
Modelling Destructive Assignments

Kathryn Francis1,2, Jorge Navas2, and Peter J. Stuckey1,2

1 National ICT Australia, Victoria Research Laboratory
2 The University of Melbourne, Victoria 3010, Australia

Abstract. Translating procedural object oriented code into constraints
is required for many processes that reason about the execution of this
code. The most obvious is for symbolic execution of the code, where the
code is executed without necessarily knowing the concrete values. In this
paper, we discuss translations from procedural object oriented code to
constraints in the context of solving optimisation problems defined via
simulation. A key difficulty arising in the translation is the modelling of
state changes. We introduce a new technique for modelling destructive as-
signments that outperforms previous approaches. Our results show that
the optimisation models generated by our technique can be as efficient
as equivalent hand written models.

1 Introduction

Symbolic reasoning has been the crux of many software applications such as
verifiers, test-case generation tools, and bug finders since the seminal papers of
Floyd and Hoare [6, 8] in program verification and King [9] in symbolic execution
for testing. Common to these applications is their translation of the program or
some abstraction of it into equivalent constraints which are then fed into a
constraint solver to be checked for (un)satisfiability.

The principle challenge for this translation is effective handling of destructive
state changes. These both influence and depend on the flow of control, making
it necessary to reason disjunctively across possible execution paths. In object
oriented languages with field assignments, the disjunctive nature of the problem
is further compounded by potential aliasing between object variables.

In this paper we introduce a new, demand-driven technique for modelling
destructive assignments, designed specifically to be effective for the difficult case
of field assignments. The key idea is to view the value stored in a variable not
as a function of the current state, but as a function of the relevant assignment
statements. This allows us to avoid maintaining a representation of the entire
program state, instead only producing constraints for expressions which are ac-
tually required.

The particular application we consider for our new technique is the tool
introduced in [7], which aims to provide Java programmers with more convenient
access to optimisation technology. The tool allows an optimisation problem to be
expressed in simulation form, as Java code which computes the objective value
given the decisions. This code could be used directly to solve the optimisation
problem by searching over possible combinations of decisions and comparing the
computed results, but this is likely to be very inefficient. Instead, the tool in [7]

translates the simulation code into constraints, and then uses an off-the-shelf
CP solver to find a set of decisions resulting in the optimal return value.

Experimental results using examples from this tool demonstrate that our
new technique for modelling destructive assignments is superior to previous ap-
proaches, and can produce optimisation models comparable in efficiency to a
simple hand written model for the same problem.

2 Running Example

As a running example throughout the paper we consider a smartphone app for
group pizza ordering. Each member of the group nominates a number of slices
and some ingredient preferences. The app automatically generates a joint order
of minimum cost which provides sufficient pizza for the group, assuming that a
person will only eat pizza with at least one ingredient they like and no ingredients
they dislike. After approval from the user, the order is placed electronically.

Our focus is on the optimisation aspect of the application: finding the cheap-
est acceptable order. We assume that for each type of pizza both a price per
pizza and a price per slice is specified. The order may include surplus pizza if it
is cheaper to buy a whole pizza than the required number of individual slices.

Figure 1 shows a Java method defining this optimisation problem, called buil-
dOrder. The problem parameters are the contents of the people list and the de-
tails stored in the menu object when buildOrder is called. Each call to the method
choiceMaker.chooseFrom indicates a decision to be made, where the possible op-
tions are the objects included in the list pizzas. The objective is to minimise the
return value, which is the total cost of the order.

3 Translating Code into Constraints

To evaluate different possible translations from procedural code to constraints
we use examples from the tool in [7]. This tool actually performs the translation
on demand at run-time (not as a compile time operation), which complicates
the translation process somewhat. For the purpose of this paper however we will
ignore such implementation details, using the following abstraction to simplify
the description of the different translations.

We consider the translation to be split into two phases. In the first phase the
code is flattened into a linear sequence of assignment statements, each of which
has some conditions attached. We describe this transformation briefly below. In
the second phase, which is the main focus of the paper, the flattened sequence
of assignments is translated into constraints.

3.1 Flattening

In the Java programming language only the assignment statement changes the
state of the program. All other constructs simply influence which other state-
ments will be executed. It is therefore possible to emulate the effect of a piece of
Java code using a sequence of assignment statements, each with an attached set

2

int buildOrder() {
order = new Order(menu);
for(Person person : people) {

// Narrow down acceptable pizzas
pizzas.clear();
for(OrderItem item : order.items)
if(person.willEat(item))

pizzas.add(item);
// Choose from these for each slice
for(int i = 0; i < person.slices; i++) {

OrderItem pizza =
choiceMaker.chooseFrom(pizzas);

pizza.addSlice();
} }
return order.totalCost();
}

class Order {
List<OrderItem> items;
int totalCost() {
int totalcost = 0;
for(OrderItem item : items)

totalcost += item.getCost();
return totalcost;
}
}

class OrderItem
{
int pricePerPizza;
int pricePerSlice;
int fullPizzas = 0;
int numSlices = 0;

void addSlice() {
numSlices = numSlices + 1;
if(numSlices == slicesPerPizza) {

numSlices = 0;
fullPizzas = fullPizzas + 1;

} }

int getCost() {
int cost = fullPizzas ∗ pizzaPrice;
if(numSlices > 0) {
int slicesCost =

numSlices ∗ slicePrice;
if(slicesCost > pizzaPrice)

slicesCost = pizzaPrice;
cost = cost + slicesCost;

} }
}

Fig. 1: A Java simulation of a pizza ordering optimisation problem.

of conditions controlling whether or not it should be executed. The conditions
reflect the circumstances under which this statement would be reached during
execution of the original code.

The flattening process involves unrolling loops3, substituting method bodies
for method calls, and removing control flow statements after adding appropri-
ate execution conditions for the child statements. As an example, consider the
method getCost shown in Figure 1. To flatten an if statement we simply add
the if condition to the execution conditions of every statement within the then
part. The body of getCost can be flattened into the sequence of conditional
assignments given below.

Conditions Variable Assigned Value
1. cost := fullPizzas × pizzaPrice
2. (numSlices > 0) : slicesCost := numSlices × slicePrice
3. (numSlices > 0, slicesCost>pizzaPrice) : slicesCost := pizzaPrice
4. (numSlices > 0) : cost := cost + slicesCost

3 The tool in [7] only supports loops with exit conditions unaffected by the decisions,
or iteration over bounded collections. This means the number of loop iterations is
always bounded. For unbounded loops partial unrolling can be performed, and the
final model will be an under-approximation of the behaviour of the program.

3

An important optimisation is to consider the declaration scope of the variable
being assigned to. For example, if a variable is declared inside the then part of
an if statement (as is the case for the slicesCost variable above), assignments
to that variable need not depend on the if condition. In any execution of the
original code where the if condition does not hold, variables declared within the
then part would not be created, and therefore their values are irrelevant. This
means assignments 2 and 3 above do not need the condition numSlices > 0.

So far we have only considered assignments to local variables. For assign-
ments to object fields we record the variable holding the object as well as the
field identifier. Note that the value of the object variable may depend on the de-
cisions, so the concrete object whose field is updated by a particular assignment
statement is not necessarily known.

Some branch conditions may be independent of the decisions. In this case
the branch which doesn’t apply can be deleted and the condition removed. Simi-
larly, expressions which do not depend on the decisions can be calculated upfront
during the flattening process. In our running example, the code used to find ac-
ceptable order items for each person does not depend on any decisions, so rather
than including assignments originating in this part of the code in the flattened
sequence, we simply calculate these lists and then use them as constants.

Figure 3 in the appendix shows the sequence of assignments produced by flat-
tening our example function buildOrder. Note that calls to ChoiceMaker methods
are left untouched—these represent the creation of new decision variables.

4 Modelling Assignments: Existing Techniques

Using the flattening transformation described above and a straight forward
translation of mathematical and logical expressions, we reduce the problem of
representing Java code by constraints to that of modelling (conditional) assign-
ment statements. In this section we describe two existing approaches to this,
while in the next section we introduce a new proposed approach.

4.1 Typical CP Approach

One obvious technique for modelling assignments, and that used in [7, 2, 4], is to
create a new version of the assigned-to variable for each assignment, and then
use the latest version whenever a variable is referred to as part of an expression.
If the assignment has some conditions, the new version of the variable can be
constrained to equal either the assigned value or the previous version, depending
on whether or not the conditions hold. This is easily achieved using a pair of
implications, or alternatively using an element constraint with the condition as
the index. The element constraint has the advantage that some propagation is
possible before the condition is fixed, so we will use this translation.

The constraint arising from a local variable assignment is shown below, where
localvar0 is the latest version of localvar before the assignment, and localvar1 is
the new variable that results from the assignment, which will become the new
latest version of localvar. For convenience, in the rest of the paper we use a
simplified syntax for these constraints (also shown below).

4

assignment: condition : localvar := expression
↓

constraint: element(bool2int(condition)+1, [localvar0, expression], localvar1)
simple syntax: localvar1 = [localvar0, expression][condition]

This translation is only correct for local variables. Field assignments are more
difficult to handle due to the possibility of aliasing between objects. However,
if the set of concrete objects which may be referred to by an object variable is
finite (which is the case for our application), then it is possible to convert all
field assignments into equivalent assignments over local variables, after which
the translation above can be applied.

For each concrete object, a local variable is created to hold the value of each
of its fields. In the following we name these variables using the object name
and the field name separated by an underscore. Then every field assignment is
replaced by a sequence of local variable assignments, one for each of the possibly
affected concrete objects. These new assignments retain the original conditions,
and each also has one further condition: that its corresponding concrete object is
the one referred to by the object variable. Where necessary to avoid duplication,
an intermediate variable is created to hold the assigned expression.

An example of this conversion is shown below, where Obj1, Obj2, and Obj3
are the concrete objects possibly referred to by objectvar at this time.

field assignment: condition : objectvar.field := expression
↓

assignments: condition ∧ (objectvar = Obj1) : Obj1 field := expression
condition ∧ (objectvar = Obj2) : Obj2 field := expression
condition ∧ (objectvar = Obj3) : Obj3 field := expression

The final requirement is to handle references to object fields. Recall that we
know the set of concrete objects which may be referred to by the object variable,
and we have a local variable storing the field value for each of these concrete
objects. Therefore field references can be represented by a pair of element con-
straints sharing an index as shown below, where fieldrefvar is an intermediate
variable representing the retrieved value. We assume again that objectvar may
refer to Obj1, Obj2 or Obj3.

field reference: objectvar.field
↓

constraints: element(indexvar, [Obj1,Obj2,Obj3], objectvar)
element(indexvar, [Obj1 field,Obj2 field,Obj3 field], fieldrefvar)

In summary, this approach involves two steps. First the list of assignments is
modified to replace field assignments with equivalent local variable assignments,
introducing new variables as required. Then the new list (now containing only
local variable assignments) is translated into constraints, with special handling
for field references. This approach is quite simple, but can result in a very large
model if fields are used extensively. To see the result of applying this translation
to a portion of our running example, see Figure 2(b).

5

4.2 Typical SMT Approach

One of the main reasons for the significant advances in program symbolic reason-
ing (e.g. verification and testing) during the last decade has been the remarkable
progress in modern SMT solvers (we refer the reader to [1] for details). When
using SMT, local variable assignments can be translated in the same way as for
the CP approach (adding a new version of the variable for each assignment), but
using an if-then-else construct (ite below) instead of an element constraint.

assignment: condition : localvar := expression
↓

formula: localvar1 = ite(condition, expression, localvar0)

For field assignments, it is more convenient to use the theory of arrays. This
theory extends the theory of uninterpreted functions with two interpreted func-
tions read and write. McCarthy proposed [10] the main axiom for arrays:

∀a, i, j, x (where a is an array, i and j are indices and x is a value)
i = j → read(write(a, i, x), j) = x
i 6= j → read(write(a, i, x), j) = read(a, j)

Note that since we are not interested in equalities between arrays we only focus
on the non-extensional fragment.

Following the key idea of Burstall [3] and using the theory of arrays, we define
one array variable for each object field. An assignment to a field is modelled as a
write to an array containing the field values indexed by an object. The result is a
new array variable representing the new state of the field for all relevant objects.
This is much more concise and efficient than creating an explicit new variable
for each concrete object. Moreover, this modelling syntactically encodes the fact
that two fields cannot be aliased. Therefore, whenever one field is updated, only
the corresponding array variable is modified and any other field is unchanged.

We still need to handle assignments with conditions. If the condition does
not hold all field values should remain the same, so we can simply use an ite to
ensure that in this case the new array variable is equal to the previous version.

field assignment: cond : objectvar.field := expression
↓

formula: field1 = ite(cond, write(field0, objectvar, expression), field0)

A reference to an object field is represented as a read of the latest version of
the field array, using the object variable as the lookup index.

field reference: objectvar.field
↓

formula: read(field0, objectvar)

For a more complete example, see Figure 2(c). This example clearly demon-
strates that the SMT formula can be much more concise than the CP model
arising from the translation discussed in the previous section. Its weakness is its
inability to reason over disjunction (compared to element in the CP approach).
The approaches are compared further in Section 5.2.

6

pizzas1 := order items acceptable to 1st person
pizza1 := chooseFrom(pizzas1)

pizza1 . numSlices := pizza1.numSlices + 1
b1 := pizza1.numSlices == slicesPerPizza

(b1) : pizza1 . numSlices := 0

(a) First Five Assignments

pizza1 in {Veg, Marg}
element(index1, [Veg,Marg], pizza1)
element(index1, [Veg numSlices0,Marg numSlices0], pizza1 numSlices0)
temp1 = pizza1 numSlices0 + 1
Marg numSlices1 = [Marg numSlices0,temp1][pizza1 = Marg]
Veg numSlices1 = [Veg numSlices0,temp1][pizza1 = Veg]
element(index2, [Veg,Marg], pizza1)
element(index2, [Veg numSlices1,Marg numSlices1], pizza1 numSlices1)
b1 = (pizza1 numSlices1 == slicesPerPizza)
Marg numSlices2 = [Marg numSlices1,0][b1 ∧ pizza1 = Marg]
Veg numSlices2 = [Veg numSlices1,0][b1 ∧ pizza1 = Veg]

(b) CP Translation: Constraints

(pizza1 = Marg) ∨ (pizza1 = Veg)
numSlicesArray1 = write(numSlicesArray0, pizza1, read(numSlicesArray0,pizza1)+1)
b1 = (read(numSlicesArray1,pizza1) = slicesPerPizza)
numSlicesArray2 = ite(b1, write(numSlicesArray1,pizza1,0), numSlicesArray1)

(c) SMT Translation: Formula

Fig. 2: (a) The first 5 assignments in the flattened sequence for the running ex-
ample, and the constraints arising from applying (b) the obvious CP approach,
or (c) the SMT approach to translation. We assume an instance where the ac-
ceptable pizzas for the first person are Veg(etarian) and Marg(harita).

5 A New Approach to Modelling Assignments

The main problem with the CP approach presented earlier is the excessive num-
ber of variables created to store new field values for every object possibly affected
by a field assignment. Essentially we maintain a representation of the complete
state of the program after each execution step.

This is not actually necessary. Our only real requirement is to ensure that the
values retrieved using field references are correctly determined by the assignment
statements. Maintaining the entire state is a very inefficient way of achieving this,
since we may make several assignments to a field using different object variables
before ever referring to the value of that field for a particular concrete object.

We can see an example of this in our running example, where there are five
assignments to the fullPizzas field, all of which occur before we first look up
the value of this field for the concrete object item1 (see Figure 3). There is no
need to create variables to hold the value of item1.fullPizzas after each of the
assignments. We only need to know the value after all five.

7

To take advantage of this observation, we move away from the state-based
representation, instead simply creating a variable for each field reference, and
constraining this to be consistent with the relevant assignments. The relevant
assignments are those using the correct field identifier which occur before the
read and may refer to the same object.

As an example, let us consider the reference to item1.fullPizzas mentioned
above (line 30 in Figure 3). Below is the list of all assignments to any fullPizzas
field occurring before this reference. This is a superset of the relevant assign-
ments, which we will narrow down by reasoning about the possible values taken
by the object variables.

Conds Object Field/Var Assigned Value
6. (b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1

11. (b2) : pizza2 . fullPizzas := pizza2.fullPizzas + 1
17. (b3) : pizza3 . fullPizzas := pizza3.fullPizzas + 1
22. (b4) : pizza4 . fullPizzas := pizza4.fullPizzas + 1
27. (b5) : pizza5 . fullPizzas := pizza5.fullPizzas + 1

Each of the pizza variables is a slice choice which must correspond to one of
the acceptable order items for the relevant person. We have assumed previously
that the acceptable pizzas for person 1 are Veg and Marg. Let us assume that
person 2 will accept either Marg or Mush(room), and also that the order items
are listed in the order [item1,item2,item3] = [Veg,Marg,Mush]. Given these as-
sumptions, the possible values for each relevant object variable are shown below.

pizza1 ∈ {Veg,Marg} pizza3 ∈ {Marg,Mush} pizza5 ∈ {Marg,Mush}
pizza2 ∈ {Veg,Marg} pizza4 ∈ {Marg,Mush} item1 = Veg

Since pizza3, pizza4 and pizza5 cannot possibly refer to the same object as
item1, the last three assignments in the table above cannot affect the value of
item1.fullPizzas and so are not relevant. If the list included an assignment which
definitely applied (an unconditional assignment with object known to equal
item1) then we could also remove any assignments earlier than that. When there
is no such assignment (as in our case), we need to allow for the possibility that
none of the assignments apply to item1, in which case the value of item1.fullPizzas
will be the initial value stored in the field. To handle this we add an extra un-
conditional assignment at the beginning of the list to set item1.fullPizzas to its
original value (in our case this original value is 0). Note that if we had already
created constraints for an earlier read of item1.fullPizzas, we should avoid creat-
ing duplicate expressions and constraints by using the result of that read as the
initial value and only considering assignments after that point. Our final list of
relevant assignments is as follows.

item1 . fullPizzas := 0
(b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1
(b2) : pizza2 . fullPizzas := pizza2.fullPizzas + 1

To make the model correct, we need constraints ensuring that the retrieved
value (item1 fullPizzas) corresponds to the value associated with the most recent
of these assignments which applied to the correct object and actually took place

8

(had a true execution condition). To achieve this we introduce a new integer
variable indexvar whose value indicates which of the relevant assignments is the
one corresponding to this read. We use three element constraints to ensure that
the assignment at the selected index applies to the read object and is actually
executed, and that the retrieved value is equal to the value assigned at this index.

element(indexvar, [item1,pizza1,pizza2], item1)
element(indexvar, [true,b1,b2], true)
element(indexvar, [0,pizza1 fullPizzas + 1,pizza2 fullPizzas + 1], item1 fullPizzas)

Note that pizza1 fullPizzas and pizza2 fullPizzas are the variables introduced
for the field references used as part of the assigned values. These would be
constrained using their own list of relevant assignments.

The only remaining requirement is that we must choose the latest applicable
assignment. Using the natural order for the arrays this corresponds to the great-
est index. We therefore add additional constraints stating that if at index i the
object variables are equal and the execution condition is true, then the selected
index must be greater than i− 1.

(b1 ∧ pizza1 = item1) → indexvar > 1
(b2 ∧ pizza2 = item1) → indexvar > 2

The general form of the constraints used for field references is shown below.
References to local variables are treated as field references where the object
variable used is the same as that used for all relevant assignments. When this is
the case the first element constraint is not required (as it is trivially satisfied),
and the implications can be simplified to use only the execution condition on
the left hand side. Other obvious simplifications are also applied.

field reference: queryobj.field
↓

relevant assignments: queryobj.field := init
cond1 : obj1.field := expr1

...
condn : objn.field := exprn

↓
constraints: element(indexvar, [queryobj, obj1, ..., objn], queryobj)

element(indexvar, [true, cond1, ..., condn], true)
element(indexvar, [init, expr1, ..., exprn], queryobj field)

(cond1 ∧ queryobj = obj1) → indexvar > 1
...

(condn ∧ queryobj = objn) → indexvar > n

In some cases, we can detect a pattern to the relevant assignments which
allows us to use a more specialised constraint. The next section describes three
commonly occurring special cases and their alternative treatment.

5.1 Special Cases

The three special cases we look for are Boolean variables, sequences of assign-
ments representing a sum calculation, and sequences of assignments representing

9

a maximum or minimum calculation. The translation of assignments automati-
cally detects the cases described below and uses the more efficient translation.

Boolean Variables When the referenced variable is of type bool, we can define
a Boolean expression for the retrieved value rather than using element constraints
and implications as shown above. Usually an element constraint has an advantage
over a disjunction of equalities because it may reduce the domain of the value
when there are still several possibly applicable array elements with different
domains. However, if the value is a Boolean, then no propagation is possible
until all possibly applicable array elements have the same value.

For a reference to a bool field we constrain the result to be equal to the
expression shown below, which is true if some assignment with a true value
applies and no later assignment with a false value applies.

field reference: q.field
assignments: ci : oi.field := ei i ∈ 1..n

expression:
∨

i∈1..n

ci ∧ ei ∧ (oi = q) ∧
∧

j∈i+1..n

(ej ∨ ¬cj ∨ (oj 6= q))


Local variables are handled in the same way except without the object equal-

ities. Using this constraint instead of the generic constraint eliminates the need
to introduce an index variable, and allows simplifications to be performed when
objects are known to be equal, assigned values are fixed, or assignments are
unconditional.

Sum Calculations Computations often involve taking the sum of a set of
numbers. In a procedural language, sums are commonly calculated by iteratively
adding each number to a variable representing the total. This coding pattern
results in a sequence of writes where each written value is an addition of the
previous value of this variable and some other number. When this pattern is
detected, we can replace the usual constraints with a sum constraint.

relevant assignments: total := 0
total := total + value1
total := total + value2
total := total + value3

↓
constraint: finaltotal = sum([value1,value2,value3])

In the example above all assignments were unconditional and used exactly the
same variable (the local variable total). It is also possible to use a general form
of this constraint for sequences of assignments which do not represent a pure
sum but a related calculation, such as counting the objects which satisfy some
condition. Consider again the relevant writes for the reference to item1.fullPizzas
discussed earlier. A better constraint for item1 fullPizzas is shown below.

10

assignments: item1 . fullPizzas := 0
(b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1
(b2) : pizza2 . fullPizzas := pizza2.fullPizzas + 1

↓
constraint: item1 fullPizzas =

sum([bool2int(b1 ∧ pizza1=item1), bool2int(b2 ∧ pizza2=item1)])

The biggest advantage of this constraint is that it removes the need to create
and constrain the variables pizza1 fullPizzas and pizza2 fullPizzas. These can be
excluded from the model entirely as they were only used to build a new expression
to re-assign to the same variable, and are now not required to define the values
retrieved from this field.

The general form of the alternative constraint used for sums is given below.
This constraint is applicable whenever for all relevant assignments, either the
assignment definitely applies (this will be the first assignment in the list), or
the assigned value is an addition with one argument being a reference to the
assigned-to variable.

field reference: queryobj.field
assignments: condi : obji.field := obji.field + expri i ∈ 1..n
constraint: q field = sum([expri×bool2int(condi∧ obji = queryobj) |i ∈ 1..n])

Max/Min Calculations Another common coding pattern is to calculate a
maximum or minimum by iterating through a list of values overwriting a variable
each time a smaller/larger value is found. As with sum, we can detect this pattern
when building the constraints for the final read of the variable. This time in order
for the alternative constraint to apply, every non-initialisation assignment must
have a condition which compares the current value of the variable with the
assigned value. When there are no other assignment conditions, and the variable
is a local variable (or the assigned-to object is known to equal the read object
for all relevant assignments), we can use a max/min constraint as shown below.

assignments: max := init
(value1 > max) : max := value1
(value2 > max) : max := value2

↓
constraint: finalmax = max([init, value1, value2])

We can again extend to the general case for field assignments where the ob-
ject variables used for the writes and read are not known to be equal, and handle
assignments with additional conditions. When extra conditions are present, we
are calculating the maximum or minimum value for which these additional con-
ditions hold. For a maximum, we constrain the result to be no less than any
value for which the extra conditions hold, and to equal one of the values for
which the conditions hold. Minimum is handled equivalently.

field reference: queryobj.field
assignments: (condi ∧ valuei > obji.field) : obji.field := valuei i ∈ 1..n

↓
constraints:

∨
i∈1..n

condi ∧ (obji = queryobj) ∧ (result = valuei)∧
i∈1..n

(condi ∧ obji = queryobj)→ result ≥ valuei

11

Table 1: Comparing three approaches to modelling destructive assignments.
Time (secs) Failures (000s)

Benchmark smt orig orig+sp new new+sp hand orig orig+sp new new+sp hand

proj1 200 2.2 23.0 0.1 12.1 0.1 0.1 56 0 34 0 0
225 2.4 3.2 0.1 1.5 0.1 0.1 9 0 4 0 0
250 1.6 61.9 3 0.1 61.7 3 0.1 0.1 99 0 127 0 0

proj2 22 115.6 2 84.8 1 42.7 1 51.7 2 23.7 1 7.6 39 31 110 35 22
24 221.1 7 286.9 9 167.6 5 170.9 6 129.2 4 92.2 4 92 89 368 239 280
26 262.7 8 376.2 16 293.3 10 255.9 11 137.9 6 128.9 5 120 144 583 251 452

pizza 3 56.0 37.4 1 25.1 7.0 3.1 2.0 175 118 30 14 0
4 226.4 8 180.9 7 175.7 7 138.0 4 79.3 2 2.1 544 541 377 252 1
5 480.9 22 411.8 18 407.5 18 343.4 13 298.3 12 2.2 1170 1216 865 945 7

5.2 Comparison with Earlier Approaches

We compared the three presented translation techniques experimentally, using
the pizza ordering example plus two benchmarks used in [7] (those that don’t
require collections). We used 30 instances for each of several different sizes to
evaluate scaling behaviour. For the original and new CP approaches we show
the effect of adding +special cases. Special cases can be detected in the original
method, but only for local variables. Using the new translation makes these
cases also recognisable for fields. As a reference we also include a fairly naive
hand written model for each problem. The Java code defining the problems and
all compared constraint models are available online at www.cs.mu.oz.au/~pjs/
optmodel.

The CP models were solved using the lazy clause generation solver Chuffed.
The SMT versions were solving using Z3 [5]. Z3, like most SMT solvers, does
not have built-in support for optimisation. We used a technique similar to [11]
to perform optimisation using SMT: in incremental mode, we repeatedly ask for
a solution with a better objective value until a not satisfiable result is returned.

Table 1 shows average time to solve and failures for the different models.
The small number next to the time indicates number of timeouts (> 600s). The
results show while the SMT approach does compete with the original approach,
with special case treatment it does not. The new approach is quite superior and
in fact has a synergy with special cases (since more of them are visible). new+sp
competes with hand except for pizza where it appears that the treatment of
the relationship between slices and full pizzas used in hand is massively more
efficient than the iterative approach in the simulation.

6 Collection Operations

The code for the pizza ordering example makes use of collection classes from the
Java Standard Library: Set, List and Map. In this case no special handling is
required as all collection operations are independent of the decisions, but often
it is more natural to write code where that is not the case. For example, say
we wished to extend our application to choose between several possible pizza

12

outlets, each with a different menu. We could do this by adding one extra line
at the beginning of the buildOrder function.

menu = chooseFrom(availableMenus);

This change means the contents of the OrderItem list in the Order class will
depend on the decisions, so the for loop iterating over this list (in buildOrder)
will perform an unknown (though bounded) number of iterations, and the result
of any query operations on this list will also depend on the decisions.

In [7], collection operations were supported by introducing appropriately con-
strained variables representing the state of each collection after each update
operation (e.g. List.add). Query operations (e.g. List.get) were represented as a
function of the current state of the relevant collections. This is analogous to the
way field assignments were handled, with the same drawbacks.

Fortunately our new technique can also be extended to apply to collection
operations, resulting in a much more efficient representation. Where previously
the flattened list of state changing operations contained only assignments, we
now also include collection update operations. Then every query operation on
a collection is treated analogously to a field reference. That is, a new variable
is created to hold the returned value, and constraints are added to ensure that
this value is consistent with the relevant update operations.

Below we provide details of the constraints used for List operations. Set and
Map operations are treated similarly; a detailed description is omitted for brevity.
We then give experimental results using collection-related benchmarks from [7].

6.1 Example: List

For the List class we support the following operations.

update operations: add (at end of list), replace (item at index)
query operations: get (item at index), size

We will explain how these operations are supported by example. A code snip-
pet containing one of each operation type is shown below. Also shown are the
assumed possible variable values and initial list contents, and the flattened list
of collection update operations. Each update operation has an associated con-
dition, list, index and item. For the add operation, the index is a variable size1
holding the current size of list1. The first three operations in the table reflect
the original contents of the lists.

if(cond) {
list1.add(A);
list1.replace(0, item);
}
if(list2.size() > ind)
item = list2.get(ind);

(a) Code

list1 ∈ {L1,L2,L3}
ind ∈ {0,1,2}
list2 ∈ {L1,L2,L3}
item ∈ {A,B,C}
cond ∈ {true,false}
L1:[A,B], L2:[C], L3:[]

(b) Variables

Cond List Index Item
L1 [0] := A (add)
L1 [1] := B (add)
L2 [0] := C (add)

cond : list1 [size1] := A (add)
cond : list1 [0] := item (repl)

(c) Update Operations

13

With our limited set of supported update operations (which is nevertheless
sufficient to cover all code used in the benchmarks from [7]), the size of a list is
simply the number of preceding add operations applying to this list and having
true execution conditions. Note that the replace operation is not relevant to size.

query: sizeresult := list2.size()
constraint: sizeresult = sum([bool2int(list2=L1), bool2int(list2=L1),

bool2int(list2=L2), bool2int(list2=list1∧cond)])

A get query is treated almost exactly like a field reference. The value returned
must correspond to the most recent update operation with true execution con-
dition which applied to the correct list and index. There is however one extra
complication to be considered. A get operation which is not actually executed
should not impose any constraint on its index and list variables. In the con-
straints shown below, the final element of each array has been added to allow
the result variable for our get query to take the arbitrary value A when the get
would not be executed (size2>ind is false). Without this the constraints would
incorrectly force ind and list2 to correspond to an executed update operation.

query : getresult := list2.get(ind)
constraints: element(indexvar, [L1,L1,L2,list1,list1,list2], list2)

element(indexvar, [0,1,0,size1,0,ind], ind)
element(indexvar, [true,true,true,cond,cond,¬(sizeresult>ind)], true)
element(indexvar, [A,B,C,A,item,A], getresult)
(list2=L1) ∧ (ind=1) → indexvar ≥ 2
(list2=list1) ∧ (ind=size1) ∧ cond → indexvar ≥ 4
(list2=list1) ∧ (ind=0) ∧ cond → indexvar ≥ 5
¬(sizeresult>ind) → indexvar ≥ 6

6.2 Comparison on Benchmarks with Collections

Table 2 compares the original and new translation approaches with hand written
models, using problems involving variable collections from [7]. It is clear that the
new translation substantially improves on the old in most cases, and is never very
much worse (bins,knap1). With the addition of special case treatment the new
translation is often comparable to the hand written model, though certainly not
always (proj3, route). In a few instances it is superior (bins,golf), this may be
because it uses a sequential search extracted from the Java problem structure, or
indeed that the intermediate variables it generates give more scope for reusable
nogood learning.

7 Conclusion

Effective modelling of destructive assignment is essential for any form of rea-
soning about procedural code. We have developed a new encoding of assign-
ment and state that gives effective propagation of state-related information. We
demonstrate the effectiveness of this encoding for the automatic generation of
optimisation models from simulation code, showing that the resulting model can
be comparable in efficiency to a hand-written optimization model.

14

Table 2: Comparison on examples which use variable collections.
Time (secs) Failures (000s)

Benchmark orig+sp new new+sp hand orig+sp new new+sp hand

bins 12 2.6 5.3 1.1 1.2 8.1 32.5 6.2 13.8
14 82.8 1 129.6 3 7.6 18.0 95.4 612.9 75.1 169.9
16 327.2 15 391.6 15 84.8 141.6 5 315.1 1617.6 749.5 1355.0

golf 4,3 0.7 0.2 0.2 21.3 0.7 0.8 0.7 159.7
4,4 3.4 2.0 0.3 0.1 0.8 6.7 0.0 0.0
5,2 2.4 0.8 0.3 1.5 0.4 0.3 0.0 12.3

golomb 8 1.3 1.2 1.2 1.2 10.8 10.4 10.4 24.0
9 14.0 12.9 12.9 13.7 55.4 51.9 51.9 149.4

10 161.5 144.1 151.8 178.8 281.1 284.5 284.5 1211.0
knap1 70 2.1 8.3 2.8 1.8 33.3 2.2 1.9 33.3

80 7.5 18.4 7.1 6.8 95.7 3.5 3.5 95.7
90 14.2 31.9 12.7 13.9 180.2 4.5 4.5 180.2

knap2 70 20.9 23.2 22.4 34.7 247.8 245.4 245.4 425.8
80 88.4 2 87.7 2 93.9 2 117.5 3 935.2 901.8 915.0 1253.1
90 223.6 5 229.9 5 230.9 5 207.0 5 2263.9 2182.7 2199.3 2085.5

knap3 40 26.2 0.9 0.3 0.2 14.3 0.5 0.4 1.3
50 81.1 2.2 1.3 0.1 25.0 0.8 0.6 2.4
60 295.2 6 4.2 1.8 0.4 58.7 1.4 1.2 10.2

proj3 10 153.9 5 2.3 2.4 0.1 289.3 9.3 11.6 0.1
12 509.4 24 28.0 20.7 0.1 778.5 83.5 92.1 0.2
14 600.0 30 133.9 2 102.9 1 0.1 807.3 299.5 394.5 0.5

route 5 34.2 1.7 1.7 0.2 34.0 6.3 6.3 2.3
6 338.3 3 43.7 43.1 0.8 195.8 57.5 57.5 7.6
7 600.0 30 536.9 20 502.5 17 2.7 263.2 286.9 333.1 19.2

talent 3,8 11.1 3.4 0.9 0.8 25.9 17.2 5.0 8.9
4,9 170.8 42.7 8.8 7.3 159.7 127.3 31.1 52.4

4,10 545.5 22 223.0 1 77.9 54.6 459.7 510.8 178.1 212.5

In the future we will investigate the use of this encoding for symbolic ex-
ecution in applications such as test generation. The main difference for these
applications is the lack of a known initial state. This will require the creation
of variables to represent unknown initial field values, with constraints ensuring
that if a pair of object variables are equal then their corresponding initial field
variables are also equal.

Uncertainty about the initial state will also have an impact on the number of
relevant assignments for each field reference. For a query object with unbounded
domain all assignments to the same field occurring prior to the read are relevant,
unless one of these is an unconditional assignment using this exact variable.

These differences may mean that redundant constraints relating reads to each
other (which we have not discussed in this paper due to their lack of impact for
our application) become more important for effective propagation.

Acknowledgments NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

15

References

1. Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185. February 2009.

2. A. Brodsky and H. Nash. CoJava: optimization modeling by nondeterministic
simulation, in constraint programming. In Principles and Practice of Constraint
Programming (CP), pages 91–107, 2006.

3. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

4. H. Collavizza, M. Rueher, and P. Van Hentenryck. CPBPV: a constraint-
programming framework for bounded program verification. Constraints, 15(2):238–
264, 2010.

5. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

6. R. W. Floyd. Assigning meanings to programs. In Proceedings of the American
Mathematical Society Symposia on Applied Mathematics, volume 19, pages 19–31,
1967.

7. K. Francis, S. Brand, and P.J. Stuckey. Optimization modelling for software devel-
opers. In M. Milano, editor, Proceedings of the 18th International Conference on
Principles and Practice of Constraint Programming, number 7514 in LNCS, pages
274–289. Springer, 2012.

8. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, October 1969.

9. James C. King. Symbolic Execution and Program Testing. Com. ACM, pages
385–394, 1976.

10. John McCarthy. Towards a mathematical science of computation. In IFIP
Congress, pages 21–28, 1962.

11. Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q) cost
functions. In IJCAR, pages 484–498, 2012.

16

A Assignments for Running Example

Conds Object Field/Var Assigned Value
1. pizzas1 := order items acceptable to 1st person
2. pizza1 := chooseFrom(pizzas1)
3. pizza1 . numSlices := pizza1.numSlices + 1
4. b1 := pizza1.numSlices == slicesPerPizza
5. (b1) : pizza1 . numSlices := 0
6. (b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1

7-11. repeat assignments 2-6 for 2nd slice (using vars pizza2 and b2)
12. pizzas2 := order items acceptable to 2nd person
13. pizza3 := chooseFrom(pizzas2)
14. pizza3 . numSlices := pizza3.numSlices + 1
15. b3 := pizza3.numSlices == slicesPerPizza
16. (b3) : pizza3 . numSlices := 0
17. (b3) : pizza3 . fullPizzas := pizza3.fullPizzas + 1

18-22. repeat assignments 13-17 for 2nd slice (using vars pizza4 and b4)
23-27. repeat assignments 13-17 for 3rd slice (using vars pizza5 and b5)

28. totalcost := 0
29. item1 := first OrderItem
30. cost1 := item1.fullPizzas × item1.pizzaPrice
31. b6 := item1.numSlices > 0
32. slicesCost1 := item1.numSlices × item1.slicePrice
33. b7 := slicesCost1>item1.pizzaPrice
34. (b7) : slicesCost1 := item1.pizzaPrice
35. (b6) : cost1 := cost1 + slicesCost1
36. totalcost := totalcost + cost1

37-44. repeat assignments 29-36 for 2nd order item (using vars item2 etc.)
45-52. repeat assignments 29-36 for 3rd order item (using vars item3 etc.)

53. objective := totalcost

Fig. 3: Flattened version of buildOrder method, assuming that the list people
contains two Person objects, the first requiring two slices and the second requiring
three, and that the menu object lists three different types of pizza, meaning the
order will contain three OrderItems. The b variables have been introduced to store
branching conditions. Variables from methods called more than once and those
used as the iteration variable in a loop are numbered to distinguish between the
different versions.

17

