
Optimisation Modelling for Software Developers

Kathryn Francis, Sebastian Brand, and Peter J. Stuckey

National ICT Australia, Victoria Research Laboratory,
The University of Melbourne, Victoria 3010, Australia

{kathryn.francis,sebastian.brand,peter.stuckey}@nicta.com.au

Abstract. Software developers are an ideal channel for the distribution
of Constraint Programming (CP) technology. Unfortunately, including
even basic optimisation functionality in an application currently requires
the use of an entirely separate paradigm with which most software de-
velopers are not familiar.
We suggest an alternative interface to CP designed to overcome this bar-
rier, and describe a prototype implementation for Java. The interface al-
lows an optimisation problem to be defined in terms of procedures rather
than decision variables and constraints. Optimisation is seamlessly inte-
grated into a wider application through automatic conversion between
this definition and a conventional model solved by an external solver.
This work is inspired by the language CoJava, in which a simulation
is automatically translated into an optimal simulation. We extend this
idea to support a general interface where optimisation is triggered on-
demand. Our implementation also supports much more advanced code,
such as object variables, variable-sized collections, and complex decisions.

1 Introduction

This paper is concerned with the usability of Constraint Programming (CP)
tools, specifically for general software developers. The reason we have chosen
to target general software developers is because they have the potential to pass
on the benefits of CP technology to many more end users by incorporating
optimisation functionality into application-specific software.

Much of the work on usability for CP is aimed at expert users involved in
research or the development of large scale industrial applications. For example,
modelling languages such as OPL [12] and MiniZinc [10] are designed to address
the requirement of these advanced users to easily experiment with different mod-
els and solving strategies, with a fine level of control.

Software developers aiming to incorporate basic optimisation functionality
into an application have no such requirement for experimentation and control,
as they do not have the expertise to benefit from this. Furthermore, it is highly
inconvenient to have to learn and use a separate paradigm in order to implement
a single application feature.

We propose an alternative interface to CP technology which hides from the
user all reference to CP specific concepts. The problem is defined within the



procedural paradigm, by specifying the procedure used to combine individual
decisions and evaluate the outcome. Automatic translation from this definition
to a conventional CP model allows the problem to be solved using an external
constraint solver. The solution giving optimal values for decision variables is
then translated back into a structured representation of the optimal outcome.

This sort of interface would greatly improve the accessibility of CP for gen-
eral software developers. Procedural programmers are well practiced at defining
procedures, so most software developers will find this form of problem definition
easy to create and understand. Integration of optimisation functionality into a
wider application is also straightforward, as the programmer is freed from the
burden of writing tedious and error-prone code to manually translate between
two different representations of the same problem (one using types and structures
appropriate for the application, and another using primitive decision variables).

This project is inspired by the language CoJava [5] and uses the same core
technique to transform procedural code into declarative constraints. We extend
significantly beyond CoJava in a number of ways.

2 Background and Related Work

Constraint Programming In order to apply CP techniques to a given satis-
faction or optimisation problem, it must first be modeled as a set of constrained
decision variables. The model can be defined using a special purpose modelling
language, or a CP library embedded within a host programming language; see
e.g. [11, 8, 9]. Such libraries typically provide data types to represent decision
variables, constraints, the model, and the solver. Although one does not have to
use a foreign language, it is necessary to understand CP modelling concepts and
to work directly with these to build a declarative model.

Simulation An alternative approach to optimisation is to model the situation
using a simulation, and then experiment with parameters, searching for a good
selection. This technique, called simulation optimisation, treats the simulation
as a black box. It is inherently heuristic and thus unable to find provably optimal
solutions. For a survey of simulation optimisation, see e.g. [6, 7].

Most research into simulation optimisation assumes that the true objective
function is not known: the simulation incorporates some non-determinism and
gives a noisy estimate of this function. If the simulation is actually deterministic
given a choice of parameters, then it is possible to convert the simulation code
into an equivalent constraint model and use this to find a provably optimal set
of parameters. Performing this conversion automatically was the goal of CoJava.

CoJava The system described in this paper is inspired by and builds on tech-
niques developed for the language CoJava, introduced in [4] and described further
in [5]. CoJava is an extension to the Java language, intended to allow program-
mers to use optimisation technology to solve a problem modelled as a simulation.

The simulation is written in Java using library functions to choose random
numbers, assert conditions which must hold, and nominate a program variable

2



as the optimisation objective. The CoJava compiler transforms the simulation
code into a constraint model whose solution gives a number to return for each
random choice so that all assertions are satisfied and the objective variable is
assigned the best possible value. The original code is then recompiled with the
random choices replaced by assignments to these optimal values. The result is a
program which executes the optimal execution path of the original simulation.

CoJava was later extended to SC-CoJava and CoReJava [2, 1, 3], introducing
simpler semantics, but also narrowing in focus to supply chain applications.

3 Contributions

Architecture Despite using the same basic technique to translate procedural
code into a declarative constraint model, the purpose and architecture of our
system are fundamentally different to CoJava.

– Optimisation is triggered explicitly as required during program execution,
and problem instance data is not required at compile time. In CoJava, opti-
misation is implicit and takes place at compile time.

– Performing optimisation at run time allows us to support interactive appli-
cations, while CoJava is restricted to simulation-like programs. This is an
important distinction, as interactive applications can enable non-technical
end users to access optimisation technology independently.

– The code written by the programmer is pure Java and does not take on
any new semantics. CoJava on the other hand is an extension of the Java
language, with semantics which depend on the mode of compilation.

Supported Code We dramatically expand on the type of code supported,
allowing a much more natural coding style.

– We extend support for non-determinism from arithmetic numeric and
Boolean types to arbitrary object types.

– We allow variable collections of objects such as sets, lists and maps to be
constructed and manipulated.

– We introduce generic higher level decisions to aid modelling, in contrast to
the approach taken in SC-CoJava of supplying application-specific library
components.

4 A Prototype for Java: the Programmer’s Perspective

This paper proposes an alternative interface to CP technology which allows an
optimisation problem to be specified through code which constructs a solution
using the results of pre-supplied decision making procedures, and code which
evaluates that solution, determining whether or not it is valid and calculating a
measure of its quality. This idea is applicable to any host programming language,

3



although the precise design would obviously depend on the features of the lan-
guage. We describe here a proof-of-concept implementation for Java, consisting
of a Java library and a plug-in for the Eclipse IDE.

The library includes only three public classes/interfaces. To include opti-
misation capability in an application, the programmer implements the Solution
interface, defining two methods: build and evaluate. The build method is passed a
ChoiceMaker object which provides decision making procedures, and uses these
to build a solution. The evaluate method calculates and returns the value of the
current solution, or throws an exception if the current solution is invalid.

Optimisation is triggered using the buildMinimal and buildMaximal methods
provided by the Optimiser class. These take a Solution object and apparently
call its build method with a special ChoiceMaker able to make optimal decisions,
so that a subsequent call to evaluate will return the minimal or maximal value
without encountering any exceptions. Additional versions of these methods with
an extra parameter allow the programmer to request the best solution found
within a given time limit.

The Eclipse plug-in performs compile time program manipulation to support
run time conversion into a conventional constraint model. This step is performed
transparently during program launch, or as an independent operation.

As an illustration of the system we consider a simple project planning appli-
cation.1 Input to the program is a list of tasks, each of which may have depen-
dencies indicating other tasks which must be scheduled at least a given number
of days earlier. The application chooses a day to schedule each task so that all
dependencies are satisfied and the project finishes as early as possible. The gen-
erated project plan is displayed to the user, who is then allowed to repeatedly
reschedule the project after adjusting the tasks and dependencies. Note that this
sort of interactive application cannot be achieved using the CoJava architecture.

The Solution interface is implemented by a class ProjectPlan, whose build and
evaluate methods are shown below. A ProjectPlan is initialised with a reference
to a list of tasks alltasks. The build method chooses a day for each task and passes
this to the task to be recorded. The evaluate method first checks that all task
dependencies are satisfied, and then calculates and returns the latest scheduled
day as the value of the solution.

void build(ChoiceMaker chooser) {
for(Task task : alltasks) {
int day = chooser.chooseInt(1, max);
task.setScheduledDay(day);
}
}

Integer evaluate() throws Exception {
for(Task task : alltasks)
if(!task.dependenciesSatisfied())
throw new Exception();

return getFinishDay();
}

An optimal project plan is obtained by passing a ProjectPlan to the buildMini-
mal method of Optimiser (as we wish to find the solution with smallest evaluation
result). After this method is called the tasks currently recorded in tasklist will

1 Full code for examples is available online: www.csse.unimelb.edu.au/ pjs/optmodel/

4



have scheduled days corresponding to an optimal project plan. The application
displays the plan using the Task objects, and is then free to make changes to
the task list and dependencies (based on user input) before calling buildMinimal
again, which will update the scheduled days to once again represent an optimal
solution given the new tasks and dependencies.

5 A Prototype for Java: Implementation

To solve the optimisation problem specified by the build and evaluate methods of
a Solution object, an equivalent constraint model must be constructed and sent
to a solver. As the complete problem specification depends on the program state
when optimisation is requested, the constraint model cannot be constructed at
compile time. Our approach is to generate at compile time a transformed version
of the original code which can be used at run time to create a complete model
based on the current state.

5.1 Compile Time

The transformed version of the original code works with symbolic expressions
rather than concrete values. It builds an expression for the new value of each pos-
sibly affected field (thus capturing all possible state changes), and an expression
for the value of the solution.

The compilation process is illustrated in Figure 1. Fortunately it is not neces-
sary to create a transformed version of the entire program: only code used within
the build and evaluate methods is relevant to optimisation. Transformed versions
of the relevant methods are added to the project, and then this generated code
is compiled along with the original source code using a regular Java compiler.

Fig. 1. The compile time operation.

The code transformation is based on that described for CoReJava [3]. The
logic of the original code is captured by executing all reachable statements,
while ensuring that assignments are predicated on the conditions under which
normal execution would reach the assignment. A variable assigned a new value
is constrained to equal the assigned value if the path constraint holds and the
old value otherwise. Pseudo-code showing the code generated for an assignment
statement is shown below, where P is the current path constraint, and C and V
are respectively the constraints and solver variables collected so far.

5



x = e;
x′ := newVar(); V := V ∪ {x′}
C := C ∧ (x′ = if P then e else x)
x := x′

Where the original code contains a branch whose condition depends on the
outcome of some decision, the transformed code executes both branches.

if(condition){
<then-block>
}
else{
<else-block>
}

P0 := P
P := P0 ∧ condition
<translation of then-block>
P := P0 ∧ ¬condition
<translation of else-block>
P := P0

A throw statement introduces a constraint that the current path constraint
must evaluate to false (as normal execution is not allowed to reach this point).

We have found it helpful to introduce a separate type to represent variables
(local variables, method parameters, and fields), rather than using the expression
type directly. The Variable type provides a method to look up an expression for
the current value of the variable, and an assign method to replace assignment
statements. The types of affected local variables and method parameters are
changed to this Variable type, so that assignments can be handled correctly as
discussed above. The types of fields are not changed, instead when a field is
accessed for the first time a Variable is created and recorded against the object
and field name, and future uses of the same field refer to this Variable.

One complication not discussed in the CoJava work is return statements. A
return statement provides an expression for the return value of a method, but it
also indicates that the remainder of the method should not be executed. To cor-
rectly handle methods with multiple return statements, at each return a condition
is added to the path constraint for the remainder of the method ensuring that
all further assignments are predicated on not reaching this return statement. The
condition added is the negation of the part of the current path constraint falling
within the scope of the current method. The loop exit statements break and
continue are supported using the same technique. Return handling is illustrated
by the translation shown below (where a is a field of the current object):

int exampleMethod() {
if(a > 5) {

return a;
}
a = a + 1;

return a;

}

P0 := P
P := P0 ∧ (a > 5);
r := a // introduce variable r for return value
P := P0 ∧ ¬(a > 5) // add return constraint
a′ := newVar(); V := V ∪ {a′}
C := C ∪ (a′ = if P then (a + 1) else a); a := a′

r′ := newVar(); V := V ∪ {r′}
C := C ∪ (r′ = if P then a else r); r := r′

P := P0; return r

6



The transformed versions of affected methods are added to new classes, leav-
ing the original classes unchanged. The transformed methods are made static
but are given an extra argument for the object on which the method is called. A
further object of type ModelBuilder is threaded through all method calls to keep
track of state information. It maintains the path constraint, and also records
variables introduced by decision procedures and as intermediate variables, and
constraints caused by throw statements or introduced to constrain intermediate
variables.

5.2 Run Time

At run time, optimisation is triggered by a call to the Optimiser method buildMin-
imal or buildMaximal, with an object implementing the Solution interface passed
as an argument. The Optimiser first uses reflection techniques to find the trans-
formed build and evaluate methods corresponding to the type of the received
Solution object, and then executes these methods.

The variables and constraints recorded in the ModelBuilder during execution
of the transformed methods, along with the objective expression returned by the
evaluate method, are used to generate a constraint problem which is then sent
to an external solver. We chose to express the problem in MiniZinc [10] because
it gives us an easy choice of constraint problem solvers.

The ModelBuilder also records a Variable object for each potentially updated
field. When a solution is obtained, the optimal decisions are substituted into the
expression giving the final value for each of these Variable objects, and reflection
techniques are used to update the corresponding fields accordingly. The run time
process is illustrated in Figure 2.

Fig. 2. The optimisation process, triggered on demand during application execution.

Returning to the project planning example, consider the method getFinish-
Day (Figure 3), which is called by the evaluate method of ProjectPlan. In the
transformed version of this method, when getScheduledDay is called on a task
the result is an integer expression which is not constant (as the task’s scheduled
day is assigned in the build method to the result of chooseInt). The greater-
than operator is therefore replaced with a method which creates a comparison
expression. This means that the if statement has a non-constant condition. As
discussed above, the body of the if statement is executed, but the condition (the
comparison expression) is added to the current path constraint at the beginning
of the then block, and removed at the end.

7



int getFinishDay() {
int finishDay = 1;
for(Task task : alltasks)

if(task.getScheduledDay() > finishDay)
finishDay = task.getScheduledDay();

return finishDay;
}

Fig. 3. ProjectPlan getFinishDay method, called from within evaluate.

This means that when the assignment of finishDay is reached, the path con-
straint will not be constant, so finishDay is given a Variable type, and the assign
method is used in place of the assignment. The assign method creates a new
intermediate variable for the current value of finishDay, and records a constraint
that this new expression is equal to the assigned expression (this task’s sched-
uled day) if the path constraint (the greater-than comparison) evaluates to true,
and otherwise it is equal to the previous value. The expression finally returned
by getLatestDay is an intermediate variable constrained via a series of these
varUpdate constraints to equal the latest scheduled day.

The definition of varUpdate, and an example MiniZinc model for a project
with 3 tasks is shown in Figure 4. The three day variables in this model are core
decision variables introduced by calls to chooseInt. The finishDay variables are
intermediate variables used to represent the value stored in the finishDay vari-
able in the getFinishDay method discussed above. The varUpdate constraints also
originate from here, while the two constraints enforcing task dependencies orig-
inate from the evaluate method, each being the negation of the path constraint
when the throw statement was reached.

var 1..6: day0;
var 1..6: day1;
var 1..6: day2;
var {1,2,3,4,5,6}: finishDay31;
var {1,2,3,4,5,6}: finishDay33;
var {1,2,3,4,5,6}: finishDay35;
constraint (not (day1 < day0));
constraint (not (day2 < (1 + day1))) /\ (not (day2 < (2 + day0)));
constraint varUpdate(finishDay31,(day0 > 1),day0,1);
constraint varUpdate(finishDay33,(day1 > finishDay31),day1,finishDay31);
constraint varUpdate(finishDay35,(day2 > finishDay33),day2,finishDay33);
solve :: int search([day0, day1, day2], input order, indomain split, complete)

minimize finishDay35;

predicate varUpdate(var int: out, var bool: update, var int: new, var int: old) =
(out = [old,new][1+bool2int(update)]);

Fig. 4. MiniZinc model for project planning example.

8



5.3 Refining the Translation

Many values computed within the build and evaluate methods are unaffected by
the results of decisions. Measures to take this into account can reduce unnec-
essary complexity in the model. At compile time, translation is only required
for a method if at some time it is passed a non-constant argument, or if the
code within the method uses decision procedures provided by the ChoiceMaker,
changes the state of some object, or reads a field which is updated elsewhere in
translated code. Within a method, a variable that is never assigned to a value
that depends on the outcome of decisions, and is never assigned conditionally
depending on the outcome of a decision, does not need its type changed.

At run time, if the condition for a branching statement is constant, only the
corresponding branch is executed. Also, if the current path constraint is constant,
an assignment can overwrite the previous value of a variable unconditionally.
Actually, it is only required that the part of the path constraint which falls within
the variable’s scope is constant. If the part of the path constraint outside this
scope is not satisfied, then normal execution would never reach the declaration
of the variable, making its value irrelevant.

An example of this is illustrated in the translation below:

if(X) {

int sum = 0;
for(int item : list) {

sum = sum + item;
}
a = sum;

}

P0 := P
P := P0 ∧X
sum := 0
for item in list do

sum ′ := newVar(); V := V ∪ {sum ′}
C := C ∪ (sum ′ = sum + item); sum := sum ′

a′ := newVar(); V := V ∪ {a′}
C := C ∪ (a′ = if P then sum else a); a := a′

P := P0

The Boolean expression X is added to the path constraint for the duration of
the then block. The assignment to a (which is declared outside the if statement)
is conditional on X, but all assignments to sum are unconditional.

6 Object Variables

For real-world problems, natural code will almost always involve decisions at
the object level. We describe here our support for this, including a procedure
to choose one object from a collection. Note that this is a major extension over
CoJava, which restricts non-determinism to primitive typed variables only.

Let us consider a new version of the project planning application. This time,
resources are no longer infinite. Instead only a given number of hours are available
on each day. We introduce a Day class, with fields recording the day number and
the maximum number of hours available, as well as the number of hours currently
assigned. Each Task now also has a duration, and we need to ensure that the
total duration of all tasks assigned to a day does not exceed the hours available.

9



The new build method for ProjectPlan is shown below. For each task a Day
object is chosen, and the task is assigned to this Day using the addTask method.
This method updates the hours assigned to the day, returning false if the total
is now greater than the available hours. If the return value is false an exception
is thrown to indicate that the solution is not acceptable.

public void build(ChoiceMaker chooser) throws Exception {
for(Task task : alltasks) {

Day chosenDay = chooser.chooseFrom(allDays);
if(!chosenDay.addTask(task))

throw new Exception(”Failed to add task”);
}

}

The object represented by chosenDay depends on the outcome of the choose-
From decision. This means that in the transformed version of the code we need
to be able to call addTask without knowing which Day object is the target.

In order to support this sort of code, we first need to be able to represent the
choice of an object using primitive solver variables. This is achieved by assigning
an integer key to each distinct object. Each expression with a non-primitive type
has a domain of possible objects, which can be translated into a corresponding
integer domain. This representation allows straightforward equality comparisons
between object expressions. The chooseFrom method simply creates a new ex-
pression whose domain is given by the provided collection, with a corresponding
integer decision variable.

The next consideration is field accesses. As with single objects, each accessed
field of an object expression is assigned a Variable object. This Variable must be
able to produce an expression for the current value of the field, and to accept
an expression for a newly assigned value. For object expressions, a special type
of Variable is used which has a reference to the Variable for the corresponding
field of each object possibly represented by the expression, as well as an integer
expression for the index of the chosen object.

When an expression for the current value is requested, an intermediate solver
variable is created and constrained to equal the current field expression for the
object at the chosen index. This is a simple element constraint.

An assignment must update the corresponding field for every object in the
expression’s domain. A new intermediate variable is created for each, and a
user-defined predicate fieldUpdate is used to ensure that all except the one at
the correct index are equal to the previous values, while the one at the correct
index is equal to the assigned expression if the current path constraint holds, or
the old value otherwise.

We also need to handle the calling of methods on object expressions. Fortu-
nately, the only way the target object affects the outcome of a method invocation
is through the values stored in its fields. This means that all uncertainty can be
pushed down to the field level. Translated methods are already converted to be
static with an argument indicating the object called on, so it is straightforward

10



to allow this argument to be non-constant. Then, for each field access the Variable
retrieved is of the special type discussed above.

7 Variable Collections

Combinatorial problems commonly involve collections such as sets or lists. It
is therefore valuable to allow the use of these in the Solution code. It should
be possible not only to store variable objects in collections, but also to make
arbitrary changes to the collection in variable contexts, so that the resulting
size and composition of the collection depends on the outcome of decisions.
Furthermore, it should be possible to iterate over these variable collections.

Returning to the project planning example, imagine we are now allowed to
hire an external contractor to perform some tasks, paying an hourly rate plus a
callout fee for each day the contractor’s services are required. Instead of finishing
as early as possible we wish to minimise cost while meeting a deadline. Extracts
from the revised build and evaluate methods for ProjectPlan are shown in Figure 5.

Day day = chooser.chooseFrom(days);
if(chooser.chooseBool()) {

contractedTasks.add(task);
contractorDays.add(day);

}

int cost = dayFee ∗ contractorDays.size();
for(Task t : contractedTasks) {

cost += hourlyRate ∗ t.duration();
}
return cost;

Fig. 5. Extracts from revised build and evaluate methods making use of collections.

Note first that the chosen day for the task, a decision variable, is added to
the contractorDays set. Second, this set and the list of contracted tasks are both
updated conditionally depending on whether or not this task is to be contracted
out (as decided by the chooseBool method). The crucial aspect here is that the
for loop in the evaluate code iterates over a collection whose size depends on the
values of decision variables.

We have implemented a special purpose translation for the Set, List and Map
interfaces in order to support this kind of code. The VariableSet, VariableList
and VariableMap classes provide specialised transformed versions of (almost) all
methods included in these collection interfaces, using a special-purpose repre-
sentation for the state of the collection.

7.1 Sets, Lists and Maps

The VariableSet class represents a set using a list of possible members of the
set, and a corresponding list of Boolean expressions indicating whether or not
each item is actually in the set. Each possible item is also an expression which
may represent a choice between several actual objects. When a VariableSet is

11



initialised, all items are constant expressions, and the Boolean conditions are
true. It is only through operations on the set that variability is introduced.

As an example of an operation we consider add. This method is required to
add the given item to the set if it is not already present, and return true if the
set has changed. The pseudo-code below defines the effect of calling add on a set
s having current state vs = 〈n, x1..n, c1..n〉, where n is the number of possible
members of the set, xi is the possible member at index i, and ci is the Boolean
condition indicating whether or not xi is actually in the set.

boolean result = s.add(y);

a :=
∧

i=1..n
¬(xi = y ∧ ci)

b := P ∧ a // P: path constraint

vs :=
〈
n + 1, 〈x1..n, y〉, 〈c1..n, b〉

〉
result := a

The Boolean expression a represents the condition that y was not already in
the set. This expression is also used as the return value. It is possible for the
set to remain unchanged even if y was not already present, as the current path
constraint may not be satisfied. However, in this case execution would not reach
this method call, so the return value is irrelevant.

Clearly it is important to handle constants well, as otherwise the model
becomes unnecessarily complex. For example, the add method does not add a
new possible item if one of the existing possible items is identical to the added
item. In this case the existing item’s Boolean condition is updated instead, and
if this is already constant and true, no change is required.

The VariableList class maintains a list of possible members in the same fashion
as VariableSet, but instead of a Boolean expression indicating whether or not the
item is present, an integer expression for each possible item indicates its (0-
based) index in the list, with all items not actually in the list having indices
greater than the length of the list. A separate integer expression is maintained
for the current length of the list.

The VariableMap class is implemented as an extension of the VariableSet class,
with an added expression for each possible key giving its currently assigned value.

7.2 Iteration

Iteration in Java is performed using the Iterator interface, with two methods:
hasNext to check whether there are remaining items, and next to retrieve the
next item. We support iteration over variable collections using a VariableIterator
class which implements the transformed versions of these operations. That is, the
hasNext method returns a Boolean expression which evaluates to true if at least
one of the remaining items is actually in the collection, while the next method
returns an expression for the next item.

Enhanced for loops (for example that on the right of Figure 5) are converted
into the equivalent while loop using an explicit iterator. At the beginning of each
loop iteration the hasNext method is called, and the resulting Boolean expression
is added to the path constraint, to be removed at the end of the loop body. When

12



the hasNext method returns an expression which is constant and false (as it does
when it runs out of possible members of the collection), the loop is terminated.

Although the VariableSet state includes a list of expressions for possible mem-
bers of the set, the iterator cannot simply return these in order. To correctly
reflect loop exit logic all items which are actually in the set must be returned be-
fore any which are not. For this reason, each item returned by the VariableIterator
is actually a new expression which may represent any of the possible members of
the set. An integer variable is created for each returned item, giving the corre-
sponding index into the list of possible members. These indices are constrained
to ensure that an item which is not in the set is never returned before an item
which is in the set, and further (to avoid symmetry) that within these two groups
items are returned in order of index.

Iteration over lists is implemented similarly except that the order in which
items are returned is determined by the indices stored as part of the VariableList
state. For both lists and sets, the Boolean expression returned by hasNext is
simply a comparison between the number of items already returned and an
expression for the size of the collection.

Obviously constant detection is very important to avoid excessive complexity.
We have implemented some simplifications, such as returning all items which are
definitely in the set first, and excluding entirely any which are definitely not in
the set, but have not yet investigated all possible simplifications.

8 Complex Decisions

With support for variable collections, it becomes possible to provide more com-
plex decision procedures allowing decisions to be specified at a higher level. As an
illustration, let us return to the project planning example. Imagine that instead
of choosing a single worker for each task, we assign a team of workers. For each
task there are a set of allowed team sizes, and the task duration varies according
to the size chosen. Furthermore, tasks may be performed across multiple days,
as long as an integral number of hours is assigned to each day and the total
number of hours matches the task duration.

Below is a build method appropriate for this situation, making use of complex
decision procedures.

public void build(ChoiceMaker chooser) {
for(Task task : allTasks) {

int teamSize = chooser.chooseFrom(task.allowedTeamSizes());
int taskDuration = task.getDuration(teamSize);
Set<Worker> team = chooser.chooseSubset(allWorkers, teamSize);
Map<Day,Integer> chosenDays = chooser.allocate(taskDuration, allDays);
for(Worker worker : team)

worker.assignTask(task, chosenDays);
}

}

13



The procedure first chooses a team size and a corresponding team. Then the
total task duration is allocated to days using the allocate method. This method
decides how much of the given quantity (in this case the task duration) should
be allocated to each object in the given collection (in this case the list of days).
Finally, the workers’ schedules are updated appropriately.

Not only do complex decision procedures greatly simplify the build method,
they also provide opportunities to make use of global constraints. For example,
the allocate method can make use of a global sum constraint to ensure that the
total quantity allocated is correct.

9 Experimental Results and Future Work

Having developed a working system, our next concern is performance. We present
in Table 1 preliminary experimental results demonstrating the relative perfor-
mance of the system compared with equivalent hand-written models. It is un-
realistic to expect that automatically generated models will be able to compete
with models produced by an expert. Our aim is to be able to handle problems
arising for small businesses or individuals. The results show that we still have
some work to do to achieve this goal. Note that compilation time is not shown
as this was insignificant: the entire suite compiles in 20 seconds (with around 15
seconds spent performing code transformation).

For most problems the vast majority of the total time is spent solving the
model (rather than generating it). This suggests the potential to greatly de-
crease the running time by improving the model. Our initial analysis of the
automatically generated models has led to the identification of two easily de-
tected programming patterns for which stronger constraints are available. The
table below shows the original Java code for each of these patterns, the con-
straints which would be generated using the standard transformation, and the
alternative stronger constraints.

Java code Standard translation Specialised translation

if(c) x++; var x’ = [x, x+1][bool2int(c)+1]; var x’ = x + bool2int(c);

if(a > x) x = a; var x’ = [x, a][bool2int(a > x)+1]; var x’ = max(x, a);

After adding a step during the model generation phase to automatically
detect just these two programming patterns and replace the constraints, we
have observed a significant improvement in performance on several benchmarks.
We anticipate further gains can be made by identifying other patterns for which
straightforward model refinements are beneficial. Some patterns may involve
larger portions of the code, for example a loop which sums a collection of values
or counts the number of objects satisfying some property.

A complementary approach is to attempt to exploit the structure of the
generated models, which tend to be quite unidirectional. We may be able to
take advantage of this property for efficient propagation scheduling or through
the development of a specialised search strategy.

Other future work could design global constraints to improve the treatment
of collection operations as well as variable and field updates. There is also room

14



for further exploration of alternative representations which could be used for
the state of variable collections. The current implementations are correct but
certainly not as efficient as possible.

Problem Size Total Solving Improved Hand Factor

project planning 1 250 tasks 1.13 78.1% 0.69 (39%) 0.16 4.4
project planning 2 18 tasks 16.22 97.6% 13.31 (18%) 1.18 11.3
project planning 3 14 tasks 32.38 96.6% 26.38 (19%) 0.27 96.9
bin packing 8 items 8.67 98.2% 5.81 (33%) 0.34 17.2
golomb ruler 7 ticks 3.45 33.6% 3.41 (0.9%) 2.03 1.7
knapsack (0-1) 30 items 1.97 80.4% 1.95 (0.9%) 0.15 13.2
knapsack (bounded) 30 items 6.40 95.2% 6.36 (0.6%) 1.10 5.8
routing (pickup-del) 8 stops 6.48 96.5% 6.45 (0.6%) 0.33 19.7
social golfers 9 golfers 2.65 75.0% 2.60 (1.9%) 0.14 18.3
talent scheduling 8 scenes 39.47 99.7% 20.87 (47%) 2.20 9.5

Table 1. Experimental results for project planning example and various well-known
problems. In order the figures give the total time (secs) for the optimisation step, the
percentage of this total used by the solver, the new total time using basic model re-
finement with percentage improvement in brackets, the solving time for an equivalent
hand-written model, and the number of times faster this hand-written model is com-
pared with the improved total time. Timing figures are the average over 30 instances.

10 Conclusion

If software developers with no specialised CP expertise could easily incorporate
CP technology into their applications, this would greatly increase its impact.

We have designed an alternative interface to CP which aims to be more intu-
itive and convenient for software developers. The necessary translation between
paradigms is automated, allowing the programmer to work exclusively with a
procedure based definition of the optimisation problem. This significantly re-
duces the burden on the programmer and allows straightforward integration of
optimisation functionality within a wider application.

A natural coding style is allowed with support for object variables, variable
collections, and high level decision procedures, building on and significantly ex-
tending techniques used to implement the language CoJava.

Preliminary experiments show that further work is required to achieve our
goal of performance sufficient for small business and personal applications, but
that there are gains to be made using very simple local adjustments to the model.
We have also identified several other avenues of investigation which may lead to
further improvements in performance.

Acknowledgments NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council.

15



References

1. M. Al-Nory and A. Brodsky. Unifying simulation and optimization of strategic
sourcing and transportation. In Winter Simulation Conference (WSC), pages
2616–2624, 2008.

2. A. Brodsky, M. Al-Nory, and H. Nash. Service composition language to unify
simulation and optimization of supply chains. In Hawaii International Conference
on System Sciences, page 74, Los Alamitos, CA, USA, 2008. IEEE Computer
Society.

3. A. Brodsky, J. Luo, and H. Nash. CoReJava: learning functions expressed as
Object-Oriented programs. In Machine Learning and Applications, pages 368–375,
Los Alamitos, CA, USA, 2008. IEEE Computer Society.

4. A. Brodsky and H. Nash. CoJava: a unified language for simulation and optimiza-
tion. In Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 194–195, New York, NY, USA, 2005. ACM.

5. A. Brodsky and H. Nash. CoJava: optimization modeling by nondeterministic
simulation, in constraint programming. In Principles and Practice of Constraint
Programming (CP), pages 91–107, 2006.

6. Y. Carson and A. Maria. Simulation optimization: methods and applications. In
Winter Simulation Conference (WSC), pages 118–126, Atlanta, Georgia, United
States, 1997. IEEE Computer Society.

7. M. C. Fu, F. W. Glover, and J. April. Simulation optimization: a review, new
developments, and applications. In Winter Simulation Conference (WSC), 2005.

8. E. Hebrard, E. O’Mahony, and B. O’Sullivan. Constraint programming and combi-
natorial optimisation in Numberjack. Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR), pages
181–185, 2010.

9. N. Jussien, G. Rochart, and X. Lorca. The CHOCO constraint programming solver.
In CPAIOR08 Workshop on OpenSource Software for Integer and Constraint Pro-
gramming OSSICP08, 2008.

10. N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. Minizinc:
Towards a standard CP modelling language. Principles and Practice of Constraint
Programming (CP), pages 529–543, 2007.

11. C. Schulte, M. Lagerkvist, and G. Tack. GECODE – an open, free, efficient con-
straint solving toolkit. http://www.gecode.org/.

12. P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint programming
in OPL. Principles and Practice of Declarative Programming (PPDP), pages 98–
116, 1999.

16


