules, but attempts to avoid unnecessary clashes.
The new method is a combination of constraint programming, simulated anneal-
ing and hill climbing (local search). Details of the problem for the University of
Melbourne are given in Section 4, while benchmark problems in the literature
are discussed in Section 5. The hybrid method is demonstrated in Section 4 to be
superior to the current timetabling system used by the University of Melbourne,
and in Section 5 to be superior or comparable to well-known existing methods,
measured against established benchmarks.

2 Previous Work on Examination Timetabling

2.1 Examination Timetabling Problems

The primary form of the exam timetabling problem faced by educational insti-
tutions is to allocate a session and a room to every exam, so as to satisfy a
given set of constraints. The result is a feasible exam timetable. However, each
institution will have some unique combination of constraints, as policies dif-
fer from institution to institution. Furthermore, institutions may take different
views on what constitutes the quality of an exam timetable. In some cases, any
feasible timetable will do, while in other cases, timetables exhibiting desirable
features are sought. This makes it difficult to give a universal definition of exam
timetabling, but, although the exact nature of the constraints and quality mea-
sures tends to be unique to individual institutions, they tend to take on only a
limited number of forms.

The most common forms of constraint are:

1. Clashing: no student may have two exams in the same session.
2. Capacity: the total number of students sitting in all exams in the same

session in the same room must be less than the capacity of the room.
3. Total Capacity: the total number of students sitting in all exams in the

same session must be less than the total capacity for that session.
4. Exam Capacity: the total number of exams in the same session must be

less than some specified number.
5. Exam Availability: some exams are preassigned to specific sessions or can

only be held in a limited set of sessions.
6. Room Availability: some rooms are only available in specific sessions.
7. Pairwise Exam Constraints: some pairs of exams must satisfy pairwise

scheduling constraints (e.g., one must be held before the other).
8. Exam/Room Compatability: some exams may require specific rooms.



Hybrid Algorithm for Examination Timetabling 3

9. Student Restrictions: there may be restrictions on students’ individual
examination timetables (e.g., no student can have two exams scheduled in
three consecutive sessions).

10. Large Exams: large exams should be held earlier in the exam period (e.g.,
exams with more than 500 students must be held in the first 10 sessions).

Each institution will apply some or all of these constraints. The exact form
will be dependent on the institution, and some may be treated as soft con-
straints (constraints that hold where possible, but can be violated). For example
the University of Melbourne treats ‘Clashing’ and ‘Large Exams’ as soft con-
straints. Quality measures (or objectives) of a solution are usually derived from
soft constraints, most frequently from ‘Student Restrictions’. For example, the
number of clashes (instances of a student with two exams scheduled in the same
session) is a quality measure for the University of Melbourne, as is the number
of instances of a student with an exam scheduled in both the morning and af-
ternoon sessions of the same day. If several different quality measures are used
simultaneously, the objective is a linear combination of these measures, with
relative weights that reflect their perceived importance.

For some institutions (including the University of Melbourne), the allocation
of rooms to the exams in a given session is a secondary problem: exam rooms
may be large, or exams easily split between rooms. In these cases, the assignment
of sessions to exams has only to respect the total capacity constraint for each
session, and the assignment of exams to specific rooms can be done later as a
separate activity. Not all institutions are so fortunate.

2.2 Previous Methods

In this section, we review some influential and recent methods for solving exam
timetabling problems. Often, different methods have addressed somewhat dif-
ferent versions of the exam timetabling problem, with different constraints and
quality measures. Quality measures are often combined to form a mathemati-
cal objective for the problem, and methods which optimize with respect to that
objective developed. We discuss variations of the problem encountered in the
literature in more detail in Section 5; here we focus on the methods that have
been applied.

Surveys of different methods for exam timetabling by Burke et al. [2] and
Carter et al. [8], classify the different approaches as cluster methods, sequential
construction heuristics, constraint programming, and local search (genetic al-
gorithms, memetic algorithms, simulated annealing and tabu search). In recent
years, Carter3 and Burke4 have made data sets for exam timetabling publicly
available via the internet. Only three different approaches, that we are aware of,
have been applied to this publicly available data.

Sequential construction heuristics have been applied to the publicly available
data in a variety of forms by Burke et al. [6], Carter et al. [9, 10] and Caramia
3 ftp://ftp.mie.utoronto.ca/pub/carter/testprob/
4 ftp://ftp.cs.nott.ac.uk/ttp/Data/



4 Liam T.G. Merlot et al.

et al. [7]. Sequential construction heuristics order the exams in some way (for
example, largest exam first), and attempt to allocate each exam to a session in or-
der, while satisfying all the constraints. The different heuristics feature different
orders. They also have other differences: Carter et al. [10] allow limited back-
tracking (deallocation of exams), Burke et al. [6] select exams from a randomly
chosen subset of all exams, and Caramia, Dell’Olmo and Italiano [7] include an
optimization step after each exam allocation.

Burke, Newall and Weare use memetic algorithms for exam timetabling [3,
4]. In Burke et al. [4] an initial pool of timetables is generated via a random
technique, which attempts to group together exams with similar sets of con-
flicting exams. Then timetables are randomly selected from the pool, weighted
by their objective value, and mutations are applied by rescheduling randomly
chosen exams, or all exams in a randomly chosen session. Finally hill climbing
(local search) is applied to the mutated timetable to improve its quality. The
process continues with the new pool of timetables. Burke and Newall [3] improve
upon their earlier work by applying the memetic algorithm only to the first k
exams as defined by a sequential construction method ordering. After the best
timetable for the first k exams is found, the exams are fixed in place, and the
memetic algorithm applied for the next k exams, until all are fixed.

White and Xie [19] and Di Gaspero and Schaerf [13] use tabu search methods.
White and Xie keep two tabu lists, the usual short-term tabu list, and a long-
term tabu list which keeps track of the most moved exams. Di Gaspero and
Schaerf [13] use a single tabu list, but when exams are added to this list it is
for a randomly determined number of iterations. They also modify the objective
function as the algorithm progresses.

There is a considerable body of work on exam and other timetabling prob-
lems, which has not been applied to the publicly available data sets. The most
closely related to our work appear to be the constraint programming approach
used by Boizumault et al. [1] and the simulated annealing approaches explored by
Dowsland and Thompson [11, 12, 16–18]. The principal innovation in our work,
compared to these others, is the sequential use of these two methods as the first
two stages of a total strategy. A similar sequential approach has been taken in
work on other problems: White and Zhang [20] use constraint programming to
find a starting point for tabu search in solving course timetabling problems, and
for high school timetabling Yoshikawa et al. [21] test several combinations of two
stage algorithms, including a greedy algorithm followed by simulated annealing
and a constraint programming phase followed by a randomized greedy hill climb-
ing algorithm (which is deemed to be the best combination of those used). In a
similar vein, Burke, Newell and Weare [5] use their work on sequential construc-
tion heuristics [6] to generate initial solutions for their memetic algorithm [4].
We use a simpler constraint programming approach than Boizumault et al. [1],
but it is only used as our initialization step. Dowsland and Thompson initialize
by simulated annealing; the later stage of their simulated annealing algorithm is
similar to ours. Following the simulated annealing stage, our hybrid method uses
a third hill climbing stage. The approach used by Schaerf [15] for high school



Hybrid Algorithm for Examination Timetabling 5

timetabling also combines a metaheuristic with a hill climbing method: a tabu
search algorithm, based on a small neighbourhood, employs a (randomized) hill
climbing method,5 based on a larger neighbourhood, whenever it detects a local
minimum (with respect to its smaller neighbourhood).

3 A Three Stage Method

We consider the exam timetabling problem in which a session must be allocated
to each exam. We apply three of the constraints defined in Section 2.1: Clashing,
Exam Availability and Total Capacity. We also treat the Large Exams constraint
as a hard constraint, modelled via the Exam Availability constraint. Room al-
location is not critical for the application of most interest to us (see Section 4),
so we neglect it here. The approach we take to the exam timetabling problem
consists of three stages, yielding a hybrid method:

1. Constraint Programming: to obtain a feasible timetable.
2. Simulated Annealing: to improve the quality of the timetable.
3. Hill Climbing: for further refinement of the timetable.

The first stage of the hybrid method is used primarily to obtain an initial
timetable satisfying all the constraints. As we shall see below, our approach aims
to achieve this using as few sessions as possible, and although all constraints will
be satisfied by the resulting timetable, in some cases, some exams may remain
unscheduled.

The second and third stages aim to improve the quality of the timetable,
and to schedule as many exams as possible. The methods used in both these
stages are optimization methods, which will seek to optimize a given objective
function. For this purpose, we formulate an objective function which takes into
account both aims. The measures of quality, and hence the objective function
formulated, differ according to the particular data set used, but typically the
objective function is some combination of penalties applied for proximity of
exams (time-wise) in students’ timetables. We discuss the objective functions,
which we call objective scores, used in detail in the context of the data sets
considered, in Sections 4 and 5.

It is possible (although rare for the data sets we tested) that some exams re-
main unscheduled after all three stages. In this case, we employ a simple greedy
heuristic to schedule the remaining exams. We discuss this heuristic in Sec-
tion 3.4.

3.1 Constraint Programming

Constraint programming is used to find a first feasible timetable in our hybrid
method. Our constraint programming model is defined as follows. We use the
notation below:
5 A neighbour is generated at random. It is accepted if it is at least as good as the

current solution.



6 Liam T.G. Merlot et al.

– E = {1, ..., n} denotes the given set of n exams,
– si is the number of students in exam i, for all i ∈ E,
– T = {1, ..., v} denotes the set of v sessions,
– R ⊂ E × T represents the set of given exam-session restrictions, so that

(a, b) ∈ R indicates that session b cannot be allocated to exam a,
– Ct is the total capacity of session t, that is, the total number of students

who can sit exams in session t, for all t ∈ T ,
– Dij is the number of students enrolled in both exams i and j, for all i, j ∈ E,

and
– variable xi ∈ T indicates the session allocated to exam i, for all i ∈ E.

Note that the sessions are assumed to be time ordered, so t1 < t2 for t1, t2 ∈ T if
and only if session t1 occurs before session t2. We also define the domain of each
variable xi to be the set of all sessions that can feasibly be allocated to exam i.
Initially, the domain of xi is the set of sessions t ∈ T such that (i, t) 6∈ R. During
a constraint programming search, the domain of variables may be reduced by
the removal of sessions, so as to ensure some form of consistency with respect
to the constraints. The initialization of the variable domains ensures that the
Exam Availability constraint is satisfied. The Clashing constraint is modelled in
our constraint program as follows:

xi 6= xj for all exams i, j ∈ E with i 6= j and Dij > 0.

The Total Capacity constraint is modelled as∑
i∈E

si(xi = t) ≤ Ct for all sessions t ∈ T .

Here (xi = t) is a Boolean switch, taking on value 1 if xi = t, and 0 otherwise.
A typical constraint programming method, applied to the above exam time-

tabling model, will operate as follows. An exam is chosen, and a session in its
domain is allocated to it, that is, all but one session is removed from its domain.
In this case we say the exam has been scheduled ; otherwise it is unscheduled.
Consistency of the domains of all variables with respect to the constraints is
then checked. For example, any exam which clashes with the chosen exam should
have the session allocated to the chosen exam removed from its domain. After
consistency is checked, another exam is chosen, and is allocated a session from
its domain. This process is repeated until either all exams have been allocated
a session, or until infeasibility has been detected, usually as a result of the
domain of some variable becoming empty. In this case, the method backtracks
and re-allocates sessions to some exams. Clearly there is a lot of flexibility in
this method: which exam is chosen at each step, and which session in its domain
is chosen to be allocated to it? The precise form of these choices determines the
search strategy of the constraint programming method.

Our experiments revealed that the best search strategy for our exam time-
tabling problem is to choose the unscheduled exam with the smallest current
domain size, that is, the exam with the smallest domain size greater than one,



Hybrid Algorithm for Examination Timetabling 7

and to allocate it the earliest session in its domain. Other search strategies
explored were: choosing exams based on the number of students in each exam,
choosing exams based on the number of conflicting exams, and choosing sessions
based on the total space remaining given the current allocations (most or least).6

This constraint programming model and search strategy were implemented
using the ILOG package OPL [14]. As the sessions were chosen in order (exams
were scheduled as early as possible), the timetables found tended to use a num-
ber of sessions close to the minimum number required (and often less than the
maximum number allowed). In order to take advantage of this result, and conse-
quently speed up the overall algorithm, additional ‘dummy’ sessions are included
(with a capacity equal to the maximum used for all other sessions), which are
feasible for all exams, and occur ‘after’ the final session v. Any exams allocated
these dummy sessions by OPL are interpreted as unscheduled. A component
of the objective in the simulated annealing phase of the algorithm encourages
scheduling of unscheduled exams. In Section 5.3, 12 different data sets are used,
and for these, two data sets required one dummy session and one required two
dummy sessions, but after the simulated annealing phase there were no exams
remaining in these dummy sessions.

Our constraint programming approach thus generates timetables satisfying
the given constraints, with the proviso that in some cases, some exams may
remain unscheduled (although the search strategy we use ensures this is rare).

As the timetables produced by this process are not subject to any quality
measures, they are usually of very poor quality. Optimization of exam timetables
using constraint programming proved impractical: our experiments showed that
the large search space and weak pruning of the minimization constraints made it
difficult for a constraint programming method to improve significantly timetable
quality. However, as we shall see later, a simulated annealing method is able to
make substantial improvements.

3.2 Simulated Annealing

The timetable produced by the constraint programming algorithm is used as
the starting point for the simulated annealing phase of the hybrid method. This
phase is used to improve the quality of the timetable.

In what follows, we refer to a candidate timetable, together with any unsched-
uled exams (exams scheduled in dummy sessions), as a solution. In all cases, all
scheduled exams in any solution will satisfy the Clashing, Total Capacity, and
Exam Availability constraints, so all exams allocated a given session will not
conflict with each other, the total number of students sitting exams allocated
the same session will not exceed the capacity of the session, and no exam will
be allocated a session for which it is not available.

6 Boizumault et al.[1] found for their data the best search strategy was to choose the
exam with the largest number of students and the session with the most available
space.



8 Liam T.G. Merlot et al.

A key component of any simulated annealing method is the neighbourhood
of a solution. The neighbourhood we use is a slight variant on the Kempe chains
neighbourhood used by Thompson and Dowsland [18]. A Kempe chain is deter-
mined by an exam i currently allocated session t, and another session t′ 6= t.
Let G be the set of all exams allocated session t, and G′ be the set of exams
allocated session t′. Note that our definition of a solution ensures that both G
and G′ are conflict-free sets of exams. The Kempe chain can be thought of as
the (unique) minimal pair of sets of exams, F ⊆ G and F ′ ⊆ G′, such that i ∈ F
and both (G\F )∪F ′ and (G′\F ′)∪F are conflict-free sets of exams. For a given
exam i in session t and other session t′, the Kempe chain (F and F ′) can easily
be constructed by a simple iterative procedure. We call the timetable obtained
by (re-)allocating session t to all exams in F ′ and (re-)allocating session t′ to
all exams in F a neighbour of the solution. The neighbourhood of a solution is
defined to be the set of all such neighbours.

In our simulated annealing algorithm, a current solution is maintained, and
a neighbour of the current solution chosen at random. We choose a neighbour by
selecting an exam i at random from the set of all exams, and selecting a session
t′ at random from the set of sessions available for i, i.e. with (i, t′) 6∈ R, such
that t′ 6= t, where t is the session allocated to exam i in the current solution.
Together i, t and t′ induce a Kempe chain, and hence a neighbour of the current
solution. (Thompson [18] selects two sessions at random, and randomly chooses
an exam allocated the first session.)

Our simulated annealing method is quite standard. Once a neighbour has
been generated (each generation of a neighbour is defined as an iteration), it is
tested for feasibility (of Total Capacity and Exam Availability), and if feasible,
the objective function value, or score, for this neighbour is calculated. If this
neighbour is superior in quality to (has a lower score than) the current solution
then the current solution is replaced by the neighbour. Otherwise the current so-
lution may or may not be replaced by the neighbour, depending on the difference
in scores and the current temperature (as is standard in simulated annealing).
Let o(p) denote the objective score for a solution p. Let x be the current solution
and let q be the neighbouring solution to x selected at random at the current
iteration. Let u be the current temperature. Then if o(q) > o(x), the probability
that q will replace x as the current solution is e(o(x)−o(q))/u.

The score used varied by problem class (different problem classes have dif-
ferent objectives), so we define the scores used in Sections 4 and 5, where we
document each problem class tested.

Thompson and Dowsland [16] discuss different cooling schedules for simulated
annealing processes applied to exam scheduling problems. They find that slow
cooling schedules are generally more effective, but that no cooling schedule is
markedly better than any other. We use a geometric cooling schedule, in which
at every a iterations, the temperature, u, is multiplied by α, where a and α
are given parameters of the algorithm. Initial experimentation revealed that the
parameter settings of a starting temperature of 30 000, α = 0.999, a = 10 and



Hybrid Algorithm for Examination Timetabling 9

a stopping temperature of 10−11, giving approximately 350 000 iterations, were
appropriate for all problems discussed in this paper.

Throughout the simulated annealing phase, the algorithm keeps the best
solution found so far, and yields as output this best solution, at the conclusion
of the algorithm. As with most heuristics, simulated annealing solutions will vary
in quality depending on how long the algorithm is permitted to run. It was found
that solutions using the standard parameters, generated in under a minute of
CPU time on an Alphastation XP900 (466MHz), were of good quality for the
University of Melbourne’s examination timetabling problem.

We use simulated annealing to improve the solution determined by the con-
straint programming phase, and to schedule any remaining unscheduled exams.
We could have used simulated annealing starting from a random timetable to
satisfy all the constraints. Experiments with a purely simulated annealing ap-
proach performed poorly, since finding a feasible solution was in many cases
quite difficult, and this overwhelms the search for a good solution. Indeed for
one of our data sets there was no solution to the hard constraints as given, and
we would never determine this using simulated annealing alone.

3.3 Hill Climbing

The hill climbing algorithm starts with an initial solution, x, called the ‘cur-
rent’ solution, with objective score o(x). The algorithm processes each exam in
some order, determined a priori: we chose the exam subject code order. For each
exam, e, in this order, the algorithm considers every neighbour of x (using the
Kempe chain definition of neighbour given in Section 3.2) in which e is allocated
a different session to the session allocated to it in x. For all such neighbours fea-
sible with respect to the Exam Availability and Total Capacity constraints, the
objective score is calculated and the neighbour q with minimum objective score
is found. If there are several choices for q, select q to move e to the earliest time.
If o(q) ≤ o(x), the current solution x is replaced by q, that is, the algorithm sets
x := q; otherwise x is unchanged. In either case, this completes the processing
of e, and the algorithm moves on to the next exam in the given order.

The hill climbing algorithm does not necessarily stop once all exams have
been processed: at this point we say that one ‘iteration’ of the hill climbing
algorithm has been completed. The hill climbing algorithm may well go on to
again process all exams in the given order, several times over; it may perform
many iterations. The hill climbing algorithm stops when either all neighbours
generated during the last iteration had strictly larger objective scores than the
current solution, or after a specified number of iterations. On the data sets we
experimented with, there was usually no improvement in the objective score of
the current solution after around 7 iterations, and consequently 10 hill climbing
iterations were deemed to be sufficient; we specificied a limit of 10 iterations for
the hill climbing algorithm.

Normally the hill climbing stage does not significantly improve the quality
of solution produced by the simulated annealing phase. However, in approxi-
mately 5-10% of cases, the simulated annealing algorithm had not sufficiently



10 Liam T.G. Merlot et al.

explored the neighbourhood of its best solution. For example, the best solution
encountered may have been found early when the temperature was high, and
moves that increase the objective are more frequently accepted. The algorithm
may move away and settle in an inferior local minimum with a higher objective
as the temperature is reduced. When this happenened, the hill climbing stage
produced a significant improvement on the simulated annealing solution. The
overall effect of the hill climbing phase of the algorithm is to make the results
more consistent between runs of the three stage algorithm by improving the less
satisfactory simulated annealing solutions.

3.4 A Greedy Heuristic for Scheduling Unscheduled Exams

The constraint programming stage may allocate dummy sessions to some exams
(the exams remain unscheduled). Normally the simulated annealing stage will
re-allocate normal sessions to these exams. However it is possible for unscheduled
exams to remain after all three stages of the algorithm.

In all tests we have performed, the only cases where this occurred were in the
University of Melbourne problem and then only in those data sets where a clash
free solution is impossible. Although the University of Melbourne does allow
clashes, when clashes occur, another constraint, known as the ‘Three-in-a-Day’
constraint, must be satisfied; we discuss that constraint in detail below. For the
purpose of describing our heuristic, we simply assume that there is some set of
essential constraints, that must be satisfied even when clashes are allowed.

In the event that exams remain unscheduled at the conclusion of the three
stage method, we apply a greedy heuristic to schedule these exams. This heuris-
tic will, of necessity, introduce clashes into the timetable, however it attempts
to minimize these. Furthermore, it will ensure the timetable satisfies the essen-
tial constraints, and will leave an exam unscheduled rather than violate these
constraints.

The heuristic proceeds as follows, where the unscheduled exams are consid-
ered in order of subject code. For each exam, e, left in a dummy session (that
is, unscheduled), a normal session t ∈ {1, . . . , v} is chosen so that if exam e was
scheduled in session t the essential constraints would hold, and so that the num-
ber of clashes introduced by scheduling exam e in session t is minimized over all
such sessions. If there are no such sessions, then the exam remains unscheduled
(though this never occurred in our tests).

4 The University of Melbourne Problem

At the University of Melbourne, there are 600-700 exams to be scheduled for
each of two teaching semesters. The June exam period at the end of semester 1
normally has about 600 exams, to be scheduled in 26–30 sessions (13–15 days
with morning and afternoon sessions). In the November exam period at the end
of semester 2 there are more exams (at least 650), and these have to be scheduled
in 30–34 sessions (15–17 days). There are five rooms in which exams can be held,



Hybrid Algorithm for Examination Timetabling 11

two of these on campus (with capacities 135 and 405) and three at an off campus
venue (with capacities 540, 774 and 1170).

The constraints that the university imposes can be defined as Capacity, Total
Capacity, Exam Availability, Room Availability and Large Exams. It is a matter
of university policy that Large Exams is a soft constraint to be respected if
possible, but in practice the university’s current procedure takes Large Exams
as a hard constraint. The Large Exam constraint can thus be treated as an Exam
Availability constraint. The university also has some Pairwise Exam Constraints,
in that some pairs (or sets) of exams have common content and are required to
be held at the same time. We simply combine such exams into a single exam.

As there are only five available rooms, and splitting exams between the off-
campus rooms does not present any difficulty, room allocation is not considered
a serious issue at the University of Melbourne. Consequently, the University of
Melbourne’s current software, as well as our algorithm, initially only attempts
to allocate a session to every exam, and does not allocate exams to rooms. Thus
we only use the Capacity and Room Availability constraints to determine the
total capacity for each session, needed for the Total Capacity constraint.

Unlike most educational institutions, the University of Melbourne does not
enforce the Clashing constraint. Instead the university enforces a Student Re-
strictions constraint, called Three-in-a-Day, that students cannot have three
exams scheduled in the same day (recall there are two sessions per day). By
appropriate quarantining, students with two exams scheduled concurrently can
be accommodated. This does, however, incur inconvenience and expense. The
authors believed that allowing clashes and resolving them by quarantining stu-
dents was unnecessary, and implemented the tighter Clashing constraint that
no student may have two exams scheduled at the same time (as is required by
our hybrid algorithm). If, at the end of the three stages of the hybrid algo-
rithm, some exams remain unscheduled, we use the greedy heuristic described
in Section 3.4, with essential constraints Total Capacity, Exam Availability and
Three-in-a-Day, to allocate sessions to these exams. In all our test cases, the
greedy heuristic successfully scheduled all remaining exams.

Data from two different semesters were examined. These were for semesters
1 and 2 of the 2001 academic year at the University of Melbourne (mel01s1
and mel01s2). The semester 1 data set (mel01s1) required 609 exams to be
scheduled into 28 sessions (30 sessions, with two sessions lost in the middle to
a public holiday), and the semester 2 data set (mel01s2) required 657 exams to
be scheduled into 31 sessions. To cope with the Pairwise Exam constraint that
some exams had to be held at the same time, such exams were combined into a
single exam. This left 521 exams in mel01s1 and 562 exams in mel01s2.

The current University of Melbourne software (which we refer to for brevity
as ‘UM’) is an unnamed and scantily documented VMS executable code specially
written for the university about 10 years ago. Little is known about how the UM
software works, but the authors conjecture from running it that it may use some
form of simulated annealing algorithm.



12 Liam T.G. Merlot et al.

The objective score used for University of Melbourne problems in our sim-
ulated annealing and hill climbing stages is calculated as follows. Recall that
these stages maintain clash-free solutions, and that there are two sessions on
each day, so no student can be sitting more than two exams allocated sessions
on the same day. Using the notation of Section 3.1, we have normal exam ses-
sions T = {1, . . . , v} ordered chronologically, and introduce dummy sessions
T ′ = {v + 1, . . . , v′}. For a normal session t, we use boolean w(t) true if t is
the last session before a weekend or public holiday. For a given solution x, we
calculate the objective score o(x) as follows, where U is the penalty per student
for unscheduled exams, wsd is the penalty per student for two exams scheduled
on the same day, wam is the penalty per student for an exam scheduled in the
afternoon followed by one scheduled in the morning of the next day, wg2 is the
penalty per student for two exams scheduled with one session between them,
and wma is the penalty per student for an exam scheduled in the morning of one
day and an exam scheduled in the afternoon of the next day.

initialize o(x) :=
∑

{i∈E : xi∈T ′}
U(si + 1)

for each exam i ∈ E with xi ∈ T and w(xi) not true do
for each exam j ∈ E with xj ∈ T , xi < xj ≤ xi + 3 and Dij > 0 do

if xj = xi + 1 then
if xi is a morning session then o(x) := o(x) + wsdDij

else (xi must be an afternoon session) o(x) := o(x) + wamDij

else if w(xi + 1) not true then
if xj = xi + 2 then o(x) := o(x) + wg2Dij

else (xj must equal xi + 3)
if w(xi + 2) not true then o(x) := o(x) + wmaDij

endif
endif

endfor
endfor

In all tests on University of Melbourne data we used U = 10 000, and after
trying a number of different values for the penalty parameters, we found those
that gave best results were wsd = 2, wam = 1, wg2 = 0, and wma = 0. So in fact
we found that a much simpler score would have sufficed for this data.

In addition to the exam and student data sets, the university also provided
the data for Exam Availability and Large Exams constraints. As the Large Ex-
ams constraint is treated as a hard constraint by the university’s timetabling
software, this was combined with the Exam Availability constraint in order to
restrict the large exams to earlier times. Upon initial examination, it was dis-
covered that due to the Large Exams being treated as a hard constraint, it was
impossible to avoid clashes in the timetable for the mel01s2 data set. For exam-
ple, exams with more than 500 students were required to be held in the first 14
exam sessions, and because of the number of exams in this category, it was not
possible to find a clash-free solution. However, if these exams were allowed to be



Hybrid Algorithm for Examination Timetabling 13

Table 1. Comparison between the University of Melbourne current software (UM) and
our hybrid algorithm. The best timetable was deemed to be the one with the fewest
clashes, with ties resolved by choosing the lowest objective score. The corresponding
score for the best timetable can exceed the average. Note that it was not possible to
compare directly to the UM program for the mel01s1 data set, and consequently the
hybrid method was only compared to the timetable produced by the university for that
semester. This timetable had been manipulated afterwards to satisfy constraints not
known when the timetable was produced, and was not minimizing the same objective.

Data Set Hybrid UM

mel01s1 521 Exams Best Clashes 0 8
28 Sessions Corresponding Score 1210 2085

Average Clashes 0 —
Average Score 1503.6 —
Average Time (s) 56 —

mel01s2a 562 Exams Best Clashes 2 1
31 Sessions Corresponding Score 1835 2384

Average Clashes 5.4 1.4
Average Score 1514 2298
Average Time (s) 74 1008

mel01s2b 562 Exams Best Clashes 0 0
31 Sessions Corresponding Score 1115 3373

Average Clashes 0 1
Average Score 1300 2632.2
Average Time (s) 73 1008

scheduled in the first 15 exam sessions, (one more than previously allowed), it
was possible to produce a clash-free solution.

In order to test the hybrid algorithm under the assumption that clash-free
solutions were possible, two different data sets for this semester were used: one
used the Exam Availability and Large Exams data sets that the university
used for that semester, which forced clashes due to the Large Exams constraint
(mel01s2a), and the second modified the Large Exams constraint slightly so that
clash-free solutions were possible (mel01s2b). Five different runs were made by
the hybrid algorithm on all data sets (with the standard simulated annealing
parameters and 10 hill climbing iterations) and five different runs were made by
the UM program on the mel01s2a and mel01s2b data sets using the university’s
parameters. The results are shown in Table 1.

It can be seen that the hybrid method is superior in terms of the objective
and time. The algorithms were run on different machines, the hybrid algorithm
on an XP900 Alphastation (466Mhz CPU) and the UM algorithm on a DEC
Alphastation 8200 (dual 300Mhz CPU), but the time difference is still significant.
The hybrid method was not designed to cope with clashes, and thus it does not
prove as good at minimizing the number of clashes compared to the university’s
program when clashes are unavoidable. Conversely, in the potentially clash-free
data sets, the university’s program does not always provide a clash-free solution.



14 Liam T.G. Merlot et al.

Table 2. Papers on examination timetabling for publicly available data sets. B1: Burke
et al. [4], B2: Burke et al. [6], B3: Burke and Newall [3], Ca: Caramia et al. [7],
C: Carter et al. [10], D: Di Gaspero and Schaerf [13] and W: White and Xie [19].
*Note that Burke et al. [6] (B2) use a slightly different version of the KFU-S-93 data
set to that of the other authors; they use a different number of sessions.

Data Set Exams P1 P2 P3 P4

CAR-F-92 543 C,Ca C,Ca,D,W B1,D,Ca B2,B3,D
CAR-S-91 682 C,Ca C, Ca,D B1,D,Ca —
EAR-F-83 189 C,Ca C,Ca,D — —
HEC-S-92 80 C,Ca C,Ca,D — —
KFU-S-93 461 C,Ca C,Ca,D B1,D,Ca B2*,B3,D
LSE-F-91 381 C,Ca C,Ca,D — —
PUR-S-93 2419 C,Ca C,Ca — B3,D
RYE-F-92 487 C,Ca C,Ca — —
STA-F-83 138 C,Ca C,Ca,D — —
TRE-S-92 261 C,Ca C,Ca,D B1,D,Ca —
UTA-S-92 638 C,Ca C,Ca,D,W B1,D,Ca B2
UTE-S-92 184 C,Ca C,Ca,D — —
YOR-F-83 180 C,Ca C,Ca,D — —
NOTT 800 — — B1,D,Ca B3,D

5 Benchmarks

5.1 Publicly Available Data

As stated in Section 2.2, Carter and Burke have made data sets for exam
timetabling publicly available. For each of these data sets, attempts have been
made to solve up to four different problems. The solutions to these problems
provide benchmarks to compare different exam timetabling methods. The prob-
lem definitions, and consequently the initial benchmarks for these problems, are
presented in the papers of Carter et al. [10] (problems P1 and P2), Burke et
al. [4] (problem P3), and Burke and Newall [3] (problem P4). Below we discuss
in detail each of these problems and the results of solving them with our method.

Four other papers compared alternative methods to the original benchmarks
established by Burke et al. [3, 4] and Carter et al. [10]: Burke et al. [6], Di
Gaspero and Schaerf [13], Caramia et al. [7], and White and Xie [19]. In Table 2
the publicly available data sets are listed, along with the papers that have tested
methods on each problem. It should be noted that the computing resources used
differ. We have not been able to convert the reported run times in seconds to
equivalent run times for a common standard, so all tabulated times reported
below should be taken as indicative only.

5.2 Problem P1: Graph Colouring Benchmarks

Carter, Laporte and Lee [10] look at several of the publicly available data sets,
and attempt to find the minimum number of sessions required for a feasible



Hybrid Algorithm for Examination Timetabling 15

timetable subject only to the Clashing constraint. They set no Capacity or Total
Capacity constraints, and thus the problem reduces to a graph colouring prob-
lem. The sequential construction heuristic of Carter et al. [10] produces a variety
of solutions, depending on the order in which the the exams were processed. Us-
ing a different sequential construction heuristic, Caramia et al. [7] managed to
produce equal (and superior in one case) results to Carter et al. [10].

The constraint programming stage of the hybrid method produces solutions
that tend to use a relatively small number of sessions, as we demonstrate in
Table 3. Here we compare the number of sessions used in the solution produced
by the constraint programming stage with the results of Carter et al. (Table 3
in [10]) and Caramia et al. (Table 1 in [7]). The results of the comparison can
be seen in Table 3.

The constraint programming stage of the hybrid method only produced one
solution with as few sessions as the best of the Carter et al. [10] and Caramia
et al. [7] methods. However, in all but one data set, the constraint programming
phase produced a solution with only one or two more sessions than the mini-
mum attained by the other methods, and never used more than four additional
sessions. These results confirm that the constraint programming stage produces
timetables with close to the minimum number of sessions.

5.3 Problem P2: Uncapacitated Benchmarks

In addition to their work on graph colouring benchmarks, Carter, Laporte and
Lee [10] developed a second uncapacitated version of the examination timetabling
problem. They set a maximum number of sessions, and devise an objective func-
tion designed to favour timetables which space out students’ exams. The objec-
tive function applies a penalty wt to a timetable whenever a student has to sit
two exams scheduled t periods apart, with w1 = 16, w2 = 8, w3 = 4, w4 = 2 and
w5 = 1. The total penalty is divided by the number of students to get an aver-
age penalty per student; this is the value of the objective function for the given
timetable. No account was taken of weekends and there was no differentiation
between consecutive exam periods within the same day, versus overnight.

For this problem class, our hybrid algorithm uses an objective score identical
to the objective function defined by Carter et al. [10], calculated as follows.

initialize o(x) :=
∑

{i∈E : xi∈T ′}
U(si + 1)

for each exam i ∈ E with xi ∈ T do
for each exam j ∈ E with xj ∈ T , xi < xj ≤ xi + 5 and Dij > 0 do

o(x) := o(x) + w(xj−xi)Dij

endfor
endfor

Caramia et al. [7], Di Gaspero and Schaerf [13] and White and Xie [19]
compared their algorithms to that used by Carter et al. [10], using the same
problem definition, on some or all of the P2 data sets. The method of Caramia



16 Liam T.G. Merlot et al.

Table 3. Problem P1: graph colouring benchmarks. The constraint programming stage
of the hybrid algorithm yields timetables with close to the minimum number of sessions.
The time reported for the methods of Carter et al. [10] and Caramia et al. [7] is the
time for the run producing the best result. The time for the hybrid algorithm is the
average time per run. Reported times have not been converted to account for different
computing resources.

Data Set No. of Hybrid Carter et al. Caramia et al.
Exams Stage 1

CAR-F-92 543 Best 31 28 28
Range — 28–32 28–32

Time (sec) 5.37 227.2 559.2

CAR-S-91 682 Best 30 28 28
Range — 28–35 28–32

Time (sec) 7.34 75.1 86.3

EAR-F-83 189 Best 24 22 22
Range — 22–24 22–23

Time (sec) 1.2 8.7 86.3

HEC-S-92 80 Best 18 17 17
Range — 17–18 17–18

Time (sec) 0.36 0.5 10.6

KFU-S-93 461 Best 21 19 19
Range — 19–20 19–20

Time (sec) 3.4 97.2 159.6

LSE-F-91 381 Best 18 17 17
Range — 17–18 17–18

Time (sec) 2.45 78.0 9.6

RYE-F-92 487 Best 22 21 21
Range — 21–23 21–23

Time (sec) 3.95 343.8 225.9

STA-F-83 138 Best 13 13 13
Range — 13–13 13–13

Time (sec) 0.62 2.7 10.2

TRE-S-92 261 Best 21 20 20
Range — 20–23 20–23

Time (sec) 1.03 32.8 214.7

UTA-S-92 638 Best 32 32 30
Range — 32–35 30–34

Time (sec) 6.39 272.3 1023.5

UTE-S-92 184 Best 11 10 10
Range — 10–10 10–10

Time (sec) 0.75 1.6 24.3

YOR-F-83 180 Best 23 19 19
Range — 19–21 19–21

Time (sec) 1.05 190.4 226.2



Hybrid Algorithm for Examination Timetabling 17

Table 4. Problem P2: uncapacitated benchmarks. The number of sessions is restricted,
but there are no capacity constraints. Scores listed under ‘best’ and ‘average’ are per
student scores. For the hybrid method, this is obtained by dividing the final score by the
number of students. Times reported are average times per run for the hybrid method,
and times of the best run for Carter et al. [10] and Caramia et al. [7]. Reported times
have not been converted to account for different computing resources.

Data Set Hybrid Carter Caramia Di Gaspero White
et al. et al. & Schaerf & Xie

CAR-F-92 Best 4.2 6.2 6.0 5.2 —
Exams 543 Average 4.3 7.04 — 5.6 4.7

Sessions 32 Time (sec) 171 47 142.7 — —

CAR-S-91 Best 5.1 7.1 6.6 6.2 —
Exams 682 Average 5.2 8.38 — 6.5 —

Sessions 35 Time (sec) 296 20.7 34.7 — —

EAR-F-83 Best 34.7 36.4 29.3 45.7 —
Exams 189 Average 36.9 40.92 — 46.7 —

Sessions 24 Time (sec) 26 24.7 29.3 — —

HEC-S-92 Best 10.5 10.8 9.2 12.4 —
Exams 80 Average 10.8 15.04 — 12.6 —

Sessions 18 Time (sec) 5.4 7.4 11.0 — —

KFU-S-93 Best 13.9 14.0 13.8 18.0 —
Exams 461 Average 14.1 18.76 — 19.5 —

Sessions 20 Time (sec) 40 120.2 112.8 — —

LSE-F-91 Best 11.0 10.5 9.6 15.5 —
Exams 381 Average 11.1 12.36 — 15.9 —

Sessions 18 Time (sec) 35 48.0 92.8 — —

RYE-F-92 Best 8.8 7.3 6.8 — —
Exams 487 Average 8.9 8.68 — — —

Sessions 23 Time (sec) 70 507.2 89.4 — —

STA-F-83 Best 157.3 161.5 158.2 160.8 —
Exams 138 Average 157.4 167.14 — 166.8 —

Sessions 13 Time (sec) 5.1 5.7 6.5 — —

TRE-S-92 Best 8.5 9.6 9.4 10.0 —
Exams 261 Average 8.6 10.78 — 10.5 —

Sessions 18 Time (sec) 39 107.4 102.8 — —

UTA-S-92 Best 3.5 3.5 3.5 4.2 —
Exams 638 Average 3.6 4.8 — 4.5 4.0

Sessions 35 Time (sec) 233 664.3 589.4 — —

UTE-S-92 Best 25.2 25.8 24.4 29.0 —
Exams 184 Average 25.5 30.78 — 31.3 —

Sessions 10 Time (sec) 8.6 9.1 5.0 — —

YOR-F-83 Best 37.2 41.7 36.2 41.0 —
Exams 180 Average 38.0 45.6 — 42.1 —

Sessions 21 Time (sec) 30 271.4 125.4 — —



18 Liam T.G. Merlot et al.

et al. [7] proved to be superior on 10 of the 13 data sets, equal to Carter et
al. [10] on the UTA data set, with Di Gaspero and Schaerf [13] superior on the
other two data sets.

The hybrid method described in this paper was run on 12 of the data sets,
and the results are summarized in Table 4 (compared to results from Table 5 in
Carter et al. [10], Table 3 in Caramia et al. [7], Table 1 in Di Gaspero and Schaerf
[13], and Table 9 in White and Xie [19]). Note that for all these data sets, the
hybrid algorithm produced a clash-free timetable within the maximum allowed
number of sessions, without recourse to the fourth greedy heuristic stage. The
hybrid method is superior to that of Di Gaspero and Schaerf [13] and to that of
White and Xie [19], and better than Carter et al. on 9 of 12 data sets (with one
tie). However, the method of Caramia et al. [7] produces the best results with
superior results to the hybrid method in 7 of the data sets (again with a tie on
the UTA-S-92 data set).

5.4 Problem P3: Capacitated Benchmarks (Set 1)

Burke, Newall and Weare [4] created a new class of capacitated problem for the
publicly available data sets, having three sessions per weekday with a morning
session on Saturday. It was assumed that the exam period starts on a Monday.
They set a maximum number of exam sessions and imposed the Clashing and
Total Capacity constraints. For the Nottingham data sets (NOTT), an Exam
Availability constraint was also applied: exams over two hours in length had to
be held in the first session of the day. The objective was to minimize the number
of instances of a student having two exams in a row on the same day. For this
problem class, our hybrid algorithm uses an identical objective score, calculated
as follows.

initialize o(x) :=
∑

{i∈E : xi∈T ′}
U(si + 1)

for each exam i ∈ E with xi ∈ T and xi not the last session of the day do
for each exam j ∈ E with xj = xi + 1 and Dij > 0 do

o(x) := o(x) +Dij

endfor
endfor

Di Gaspero and Schaerf [13] and Caramia et al. [7] applied their methods to
this problem class. The results of Burke et al. [4] were bested by either Di Gaspero
and Schaerf [13] or Caramia et al. [7] in every case, each with approximately
half the best results on the data sets examined. Our hybrid method, with the
objective score calculated as above, was tested on these data sets: it was run
five different times for each problem instance. Note that for all these data sets,
the hybrid method produced a clash-free timetable within the maximum allowed
number of sessions, without recourse to the fourth greedy heuristic stage. The
results can be seen in Table 5 (compared to results in Tables 1 and 5 in Burke
et al. [4], Table 4 in Caramia et al. [7] and Table 2 in Di Gaspero and Schaerf
[13]).



Hybrid Algorithm for Examination Timetabling 19

Table 5. Problem P3: capacitated benchmarks, set 1. The objective to be minimized is
the number of students with two consecutive exams on the same day. Times reported
are average times per run for the hybrid method, times of the best run for Caramia et
al. [7] and approximate run times for Burke et al. [4]. Reported times have not been
converted to account for different computing resources.

Data Set Hybrid Burke Caramia Di Gaspero
et al. et al. & Schaerf

CAR-F-92
Exams 543 Best 158 331 268 424
Sessions 31 Average 212.8 — — 443
Capacity 2000 Time (sec) 96 24240 80.4 —

CAR-S-91
Exams 682 Best 31 81 74 88
Sessions 51 Average 47 — — 98
Capacity 1550 Time (sec) 125 21120 31.4 —

KFU-S-93
Exams 461 Best 237 974 912 512
Sessions 20 Average 290.6 — — 597
Capacity 1995 Time (sec) 45 24240 118.2 —

TRE-S-92
Exams 261 Best 0 3 2 4
Sessions 35 Average 0.4 — — 5
Capacity 655 Time (sec) 16 10800 222.4 —

NOTT
Exams 800 Best 2 53 44 11
Sessions 26 Average 15.6 — — 13
Capacity 1550 Time (sec) 44 24240 359.1 —

NOTT
Exams 800 Best 83 269 — 123
Sessions 23 Average 105 — — 134
Capacity 1550 Time (sec) 42 18000 — —

UTA-S-92
Exams 638 Best 334 772 680 554
Sessions 38 Average 393.4 — — 625
Capacity 2800 Time (sec) 173 24000 265.1 —

Clearly the hybrid method is the superior method when applied to these
capacitated versions of the data sets, providing the best solution in all instances.
The method consistently provides lower scores than Di Gaspero and Schaerf [13],
which we believe is due to the choice of Kempe chain neighbourhood. The results
provided by Burke et al. [4] are no longer competitive. However it is important to
note that on the Nottingham data sets, Burke et al. [4] set a Capacity constraint
and allocated rooms to the exams. The hybrid method did not do this, whilst
Di Gaspero and Schaerf [13] and Caramia et al. [7] do not state whether they
do this or not. The extra constraints applied by Burke et al. [4] may be part of
the reason for their relatively poor results on these data sets.



20 Liam T.G. Merlot et al.

The major difference between the quality of the results produced in the un-
capacitated version and the capacitated versions of these problems is between
our hybrid method and the algorithm of Caramia et al. [7]. In the uncapacitated
version, the algorithm of Caramia et al. [7] is superior in seven of the data sets,
and the hybrid method in four, but with the capacitated data sets, the hybrid
method is superior in all six instances (Caramia et al. [7] do not attempt the
Nottingham data set with 23 sessions). Of these six instances, three were data
sets that the hybrid method was superior for the uncapacitated version and two
had almost equal results (the Nottingham data set was not attempted as un-
capacitated). Therefore, one would expect that the hybrid method would fare
better with this comparison. However, the improvement cannot be explained
by simply favourable data sets alone, as there is a significant difference in this
problem for data sets that were comparable for problem P2.

5.5 Problem P4: Capacitated Benchmarks (Set 2)

Burke and Newall [3] build on previous work undertaken in Burke et al. [4],
using a modified version of their memetic algorithm. They looked at some of
the publicly available data sets, and optimized these with a different objective
function. They consider a situation with three exam sessions per day on weekdays
(morning, lunchtime and afternoon) and one exam session on Saturday morning.
The objective function considers only students with two exams in two consecutive
sessions. They give a penalty of three per student for two exams in a row in
the same day, and one per student for two exams in a row overnight. For this
problem class, our hybrid algorithm uses an identical objective score, calculated
as follows.

initialize o(x) :=
∑

{i∈E : xi∈T ′}
U(si + 1)

for each exam i ∈ E with xi ∈ T and xi not on a Saturday do
for each exam j ∈ E with xj = xi + 1 and Dij > 0 do

if xi is the last session of the weekday then
o(x) := o(x) +Dij

else (xi must be a morning or lunchtime session of a weekday)
o(x) := o(x) + 3Dij

endif
endfor

endfor

The Nottingham data set has the Exam Availability constraint that any exam
over 2 hours in length must be held in a morning session.

Di Gaspero and Schaerf [13] compared their algorithm to the results produced
by Burke and Newall [3]. Burke et al. [6], independent of their work on memetic
algorithms, wrote another paper on sequential construction heuristics using the
publicly available data. This method was was not compared directly to any other
work, though, as it was run on the CAR-F-92 data set with the same problem



Hybrid Algorithm for Examination Timetabling 21

Table 6. Problem P4: capacitated benchmarks, set 2. The objective function is based on
students with exams in consecutive sessions. Times reported are average times per run.
Reported times have not been converted to account for different computing resources.

Data Set Hybrid Burke & Burke Carter Di Gaspero
Newall et al. et al. & Schaerf

CAR-F-92
Exams 543 Best 2188 1665 2555 2915 3048
Sessions 36 Average 2267.6 1765 — — 3377
Capacity 2000 Time (sec) 106 186 — — —

KFU-S-93
Exams 461 Best 1337 1388 — 2700 1733
Sessions 21 Average 1487.8 1608 — — 1845
Capacity 1995 Time (sec) 39 105 — — —

NOTT
Exams 800 Best 720 498 — 918 751
Sessions 23 Average 784.8 544 — — 820
Capacity 1550 Time (sec) 44 467 — — —

definition, it can be compared for this problem instance. Unfortunately the other
data this paper used was the KFU-S-93 set with a different number of sessions,
and the UTA-S-92 data set, which have not been tested by other authors.

The hybrid method was run on the data sets used in Burke and Newall [3].
The results, together with the results of Burke and Newall [3], Burke et al.[6]
(for the CAR-F-92 problem only), Carter et al. [10] and Di Gaspero and Schaerf
[13], can be seen in Table 6 (using data from Tables 2, 3 and 4 in Burke and
Newall [3] and Table 3 in Di Gaspero and Schaerf [13]).

Clearly the algorithm of Burke and Newall [3] is superior: for two of the data
sets their results are clearly the best, and for the third they are only just behind
our hybrid algorithm. It should be noted that the values for the memetic algo-
rithm for Burke and Newall [3] in this table have been chosen as the best from 5
different runs with 18 different parameter settings. This is a total of 90 different
runs for each data set, compared to 5 for the hybrid method. However, if the
hybrid method is run many times, the scores do not improve significantly, as
the method is tied to the solution produced deterministically by the constraint
programming stage, which does not change with multiple runs. Instead the hy-
brid method requires more simulated annealing and hill climbing iterations, to
allow it to move further away from the initial solution, to improve the solution.
To test this theory a series of longer runs were undertaken on these data sets.
In addition to the standard run (approximately 350 000 simulated annealing it-
erations and 10 hill climbing iterations7), a medium length run (approximately
3 500 000 simulated annealing iterations and 30 hill climbing iterations8) and a
long run (approximately 35 000 000 simulated annealing iterations and 100 hill

7 α = 0.999, a = 10
8 α = 0.999, a = 100



22 Liam T.G. Merlot et al.

Table 7. Problem P4: longer hybrid runs. Our experiments and those of Burke and
Newall [3] are on similar but not identical machines.

Data Set Hybrid Hybrid Hybrid Burke &
Standard Medium Long Newall

CAR-F-92
Exams 543 Best 2188 1809 1744 1665
Sessions 36 Average 2267.6 1970.6 1801.4 1765
Capacity 2000 Time (sec) 106 828 6671 186

KFU-S-93
Exams 461 Best 1337 1182 1082 1388
Sessions 21 Average 1487.8 1255.6 1214.4 1608
Capacity 1995 Time (sec) 39 348 3202 105

NOTT
Exams 800 Best 720 492 371 498
Sessions 23 Average 784.8 576.2 425.4 544
Capacity 1550 Time (sec) 44 317 2818 467

climbing iterations9) were performed on the data sets. The results can be seen
in Table 7.

It is quite clear that the longer the hybrid algorithm is allowed to run, the
better the quality of the solution. However, with the CAR-F-92 data set, even
though the hybrid algorithm is allowed to run about 50 times longer than the
memetic algorithm of Burke and Newall [3], the solution remains slightly inferior
(less than 5% worse). While it looks plausible that if the hybrid algorithm was
allowed to perform an even longer run it would provide a superior solution, it
is clearly an inferior method for this data set. However, for the other two data
sets, the hybrid method does provide superior solutions in less time (a short run
for KFU-S-93, and a medium run for NOTT). Unfortunately, with only three
different comparisons between the methods, it is difficult to conclude definitively
which method is superior.

6 Conclusions

The hybrid method for examination timetabling described in the present paper
is superior to the method currently used by the University of Melbourne, and
performs well in comparison to other, well known methods that have been ap-
plied on the publicly available data sets. However, too few of these data sets
have had benchmarks established on them (problem P4 has only been devel-
oped for 5 of the 14 data sets), and only three comparisons have been made
between the hybrid method and the Burke and Newall [3] memetic algorithm
with sequential construction. It is therefore not possible to make a definitive
assessment of the relative quality of solutions found by the hybrid method and

9 α = 0.999, a = 1000



Hybrid Algorithm for Examination Timetabling 23

by existing methodologies. In addition, it is desirable to perform comparisons of
the algorithms using the same computer resources.

In spite of the shortcomings of the comparisons, the hybrid method is still
proven as a worthwhile algorithm, among the best currently in use for exami-
nation timetabling. The constraint programming stage provides a fast route to
a first feasible solution. This solution is improved by the simulated annealing
stage, with the Kempe chain neighbourhoods proving effective at diversifying
solutions (though occasionally more time is needed). The hill climbing stage fur-
ther improves the solutions, and reduces the effect of unfavourable fluctuations
in the simulated annealing stage.

We suggest that the dominant methods of the future for the examination
timetabling problem will combine solution construction with local search. The
stages of the hybrid method may be integrated more fully, to produce a still
more powerful algorithm.

Acknowledgements

The authors would like to thank Aiden Tran and Gerry Barretto for providing
the University of Melbourne data, and Michael Carter, Luca Di Gaspero and
James Newall for help they gave in understanding their previous work.

References

1. P. Boizumault, Y. Delon, and L. Peridy. Constraint logic programming for exami-
nation timetabling. Journal of Logic Programming, 26:217–233, 1996.

2. E.K. Burke, K. Jackson, J. Kingston, and R.F. Weare. Automated university
timetabling: the state of the art. The Computer Journal, 40:565–571, 1997.

3. E.K. Burke and J. Newall. A multistage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation, 3:63–74, 1999.

4. E.K. Burke, J. Newall, and R.F. Weare. A memetic algorithm for university exam
timetabling. In: Burke, E.; Ross, P. (eds.): Practice and Theory of Automated
Timetabling, First International Conference, Edinburgh, U.K., August/September
1995. Selected Papers. Lecture Notes in Computer Science 1153, Springer-Verlag,
Berlin Heidelberg New York, 1996, 241–250.

5. E.K. Burke, J. Newall, and R.F. Weare. Initialisation strategies and diversity in evo-
lutionary timetabling, Evolutionary Computation Journal (special issue on Schedul-
ing), vol 6.1, pp. 81–103, 1998.

6. E.K. Burke, J. Newall, and R.F. Weare. A simple heuristically guided search for the
timetable problem. Proceedings of the International ICSC Symposium on Engineering
of Intelligent Systems, pp. 574–579, 1998.

7. M. Caramia, P. Dell’Olmo, and G.F. Italiano. New algorithms for examination
timetabling. In: Nher, S.; Wagner, D., (eds.): Algorithm Engineering 4th Interna-
tional Workshop, WAE 2000, Saarbrücken, Germany, September 2000. Proceedings.
Lecture Notes in Computer Science 1982, Springer-Verlag, Berlin Heidelberg New
York, 2001, 230–241.



24 Liam T.G. Merlot et al.

8. M. Carter and G. Laporte. Recent developments in practical examination time-
tabling. In: Burke, E.; Ross, P. (eds.): Practice and Theory of Automated Time-
tabling, First International Conference, Edinburgh, U.K., August/September 1995,
Selected Papers. Lecture Notes in Computer Science 1153, Springer-Verlag, Berlin
Heidelberg New York, 1996, 373–383.

9. M. Carter, G. Laporte, and J. Chinneck. A general examination scheduling system.
Interfaces, 24:109–120, 1994.

10. M. Carter, G. Laporte, and S.T. Lee. Examination timetabling: algorithmic strate-
gies and applications. Journal of the Operational Research Society, 47:373–383, 1996.

11. K. Dowsland. Using simulated annealing for efficient allocation of students to prac-
tical classes. In: Vidal, R.V.V. (ed.): Applied Simulated Annealing. Lecture Notes in
Economics and Mathematical Systems 396, Springer-Verlag, Berlin New York, 1993,
125–150.

12. K. Dowsland. Off-the peg or made-to-measure? Timetabling and scheduling with
sa and ts. In: Burke, E.; Carter, M. (eds.): Practice and Theory of Automated
Timetabling II Second International Conference, PATAT’97, Toronto, Canada, Au-
gust 1997. Selected Papers. Lecture Notes in Computer Science 1408, Springer-Verlag,
Berlin Heidelberg New York, 1998, 37–52.

13. L. Di Gaspero and A. Schaerf. Tabu search techniques for examination timetabling.
In: Burke E.; Erben W. (eds.): Practice and Theory of Automated Timetabling III
Third International Conference, PATAT 2000, Konstanz, Germany, August 16–18,
2000. Selected Papers. Lecture Notes in Computer Science 2079, Springer-Verlag,
Berlin Heidelberg New York, 2001, 104–117.

14. P. Van Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, Massachusetts, 1999.

15. A. Schaerf. Tabu search techniques for large high-school timetabling problems.
Proceedings of the National Conference of the American Association for Artificial
Intelligence, AAAI Press, Menlo Park Cambridge London, 1996, 363–368.

16. J. Thompson and K. Dowsland. General cooling schedules for a simulated annealing
timetabling system. In: Burke, E.; Ross, P. (eds.): Practice and Theory of Automated
Timetabling, First International Conference, Edinburgh, U.K., August/September
1995. Selected Papers. Lecture Notes in Computer Science 1153, Springer-Verlag,
Berlin Heidelberg New York, 1996, 345–363.

17. J. Thompson and K. Dowsland. Variants of simulated annealing for the examina-
tion timetabling problem. Annals of Operations Research, 63:105–128, 1996.

18. J. Thompson and K. Dowsland. A robust simulated annealing based examination
timetabling system. Computers and Operations Research, 25:637–648, 1998.

19. G.M. White and B.S. Xie. Examination timetables and tabu search with longer-
term memory. In: Burke E.; Erben W. (eds.): Practice and Theory of Automated
Timetabling III Third International Conference, PATAT 2000, Konstanz, Germany,
August 16-18, 2000. Selected Papers. Lecture Notes in Computer Science 2079
Springer-Verlag, Berlin Heidelberg New York, 2001, 85–103.

20. G.M. White and J. Zhang. Generating complete university timetables by combin-
ing tabu search with constraint logic. Practice and Theory of Automated Timetabling
II Second International Conference, PATAT’97, Toronto, Canada, August 1997. Se-
lected Papers. Lecture Notes in Computer Science 1408, Springer-Verlag, Berlin Hei-
delberg New York, 1998, 187–198.

21. M. Yoshikawa, K. Kaneko, Y. Nomura and M. Watanabe. A constraint-based ap-
proach to high-school timetabling problems: a case study. Proceedings of the Na-
tional Conference of the American Association for Artificial Intelligence, AAAI Press,
Menlo Park Cambridge London, 1994, 1111–1116.


