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Abstract. Decisions diagrams such as Binary Decision Diagrams (BDDs),
Multi-valued Decision Diagrams (MDDs) and Negation Normal Forms
(NNFs) provide succinct ways of representing Boolean and other finite
functions. Hence they provide a powerful tool for modelling complex
constraints in discrete satisfaction and optimization problems. Generic
propagators for these global constraints exist, but they are complex and
hard to implement. An alternative approach to making use of them for
solving is to encode them to CNF, using SAT style solving technology
to implement them e�ciently. This may also have advantages since it is
naturally incremental and exposes intermediate literals which may well
be useful as search decisions for solving the problem.
In this paper we explore di↵erent ways that we can map these con-
straints to CNF, and the di↵erent properties these mappings maintain.
Surprisingly the most used encoding of BDDs does not maintain domain
consistency in arbitrary BDDs. We also consider the strength of prop-
agation with respect to the intermediate literals. We give experiments
which compare the performance of the di↵erent encodings.

1 Introduction

Decisions diagrams such as Binary Decision Diagrams (BDDs), Multi Decision
Diagrams (MDDs) and Negation Normal Forms (NNFs) provide succinct ways of
representing Boolean and other finite functions. Hence they provide a powerful
tool for modelling complex constraints in discrete satisfaction and optimization
problems.

Constraint programming solvers include generic propagators for propagating
constraints represented by BDDs [16], MDDs [8] and NNFs [15], since they are
highly flexible, and hence useful in many di↵erent models. But these propagators
are complex and hard to implement.

An alternative approach to making use of them for solving is to encode them
to CNF, using SAT style solving technology to implement them e�ciently. If the
remainder of the problem is naturally modelled in CNF then this allows a SAT
solver to tackle the problem.

A SAT encoding may also be preferable within a CP solver, as it avoids
the need for implementing complex propagators, is naturally incremental, and
exposes intermediate literals as candidates for search and learning. A good en-
coding is critical in lazy decomposition approaches [1], where a propagator that



participates in many conflicts is replaced by a CNF decomposition during run-
time.

In this paper we explore di↵erent approaches for encoding decision diagrams
to CNF. 1 The contributions of this paper are:

– An investigation of a large design space for encoding decision diagrams
– We clarify the picture of BDD/MDD/NNF encodings, analyse their propa-

gation strength and correct some misunderstandings in the literature.
– We introduce an encoding of BDDs and MDDs where unit propagation im-

plements propagation completeness.
– Experiments which compare the performance of the di↵erent encodings.

2 Preliminaries

2.1 SAT Solving

We denote the Boolean value true by > and false by ?.
Let Y = {y1, y2, . . .} be a fixed set of propositional variables. If y 2 Y then y

and ¬y are positive and negative literals, respectively. The negation of a literal l,
written ¬l, denotes ¬y if l is y, and y if l is ¬y. A clause is a disjunction of literals
¬y1_· · ·_¬yp_yp+1_· · ·_yn, sometimes written as y1^· · ·^yp ! yp+1_· · ·_yn.
A CNF formula F is a conjunction of clauses.

A set of literals A is contradictory if 9y.{y,¬y} ⇢ A. A (partial) assignment

A is a set of literals which is not contradictory. A literal l is true in A if l 2 A,
is false in A if ¬l 2 A, and is undefined in A otherwise. An extension of an
assignment A is an assignment A0 where A0 � A. A complete assignment is an
assignment with no undefined literals. Given a partial assignment A, a completion

of A is an extension of A which is a complete assignment.
A complete assignment A satisfies formula � if replacing each y in � which

is true in A with > and replacing each y in � which is false in A with ? gives
an expression which evaluates to >. A partial assignment A satisfies formula �,
written A |= � if every completion of A satisfies �.

Systems that decide whether a CNF formula F has any model are called SAT
solvers, and the main inference rule they implement is unit propagation: given
a CNF F and an assignment A, find a clause in F such that all its literals are
false in A except at most one, say l, which is undefined, add l to A and repeat
the process until reaching a fix-point. See e.g. [21] for more details.

For some set of clauses C, we shall use UPC(A) to denote the set of lit-
erals inferred by unit propagation on C starting from assignment A. We will
omit the C subscript when clear from the context. Note that UPC(A) may be
contradictory, in which case unit propagation has detected unsatisfiability.

1 A longer version of this paper including proofs of all Theorems can be found at
people.eng.unimelb.edu.au/pstuckey/mddenc.pdf.



2.2 Propositional Encodings

Problems of interest rarely (if ever) begin in CNF form. Boolean formulae �
must be first converted into some equisatisfiable conjunction of clauses F�. The
seminal work here is the Tseitin transformation [25], later refined by Plaisted
and Greenbaum [22], which introduces a variable for each sub-formula and adds
clauses to enforce the semantics of each connective.

While equisatisfiability is su�cient for correctness, the choice of decomposi-
tion can have a great impact on solver performance. A major consideration here
is propagation strength – that is, given some partial assignment A and formula
�, what can be said of UPF�(A).

There are a number of properties we may wish of F�.

– An encoding F� for a formula � is correct if any complete assignment A
on vars(�) where A |= �, then A has an extension satisfying F�, and any
complete assignment A |= ¬� has no extension satisfying F�.

– An encoding F� for a formula � implements consistency if for every assign-
ment A over vars(�) where A |= ¬�, then UPF�(A) is contradictory.

– An encoding F� for a formula � implements domain consistency when for
each literal l over vars(�), if A |= � ! l then l 2 UPF�(A).

– An encoding F� for a formula � implements unit refutation completeness [26]
(also called SLUR [19]) when for assignment B over vars(F�) where B |=
¬F�, then UPF�(B) is contradictory.

– An encoding F� for a formula � implements propagation completeness [6, 19]
when for each literal l over vars(F�), B |= F� ! l then l 2 UPF�(B).

Another important consideration is the encoding size. In general, smaller
encodings are more e�cient than larger ones, if both have the same propagation
strength.

2.3 At-most-one and Exactly-one Constraints

Given a set of literals l1, . . . , ln, the At-most-one (AMO) constraint over these
literals is defined as l1 + l2 + . . .+ ln  1.

There are several ways to encode AMO into SAT [14, 3, 7]. Here, we consider
the ladder encoding. It introduces variables {ai := l1 _ . . . _ li | 1  i < n} and
clauses {ai ! ai+1, li ! ai, li+1 ! ¬ai}. It is easy to see that this encoding is
propagation complete.

Given a set of literals l1, . . . , ln, the Exactly-one (EO) constraint over these
literals is defined as l1 + l2 + . . .+ ln = 1. Notice that

EO({l1, . . . , ln}) = AMO({l1, . . . , ln}) ^ (l1 _ . . . _ ln)

This defines a propagation complete encoding for EO given a propagation com-
plete encoding of AMO.



2.4 Direct Encoding for Integer Variables

There are di↵erent methods for encoding integer variables into SAT (see for
instance [27, 18]). In this paper we use the direct encoding.

Let x be an integer variable with domain [a, b]. The direct encoding introduces
Boolean variables [[x = i]] for a  i  b. A variable [[x = i]] is true i↵ x = i. The
encoding also introduces the constraint EO({[[x = i]] | a  i  b}).

We will sometimes treat Boolean variables b as integers with domain [0,1].
We will implicitly assume that the direct encoding clauses EO({[[x = i]] | a 

i  b}) are part of any encoding of formula using integers x. We also assume all
assignments A are closed under unit propagation of these clauses.

We extend the notion of satisfaction to formulae involving integer variables,
as follows. A complete assignment A satisfies � if replacing each Boolean vari-
able as before, and each integer variable xi by j if [[xi = j]] 2 A (since A |=
EO({[[xi = j]] | a  j  b}) there must be exactly one) and evaluating the
resulting ground expression gives >. We extend the notation A |= � as before.

2.5 Multi-valued Decision Diagrams

A directed acyclic graph M is called an ordered Multi-valued Decision Diagram

(MDD) if it satisfies the following properties:

– It has two terminal nodes, namely T (true) and F (false).
– Each non-terminal node is labeled by an integer variable {x1, x2, · · · , xn}.

This variable is called selector variable.
– Every node labeled by xi has the same number of outgoing edges, namely

bi � ai + 1, where [ai, bi] is the domain of xi.
– If an edge connects a node with a selector variable xi and a node with a

selector variable xj , then j > i.

The MDD is quasi-reduced if no isomorphic subgraphs exist. It is reduced if,
moreover, no nodes with only one child exist. A long edge is an edge connecting
two nodes with selector variables xi and xj such that j > i+1. In the following
we only consider quasi-reduced ordered MDDs without long edges, and we just
refer to them as MDDs for simplicity.2 We refer to [24] for further details about
MDDs.

Given an MDD M we use ⇢ to refer to its root node. Given a node ⌫ 2 M,
we write var(⌫) = xj when node ⌫ is labelled by xj . Given an edge " 2 M, we
write " = edge(⌫, µ, [[xi = j]]) if " joins the node ⌫ and µ when xi = j.

An MDD represents a formula over integer variables: a MDD node ⌫ with
selector x with domain [a, b] and children ⌫a, ⌫a+1, . . . , ⌫b represents the formula
�⌫ where

�⌫ ⌘
_

i2[a,b]

x = i ^ �⌫i

2 Notice, however, that every result in this paper holds for non-reduced MDDs without
long edges, and with some modifications of the rules the results also extend to non-
reduced MDDs with long edges.
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Fig. 1. (a) MDD of x2 = 0 _ (x3 = 0 ^ x2 � x1 = 1) and (b) BDD of x2 ^ (x1 _ x3)

where �⌫i is the formula represented by node ⌫i, and �T = > and �F = ?.

Example 1 Let us consider the MDD encoding of x2 = 0_(x3 = 0^x2�x1 = 1),
with x1, x3 2 {0, 1} and x2 2 {0, 1, 2}, shown in Figure 1(a). In this case ⇢ = ⌫1,
var(⌫3) = x2, and the rightmost edge from ⌫3 is edge(⌫3, ⌫6, x2 = 1). �⌫4 $ >,
�⌫5 $ x3 = 0, �⌫6 $ ?, and hence �⌫2 $ (x2 = 0 ^ >) _ (x2 = 1 ^ x3 =
0) _ (x2 = 2 ^ ?) or equivalently �⌫2 $ x2 = 0 _ (x2 = 1 ^ x3 = 0). ⇤

A binary decision diagram (BDD) is an MDD with only Boolean variables.
For a BDD M we can consider a non-terminal node ⌫ as a triple (x, t, f) where
there are two outgoing edges edge(⌫, t, x) and edge(⌫, f,¬x). The BDD node ⌫
represents the formula �⌫ ⌘ ITE(x,�t,�f ) or equivalently (x^ �t)_ (¬x^ �f ).

2.6 Negation Normal Form Formulae

A negation normal form formula (NNF) is a rooted, directed acyclic graph
(DAG) where each leaf node is labeled with x or ¬x and each internal node
is labeled with ^ or _ and can have arbitrarily many children.

NNFs are a more general form of decision diagram than BDDs, and can be
exponentially more compact to represent the same formula [11]. We can use
NNFs to express formulae over finite domain integer variables using the direct
encoding.

But NNFs in general are too expressive, so usually we require some additional
properties, such as:

decomposable An NNF N is decomposable if for each conjunction � in N , the
conjuncts of � do not share variables. That is, if �1, . . . ,�n are the children
of and-node �, then vars(�i) \ vars(�j) = ; for i 6= j.

deterministic An NNF N is deterministic if for each disjunction � in N , each
two disjuncts of � are logically contradictory. That is, if �1, . . . ,�n are the
children of or-node �, then �i ^ �j |= ? for i 6= j.



smooth An NNF N is smooth if for each disjunction � in N , each disjunct
of � mentions the same variables. That is, if �1, . . . ,�n are the children of
or-node �, then vars(�i) = vars(�j) for i 6= j.

3 Encoding MDDs

3.1 Encoding BDDs

The BDD encoding of MiniSat+ [13] is defined as follows: For each non-terminal
BDD node ⌫ = (x, t, f) we generate a Boolean variable ⌫ which represents the
truth value of the BDD rooted at ⌫.

For each non-terminal node ⌫ = (x, t, f), we generate the following clauses:

B1 t ^ x ! ⌫.
B2 ¬t ^ x ! ¬⌫.
B3 f ^ ¬x ! ⌫.

B4 ¬f ^ ¬x ! ¬⌫.
B5 t ^ f ! ⌫.
B6 ¬t ^ ¬f ! ¬⌫.

Define encoding MiniSAT as B1–B6, together with the terminal and root
clauses: T (the true terminal is true), ¬F (the false terminal is false) and ⇢ (the
root of the tree must be true).

Note while Een and Sorensen [13] refer to this as a Tseitin encoding, it is not
since Tseitin [25] does not include an ITE constructor, so in the Tseitin encoding
ITE(x, t, f) needs to be encoded as (x ^ t) _ (¬x ^ f).

The encoding contains O(s) variables and clauses, where s is the size of the
BDD.

Een and Sorensen [13] show that this encoding maintains domain consistency
when used to encode (sorted) pseudo-Boolean constraints

Theorem 1 ([13]). Unit propagation on the MiniSAT encoding for a BDD for

pseudo-Boolean constraint

Pn
i=1 cixi � d maintains domain consistency, assum-

ing the coe�cients ci are in non-increasing order. ⇤
This theorem does not hold without the ordering criterion. Consider the BDD

encoding x1+2x2+x3 � 3 (or equivalently x2^ (x1_x3)) shown in Figure 1(b).
Any solution of the BDD requires x2 is >. Unit propagation on the MiniSAT

encoding generates ¬F , T , ⌫1,¬⌫4, ⌫6 and nothing else.

Theorem 2. Unit propagation on the clauses (B2), (B4), (B6), ¬F , ⇢ for a

BDD maintains consistency. ⇤
All in all, the encoding is compact (especially if only clauses (B2), (B4), (B6),

¬F and ⇢ are used), but the propagation strength is low.

3.2 Encodings MDDs with One Variable per Node

The first set of encodings for MDDs, used for example in [2], are generalizations
of the MiniSat+ encoding. This is natural since they are also used to encode
pseudo-Boolean and linear constraints.

For each node ⌫ at level i, with children ⌫ai , ⌫ai+1, . . . , ⌫bi , where the domain
of xi is [ai, bi].



M1 ¬⌫j ^ [[xi = j]] ! ¬⌫ (generalizes B2 and B4).
M2 ⌫j ^ [[xi = j]] ! ⌫ (generalizes B1 and B3).
M3 ⌫ai ^ ⌫ai+1 ^ · · · ^ ⌫bi ! ⌫ (weakly generalizes B5).
M4 ¬⌫ai ^ ¬⌫ai+1 ^ · · · ^ ¬⌫bi ! ¬⌫ (weakly generalizes B6).

With these clauses, we can define di↵erent encodings:

Minimal: Clauses M1, ¬F , ⇢.
GenMiniSAT: Clauses M1–M4, T , ¬F , ⇢.

Minimal is very compact, but its propagation strength is low, moreover when
the original variables are fixed it does not necessarily fix all the node variables,
and hence does not preserve solution counts. GenMiniSAT is the natural gener-
alization of the BDD encoding from [13] to MDDs. Again, it is not the Tseitin
encoding [25] of the MDD. Both encodings use O(s) variables and O(sd) clauses,
where s is the MDD size and d is the maximum domain size of variables x.

Proposition 1 Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on

variables x satisfying the MDD M. Then, there exists a complete assignment

B � A over the variables x, ⌫ satisfying clauses GenMiniSAT. ⇤

Proposition 2 Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on

variables x not satisfying the MDD M, then clauses ⇢ and M1 propagate F . ⇤

Corollary 1 Minimal and GenMiniSAT are correct. ⇤

These two encodings, however, do not detect inconsistencies:

Example 2 Consider again the MDD of x2 = 0 _ (x3 = 0 ^ x2 � x1 = 1), with
x1, x3 2 {0, 1} and x2 2 {0, 1, 2} shown in Figure 1(a).

After simplification, GenMiniSAT consists of the following clauses:

¬[[x1 = 0]] _ ⌫2, ¬[[x1 = 1]] _ ⌫3, ⌫2 _ ⌫3, ¬[[x2 = 0]] _ ⌫2,
¬⌫4 _ ¬[[x2 = 1]] _ ⌫2, ⌫4 _ ¬[[x2 = 1]] _ ¬⌫2, ¬[[x2 = 2]] _ ¬⌫2 ¬[[x2 = 0]] _ ⌫3,
¬⌫4 _ ¬[[x2 = 2]] _ ⌫3, ⌫4 _ ¬[[x2 = 2]] _ ¬⌫3, ¬[[x2 = 1]] _ ¬⌫3 ¬[[x3 = 0]] _ ⌫4,
¬[[x3 = 1]] _ ¬⌫4.

Consider the partial assignment A = {¬[[x2 = 0]],¬[[x3 = 0]], [[x3 = 1]]}. It
cannot be extended to a complete assignment satisfying the MDD. However,
unit propagation does not fail.

The same happens with Minimal, since it is a subset of GenMiniSAT. ⇤

3.3 Tseitin Encoding of an MDD

In this section we describe an alternative encodings for an MDD, the Tseitin
encoding [25]. It detects inconsistencies with respect to the original variables
but does not enforce domain consistency.



The Tseitin encoding introduce Boolean variables representing the formula
of each edge. Let ⌫ be a node at level i, with outgoing edges {"j | j 2 J}. Let
" = edge(⌫, µ, [[xi = j]]) be an edge of M, then the Boolean variable " encoding
the edge represents the formula [[xi = j]] ^ �µ.

The clauses of the Tseitin encoding are, for each node ⌫ and edge "

T1 ⌫ !
W

j "j .
T2 " ! ⌫.
T3 " ! µ.
T4 " ! [[xi = j]].
T5 µ ^ [[xi = j]] ! ".

The Tseitin encoding, Tseitin, consists of clauses T1–T5, T , ¬F and ⇢. Therefore,
it consists in O(sd) variables and clauses, where s is the MDD size and d the
maximum domain size of variables x.

Proposition 3 Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on

variables x satisfying the MDD M. Then, there exists a complete assignment

B � A over the variables x, ⌫, " satisfying clauses Tseitin. ⇤
Proposition 4 Let A be a partial assignment on variables {xi, xi+1, . . . , xn},
and let ⌫ be a node of M at level i. Assume that there is no completion A0

of A
satisfying the MDD rooted at ⌫. Then, unit propagation on clauses Tseitin and

A enforces ¬⌫. ⇤
As a corollary, we can prove:

Theorem 3. Tseitin is correct; i.e., given a complete assignment of the input

variables, this encoding finds an inconsistency if and only if the assignment does

not satisfy M. Moreover, it implements consistency. ⇤
However, Tseitin does not preserve domain consistency.

Example 3 Let us consider the BDD of x2 ^ (x1 _ x3), shown in Figure 1(b).
Tseitin, once simplified, generates the following clauses:

"1,0 _ "1,1, ¬⌫2 _ x1 _ "1,0, ¬"1,0 _ ¬x1, ¬"1,0 _ ⌫2,
¬⌫3 _ ¬x1 _ "1,1, ¬"1,1 _ x1, ¬"1,0 _ ⌫3, ¬⌫2 _ "2,1,
¬⌫5 _ ¬x2 _ "2,1, ¬"2,1 _ ⌫2, ¬"2,1 _ x2, ¬"2,1 _ ⌫5,
¬⌫3 _ "3,1, ¬x2 _ "3,1, ¬"3,1 _ ⌫3, ¬"3,1 _ x2,
¬⌫5 _ "5,1, ¬x3 _ "5,1, ¬"5,1 _ ⌫5, ¬"5,1 _ x3.

Consider the partial assignment A = ;. Notice that x2 is not propagated
even though that there is no solution of M with ¬x2. Clause x2 _ "2,0 _ "3,0
would propagate x2. ⇤

Also, Tseitin does not implement unit refutation completeness:

Example 4 Consider the BDD of the constraint XOR(x1, x2, x3, x4) shown
in Figure 2. Node ⌫2 represents the constraint XOR(x2, x3, x4), and node ⌫3
represents ¬XOR(x2, x3, x4). It is clear, therefore, that the partial assignment
B = {⌫2, ⌫3} cannot be extended to a complete assignment satisfying M. How-
ever, Tseitin does not find any conflict. ⇤



3.4 Path-Based Encodings

Under the encodings described in Sections 3.2 and 3.3, the semantics of variables
match the Boolean formula they represent – a node/edge variable is true (in a
complete assignment) i↵ the corresponding formula is true.

In this section, we describe a set of path-based encodings. Like the Tseitin
encoding these introduce one variable per node and per edge, but the interpre-
tation of these variables is di↵erent. Under a path-based encoding, ⌫ (or ") is
true i↵ the path from the root r to T defined by the selector variables passes
through ⌫ (resp. ").

Unlike the previous encodings, the variables introduced here cannot be re-
used if a sub-formula occurs in multiple constraints. However, we shall see that
this interpretation allows us to make much stronger inferences.

A related treatment of path-based encodings of the regular constraint to
CNF can be found in Bacchus work in [4] and by Quimper and Walsh in [23]
in context of the grammar constraint. Our study provides a complete analysis
of such encodings for decision diagrams and introduces a novel encoding with
stronger propagation properties.

We generate clauses for each node ⌫ and connecting it to each of its outgoing
edge "j and each of it incoming edges �j , as well as clauses for each edge " =
edge(⌫, µ, [[xi = j]]).

P1 ⌫ ^ [[xi = j]] ! "j .
P2 ⌫ !

W
j �j where ⌫ 6= ⇢

P3 [[xi = j]] !
W
{"0 | "0 = edge(⌫, µ, [[xi = j]]) for some ⌫, µ 2 M}.

P4 EO({⌫0 2 M | Level(⌫0) = i}).

Clauses P1 enforce that a node on the path puts its outgoing edge on the
path. Clauses P2 require each node on the path (except the root) has an incoming
edge. Clauses P3 require that each integer value has an edge that supports it.
Clauses P4 require that exactly one node on each level is >.

With these clauses, we can define di↵erent encodings:

BasicPath: Clauses P1–P2, T1–T4, T , ¬F , ⇢.
NNFPath: BasicPath and clauses P3.
LevelPath: BasicPath and clauses P4.
CompletePath: BasicPath and clauses P3–P4.

All the encodings require O(sd) variables and clauses, where s is the MDD
size and d the maximum domain size of variables x.

A complete assignment A over the variables xi defines a path in M in the
obvious way. This path is denoted by ⌫1 = ⇢, "1, ⌫2, "2, . . . By definition of the
MDD, the assignment is compatible with M if and only if ⌫n+1 = T .

A complete assignment B over variables xi, ⌫, " is compatible with M if

– A := B \ ({[[xi = j]] | 1  i  n, j 2 [ai, bi]}{¬[[xi = j]] | 1  i  n, j 2
[ai, bi]}) is compatible with M.

– ⌫ 2 B i↵ ⌫ = ⌫i for some i on the path defined by A.



– " 2 B i↵ " = "i for some i on the path defined by A.

Proposition 5 Given a complete assignment A on the variables x compatible

with M, there exists a complete assignment B � A over the variables x, ⌫, "
satisfying clauses CompletePath. ⇤

Proposition 6 Let A be a partial assignment on variables x. Let UP(A) be the

set of propagated literals with BasicPath. Let ⌫ be a node of M, and " be an edge

of M. Then:

– ¬⌫ 2 UP(A) if A ^ ⌫ |= ¬M.

– ¬" 2 UP(A) if A ^ " |= ¬M. ⇤

Let us explain the idea behind the proof. If ⌫ has not been propagated to false,
we can create a path from ⇢ to T passing through ⌫, where all the nodes of this
path have not been propagated to false. This path will define a completion B
satisfying M with ⌫ 2 B.

To build this path, we start from ⌫. Since ¬⌫ 62 UP(A), ⌫ must have a parent
that has also not been propagated to false. This node, again, has a parent that
has not been propagated to false, etc. That gives a path from ⇢ to ⌫. In the same
way, ⌫ has a child that has not been propagated to false, and this child has a
child that has not been propagated to false, etc. That gives a path from ⌫ to T .
Concatenating both paths, we obtain the desired path from ⇢ to T .

Theorem 4. BasicPath maintains consistency by unit propagation. ⇤

BasicPath, however, does not maintain domain consistency. For that we need
clauses P3.

Example 5 Let us consider the BDD of x2 ^ (x1 _ x3), shown at Figure 1(b).
BasicPath, once simplified, generates the following clauses:

x1 _ "1,0, ¬x1 _ "1,1, ¬⌫2 _ x2, ¬⌫3 _ x2,
¬⌫5 _ x3, "1,0 _ "1,1, ¬⌫2 _ "2,1, ¬⌫3 _ "3,1,
¬⌫5 _ "5,1, ¬⌫2 _ "1,0, ¬⌫3 _ "1,1, ¬⌫5 _ "2,1,
"3,1 _ "5,1 ¬"2,1 _ ⌫2, ¬"3,1 _ ⌫3, ¬"5,1 _ ⌫5,
¬"1,0 _ ⌫2, ¬"1,1 _ ⌫3, ¬"2,1 _ ⌫5, ¬"1,0 _ ¬x1,
¬"1,1 _ x1, ¬"2,1 _ x2, ¬"3,1 _ x2, ¬"5,1 _ x3.

Consider the partial assignment A = ;. Then, unit propagation does not
propagate x2 even though that there is no solution of M with ¬x2. Clause
x2 _ "2,0 _ "3,0, from P3, would propagate x2. ⇤

As Corollary of Proposition 5 and Theorem 4, it follows that

Theorem 5. Encodings BasicPath, NNFPath, LevelPath and CompletePath are

correct; i.e., given a complete assignment of the input variables, these encodings

find an inconsistency if and only if the assignment does not satisfy M. ⇤



Theorem 6. NNFPath maintains domain consistency by unit propagation. ⇤

NNFPathmaintains domain consistency with respect to the original variables.
However, since a SAT solver will not di↵erentiate between original variables and
auxiliary ones, partial assignments, in general, contain both type of variables.
And, without clauses P4, the encodings are not propagation complete:

x1

x2x2

x3x3

x4x4

FT

⌫1

⌫2 ⌫3

⌫4 ⌫5

⌫6 ⌫7

"1,0 "1,1

"2,0
"2,1

"3,0
"3,1

"4,0
"4,1

"5,0
"5,1

"6,0
"6,1

"7,0
"7,1

Fig. 2. BDD of XOR(x1, x2, x3, x4)

Example 6 Consider the MDD shown in Figure 2, representing the constraint
XOR(x1, x2, x3, x4). Consider the partial assignment B = {⌫4, ⌫5}. It is clear
that B cannot be extended to a complete assignment satisfying M, since no
path can contain two nodes on the same level. However, NNFPath does not find
any conflict. ⇤

To maintain consistency with respect to all variables, clauses P4 are needed.
In that case, we can generalize the previous results to assignments containing
auxiliary variables:

Proposition 7 Let B be a partial assignment on all the variables. Let UP(B)
be the set of propagated literals with LevelPath. Let ⌫ be a node of M, and " be

an edge of M. Then:

1. ¬⌫ 2 UP(B) if B ^ ⌫ |= ¬M.

2. ¬" 2 UP(B) if B ^ " |= ¬M.

3. ⌫ 2 UP(B) if B ^ ¬⌫ |= ¬M.

4. " 2 UP(B) if B ^ ¬" |= ¬M.

Theorem 7. LevelPath is unit refutation complete. ⇤



LevelPath does not maintain domain consistency on all variables, though.
Example 5 shows a counterexample. To obtain domain consistency we once more
need the clauses P3.

Theorem 8. CompletePath is propagation complete. ⇤

The path based encoding do have one weakness compared to the Tseitin en-
coding. Since they require only a single path throught the MDD, we cannot allow
di↵erent MDD constraints that share a sub-MDD to reuse the same encoding,
we need a di↵erent copy of the encoding for each constraint. This is not the case
for Tseitin encdings where the node variable ⌫ just represents the truth value
of the sub-formula encoded by the MDD rooted at ⌫. To our knowledge this
restriction is not very significant in the CP context. No such sharing exists in
any of our benchmarks. The bulk of nodes in an MDD are in the middle and
unlikely to be shared. Moreover, separating MDDs per constraint for translation
allows us to use di↵erent variable orderings for each MDD and thus reduce the
number of nodes required. On the other hand, if substantial sharing of nodes
among the di↵erent MDDs happens then a Tseitin encoding could be beneficial,
since it translates this sharing to the CNF level.

The table below shows the sizes and propagation strength of the di↵erent
encodings. As before, s is the size of the MDD, d is the maximum domain size
of variables x and n is the number of variables x. Notice that usually n ⌧ s.

Minimal GMinisat Tseitin BasicP NNFP LevelP ComplP
Variables s s s(d+ 1) s(d+ 1) s(d+ 1) s(d+ 2) s(d+ 2)

Clauses sd s(2d+ 2) s(4d+ 1) s(4d+ 2)
s(4d+ 2)

s(4d+ 5)
s(4d+ 5)

+nd +nd
Consisistent 8 8 4 4 4 4 4
Dom. Consis. 8 8 8 8 4 8 4
Ref. Compl. 8 8 8 8 8 4 4
Prop. Compl. 8 8 8 8 8 8 4

4 Encoding NNFs

BDDs are a special case of NNFs and hence NNF encodings provide an alter-
nate approach to encoding BDDs. There is an existing encoding for NNFs given
by [20]. When applied correctly to MDDs it results in the NNFPath (hence the
name). But care has to be taken in NNF encodings, without the right restrictions
on the form of the NNF the encodings are incorrect!

An encoding of an NNF N to clauses is given by [20]. Each node ⌫ is asso-
ciated with a literal, also called ⌫. For leaf nodes the literal is just the label of
the node. For non-leaf nodes the literal is a new Boolean variable. The clauses
we make use of are

N1 ⌫ ! ⌫1 _ · · · _ ⌫k for each _-node ⌫ with children ⌫1, . . . , ⌫k
N2 ⌫ ! ⌫i, 1  i  k for each ^-node ⌫ with children ⌫1, . . . , ⌫k



__

_

^^

⌫1

⌫2 ⌫3

⌫4 ⌫5

x ¬x

p q ¬p ¬q

(a)

^^

_
⌫1

⌫2 ⌫3

q ¬qp

(b)

Fig. 3. NNF for formula (a) (x^ (p_ q))_ (¬x^ (¬p_¬q)) and (b) (¬q ^ p)_ (p^ q)

N3 ⌫ ! p1_ · · ·_pm for each node ⌫ with incoming edges from nodes p1, . . . , pm.

We consider two encodings: BaseNNF Clauses N1–N2 and ⇢, and ExtNNF

Clauses N1–N3 and ⇢ as defined in [20].

Theorem 9. Given an NNF N then BaseNNF is a correct encoding. ⇤
Note that this correctness result does not apply to ExtNNF unless the NNF

is smooth and decomposable. Jung [20] also claim that ExtNNF enforces domain
consistency for decomposable NNFs, but this too is incorrect.

Example 7 The NNF shown in Figure 3(a) is decomposable, deterministic but
not smooth (e.g. the two children of node ⌫4 do not mention the same variables).
The ExtNNF encoding is

N1 : ⌫1 ! ⌫2 _ ⌫3 ⌫4 ! p _ q ⌫5 ! ¬p _ ¬q
N2 : ⌫2 ! x ⌫2 ! ⌫4 ⌫3 ! ¬x ⌫3 ! ⌫5
N3 : ⌫2 ! ⌫1 ⌫3 ! ⌫1 x ! ⌫2 ⌫4 ! ⌫2 ¬x ! ⌫3

⌫5 ! ⌫3 p ! ⌫4 q ! ⌫4 ¬p ! ⌫5 ¬q ! ⌫5
⇢ : ⌫1

Consider the assignmentA = {x,¬q} unit propagation determines ⌫1, ⌫2, ⌫4, p, ⌫5, ⌫3,¬x.
and hence a contradiction. This is wrong since there is a model of the NNF
{x,¬q, p}. ⇤
Example 8 Consider the smooth, decomposable and deterministic NNF for
(¬q ^ p) _ (p ^ q) shown in Figure 3(b). Then the clauses of ExtNNF are

⇢ : ⌫1 N1 : ⌫1 ! ⌫2 _ ⌫3
N2 : ⌫2 ! ¬q ⌫2 ! p ⌫3 ! p ⌫3 ! q
N3 : ⌫2 ! ⌫1 ⌫3 ! ⌫1 ¬q ! ⌫2 p ! ⌫2 _ ⌫3 q ! ⌫3

Any model of the formula must make p true, but unit propagation on these
clauses derives only ⌫1. What is missing is information that ¬p does not appear
in the NNF. This means p must hold! ⇤



Bench Type Search #Inst Prop Minimal GMinisat Tseitin BasicP NNFP LevelP ComplP

Nurse

SAT

286 #sol 282 88 195 184 150 185 157 187
VSIDS 78 com 1.97 - 5.33 27.81 58.73 14.09 42.51 24.86

286 all 23.82 903.64 395.26 473.05 617.42 457.79 607.16 457.85
179 #sol 132 143 151 156 156 108 156 104

prog 80 com 3.42 - 6.19 6.61 18.39 54.63 29.96 50.86
179 all 329.63 284.73 212.5 181.65 171.95 516.36 177.19 526.63
46 #sol 32 29 46 27 31 33 32 32

UNSAT VSIDS 26 com 42.73 - 8.09 229.45 98.31 26.87 71.55 69.26
46 all 402.57 626.02 231.34 631.03 450.35 380.4 413.69 437.38

Shift OPT

120 #sol 114 85 96 97 116 115 110 116
VSIDS 78 com 109.8 - 166.51 161.91 51.54 88.07 68.91 117.44

120 all 213.84 535.59 457.94 444.8 174.65 252.11 224.41 276.17
56 #sol 49 48 56 48 55 50 52 48

prog 48 com 100.11 - 28.64 113.06 24.52 74.09 34.02 79.97
56 all 257.02 240.44 60.42 268.34 161.76 232.17 176.28 239.97

Pent
14 #sol 14 12 12 6 12 9 12 6

ALL prog 6 com 6.67 - 8.21 18.27 14.57 16.02 8.8 15.36
14 all 279.43 352.82 505.92 693.54 626.07 653.08 387.67 692.3

Table 1. Results on nurse rostering, shift scheduling and pentominoes.

To fix Jung’s encoding we add the following clauses

N4 ¬l for each literal l for vars(N ) which does not appear in N .

We denote by FullNNF Clauses N1–N4 and ⇢.

Theorem 10. Given a smooth decomposable NNF N then FullNNF is a correct

encoding.

Theorem 11. Given a smooth decomposable NNF N , then unit propagation on

FullNNF enforces domain consistency. ⇤
It follows that FullNNF is equivalent to NNFPath if applied to MDDs rewritten

as NNF. To summarise the results in this section we provide the following table.

BaseNNF ExtNNF FullNNF

Clauses N1-N2 N1-N3 N1-N4
Correctness Always Smooth and Smooth and

Decomposable Decomposable
Domain Consistent 8 8 4

5 Experiments

We show results on three benchmarks: nurse rostering, shift scheduling and pen-
tominoes (Nurse, Shift and Pent).3 The MDD encodings are implemented as

3 Benchmarks are available from people.eng.unimelb.edu.au/pstuckey/mddenc.tar.gz.



eager translations of MDDs within the LCG solver Chu↵ed [10, 9] and compared
with a native MDD propagator with learning [17]. We use SAT branching heuris-
tics(VSIDS) and the programmed search as specified in the models (prog). We
omit instances not solved by any solver using that search. For each model we
show: (#sol) the number of instances solved (SAT and UNSAT for Nurse, to op-
timality for Shift, all solutions for Pent); (com) the mean solving time in seconds
for all benchmarks solved by all solvers (except Minimal); and (all) the mean
solving time of all benchmarks using timeout (1200s) for unsolved instances.
The results on the encoding Minimal are omitted for com and for Pent since it
does not preserve solution counting. Best results are in bold, and second best
are underlined.

In case of satisfiable instances of Nurse the results show that encodings do
not compete with the native propagator. This is not surprising as the search
quickly finds the solutions without being disturbed by the complete CNF model
generated by the eager encodings. For the UNSAT instances decompositions
and their intermediate literals show their strength and beat the propagator.
GenMiniSAT shows best performance for these UNSAT instances with VSIDS.
The encodings also have an advantage over the propagator when programmed
search is used, but it is unclear which one dominates.

For Shift the results show that when using activity based search and branch-
ing takes place on auxiliary variables, the path based approaches are generally
superior.

The main advantage of the native propagator is that its explanations are
built in a more deterministic fashion and hence tend to be more reusable. Fur-
thermore, since the propagator only generates a fraction of the variables of the
eager encoding, the search is less likely get trapped in an unfruitful search space
using VSIDS. The di↵erence in results on SAT and UNSAT instances of Nurse
clearly indicate that a combination of the propagator and a lazy encoding as in
[1] would be a strong approach.

6 Conclusion and Future Work

This paper resulted from discussions that uncovered our own misunderstanding
of the strength of decision diagram encodings. We were surprised to discover that
the usual BDD encoding is not domain consistent. In this paper we seek to re-
move this confusion, and demonstrate a wealth of di↵erent encoding possibilities,
with di↵erent properties.

The experimental results show that there is unlikely to be one single best
encoding for MDDs, and hence an important direction of future work is to de-
termine when each encoding is best. Possibly a portfolio approach varying over
encodings of each constraint is a fruitful and pragmatic technique to solve hard
problems in practice.

Another interesting direction of future work is to determine a propagation
complete encoding for NNFs. It appears the result may require restricting to
Sentential Decision Diagrams [12] a form of NNF with a uniform V-tree.



The literature on CNF encodings focuses on consistencies wrt. primary vari-
ables of the constraint, whereas we have shown that consistency on auxiliary
variables are worthwhile to look at. Our work concentrated on translations of
decision diagrams and we would like to extend this research to other constraints
like linear and sequence. State-of-the-art CNF encodings of cardinality are
the next candidate for this investigation.

In case of theoretical results, an interesting direction is to establish lower
bounds on the size of encodings implementing certain consistencies for concrete
constraints. The strong relationship between CNF encodings and monotone cir-
cuits established in [5, 19] demonstrates a powerful tool for this purpose.
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Appendix A: Proofs

Theorem 2. Unit propagation on the clauses (B2), (B4), (B6), ¬F , ⇢ for a
BDD maintains consistency.

Proof. The proof is by induction. We show for any BDD node ⌫ rooting a BDD
of height n representing formula � given an assignment A if A |= ¬� the ¬⌫ 2
UP(A).

The base case is trivial since A 6|= ¬T and ¬F 2 UP(A). Given the result
holds for k < n we consider a BDD node ⌫ = (x, t, f) representing � = (x ^ t) _
(¬x ^ f) of height n.

Suppose A |= ¬� then either A |= x^¬�t or A |= ¬x^¬�f , or A |= ¬�t^¬�f .
By induction either {x,¬t} 2 UP(A) in which case ¬⌫ 2 UP(A) by clauses
(B2), or {¬x,¬f} 2 UP(A) in which case ¬⌫ 2 UP(A) by clauses (B4), or
{¬t,¬f} 2 UP(A) in which case ¬⌫ 2 UP(A) by clauses (B6).

Applying the induction hypothesis to the root: if A |= ¬�⇢ then ¬⇢ 2 UP(A)
and propagation detects the inconsitency. ⇤

Proposition 1. Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on
variables x satisfying the MDD M. Then, there exists a complete assignment
B � A over the variables x, ⌫ satisfying clauses GenMiniSAT.

Proof. We can define B as follows: given ⌫ 2 M at level i, ⌫ 2 B if and only if
{[[xi = vi]], [[xi+1 = vi+1]], . . . , [[xn = vn]]} satisfies the MDD rooted at ⌫, i.e., the
path from ⌫ defined by xi = vi, xi+1 = vi+1, . . . , xn = vn ends at T ; and ¬⌫ 2 B
otherwise.

Since A satisfies M, ⇢ 2 B so ⇢ is satisfied. Obviously, T ,¬F 2 B, so T and
¬F are also satisfied.

Given a node ⌫ 2 B, clauses M2 and M3 are satisfied. For j = vi, ⌫j 2 B by
construction, so clause M1 is satisfied. If j 6= vi, then ¬[[xi = j]] 2 B, so clause
M1 holds. Finally, since ⌫vi 2 B, clause M4 holds.

Given a node ⌫ 62 B, ¬⌫ 2 B, so clauses M1 and M4 are satisfied. For j = vi,
¬⌫j 2 B by construction, so clause M2 is satisfied. If j 6= vi, then ¬[[xi = j]] 2 B,
so clause M2 holds. Finally, since ¬⌫vi 2 B, clause M3 holds. ⇤

Proposition 2. Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on
variables x not satisfying the MDD M, then clauses ⇢ and M1 propagate F .

Proof. By induction on n. If n = 0, ⇢ = F so clause ⇢ propagates F . Let us
prove the general case.

If A = {[[xi = vi]] | 1  i  n} does not satisy M, then {[[xi = vi]] | 2  i  n}
does not satisfy ⌫, where ⌫ is the v1-th child of ⇢. Clause ⇢ and M1 propagate
⌫. By induction hypothesis, ⌫ and M1 propagate F . ⇤

Proposition 3. Let A = {[[xi = vi]] | 1  i  n} be a complete assignment on
variables x satisfying the MDD M. Then, there exists a complete assignment
B � A over the variables x, ⌫, " satisfying clauses Tseitin.



Proof. We can define B as follows: given ⌫ 2 M at level i, ⌫ 2 B if and only if
{[[xi = vi]], [[xi+1 = vi+1]], . . . , [[xn = vn]]} satisfies the MDD rooted at ⌫, i.e., the
path from ⌫ defined by xi = vi, xi+1 = vi+1, . . . , xn = vn ends at T ; and ¬⌫ 2 B
otherwise. Given " = edge(⌫, ⌫j , [[xi = j]]), " 2 B if [[xi = j]], ⌫j 2 B; and ¬" 2 B
otherwise.

Since A satisfies M, ⇢ 2 B so ⇢ is satisfied. Obviously, T ,¬F 2 B, so T and
¬F are also satisfied.

Clauses T3, T4 and T5 are satisfied by construction of B: " 2 B if and only
if [[xi = j]], ⌫j 2 B.

If ⌫ 2 B, then ⌫vi 2 B. Since [[xi = vi]] 2 B, edge(⌫, ⌫vi , [[xi = vi]]) 2 B.
Therefore, clause T1 is satisfied.

If " = edge(⌫, ⌫j , [[xi = j]]) 2 B, then ⌫j 2 B and [[xi = j]] 2 B, this is, j = vi.
If the path defined by A goes from ⌫j to T , then it goes from ⌫ to T , so ⌫ 2 B.
Therefore, clause T2 is satisfied. ⇤

Proposition 4. Let A be a partial assignment on variables {xi, xi+1, . . . , xn},
and let ⌫ be a node of M at level i. Assume that there is no completion A0 of A
satisfying the MDD rooted at ⌫. Then, unit propagation on clauses Tseitin and
A enforces ¬⌫.

Proof. By induction on n+1� i. If i = n+1, ⌫ = F and clause ¬F propagates
¬⌫. Let us prove the general case.

For every j in the domain of xi, let ⌫j be the j-th child of ⌫ and " =
edge(⌫, ⌫j , [[xi = j]]).

If [[xi = j]] 2 A, since A has no completion satisfying ⌫, then there is no com-
pletion of A satisfying ⌫j . By induction hypothesis, ¬⌫j is propagated. Therefore,
by (T3), ¬"j is propagated. For every j0 6= j, ¬[[xi = j0]] 2 A, so clause T4 prop-
agates ¬"j0 . Therefore, clause T1 propagates ¬⌫.

Assume now that [[xi = j]] 62 A for any j. Then, for every j, there is no
completion of A[{[[xi = j]]} satisfying ⌫; so there is no completion of A satisfying
⌫j . By induction hypothesis, ¬⌫j is propagated, so clause T3 propagates ¬"j .
Therefore, ¬⌫ is propagated by (T1). ⇤

Proposition 5. Given a complete assignment A on the variables x compatible
with M, there exists a complete assignment B � A over the variables x, ⌫, "
satisfying clauses CompletePath.

Proof. A defines a path in M. Let ⌫1 = ⇢, "1 = edge(⌫1, ⌫2, [[x1 = j1]]), ⌫2,
"2 = edge(⌫2, ⌫3, [[x2 = j2]]), . . ., ⌫n+1 = T be that path.

We define B as

B := A [ {⌫i, "i} [ {¬⌫ | ⌫ 6= ⌫i} [ {¬" | " 6= "i}.

B is obviously a complete assignment, and B � A. We only have to show that
B satisfies all the clauses of CompletePath.

Clause ⇢ is satisfied since ⌫1 = ⇢. Clause T is satisfied since ⌫n+1 = T . Clause
¬F is satisfied since the path does not contain F .



It is easy to check that clauses P1, P2 and T1 are satisfied: they are obviously
true if ⌫ 6= ⌫i, and, by construction of the path, they are true if ⌫ = ⌫i. The
same happens with clauses T2–T4.

P4 holds since the path contains exactly one node on each level. P3 obviously
holds for [[xi = j]] 62 A. For [[xi = j]] 2 A, "i is true, so P3 also holds. ⇤

Proposition 6. Let A be a partial assignment on variables x. Let UP(A) be
the set of propagated literals with BasicPath. Let ⌫ be a node of M, and " be
an edge of M. Then:

– ¬⌫ 2 UP(A) if A ^ ⌫ |= ¬M.
– ¬" 2 UP(A) if A ^ " |= ¬M.

Proof. – Let us assume that ¬⌫ 62 UP(A), and Level(⌫) = i. Let us call ⌫i := ⌫.
Since ¬⌫i 62 UP(A), either i = 1 or, by (P2), ⌫i has an incoming edge "i�1

such that ¬"i�1 62 UP(A). Let us define ⌫i�1 and ji�1 such as

"i�1 = edge(⌫i�1, ⌫i, [[xi�1 = ji�1]]).

Therefore, since ¬"i�1 62 UP(A), by clause T4 ¬[[xi�1 = ji�1]] 62 UP(A) and
by (T2) ¬⌫i�1 62 UP(A).
Again, since ¬⌫i�1 62 UP(A), either i�1 = 1 or there exists an incoming edge
"i�2 = edge(⌫i�2, ⌫i�1, [[xi�2 = ji�2]]) with ¬"i�2,¬[[xi�2 = ji�2]],¬⌫i�2 62
UP(A). In the same way, we can define ⌫i�3, "i�3, ⌫i�4, "i�4, . . . , ⌫1. Since
Level(⌫1) = 1, ⌫1 = ⇢.
Similarly, since ¬⌫i 62 UP(A), either i = n+1 or, by (T1), ⌫i has an outgoing
edge "i such that ¬"i 62 UP(A). As before, we define ⌫i+1 and ji such that
"i = edge(⌫i, ⌫i+1, [[xi = ji]]). By clauses (T3) and (T4), ¬[[xi = ji]],¬⌫i+1 62
UP(A). Therefore, we can repeat the process: either i + 1 = n + 1 or
there exists an outgoing edge "i+1 = edge(⌫i+1, ⌫i+2, [[xi+1 = ji+1]]) with
¬"i+1,¬[[xi+1 = ji+1]],¬⌫i+2 62 UP(A). Again, we repeat the process and
define "i+2, ⌫i+3, . . . , ⌫n+1. Since Level(⌫n+1) = n+ 1, ⌫n+1 2 {T ,F}. How-
ever, ¬F 2 UP(A) (since ¬F is a clause of BasicPath), and ¬⌫n+1 62 UP(A)
by construction. Therefore, ⌫n+1 = T .
Therefore, we have constructed a path ⌫1 = ⇢, "1, ⌫2, . . . , ⌫n+1 = T such
that, for all k 2 {1, . . . , n}:
• "k = edge(⌫k, ⌫k+1, [[xk = jk]]).
• ¬"k 62 UP(A).
• ¬⌫k 62 UP(A).
• ¬[[xk = jk]] 62 UP(A).

Let B be a complete assignment over the variables of BasicPath, with:

B := {[[xk = jk]], "k, ⌫k | 1  k  n} [ {¬l | l 6= [[xk = jk]], "k, ⌫k}.

Obviously, B |= M and ⌫ 2 B. Therefore, we only have to prove that B � A.
Assume that B 6� A. This means that either there exists [[xk = j]] 2 A \ B;
or there exists [[xk = j]] with ¬[[xk = j]] 2 A \B.



If [[xk = j]] 2 A\B, then j 6= jk. However, since A is closed under unit propa-
gation of EO{[[xk = j]] | ak  j  bk}, this would mean that ¬[[xk = jk]] 2 A.
That contradicts that ¬[[xk = jk]] 62 UP(A).
If ¬[[xk = j]] 2 A \ B, then j = jk. But that means that ¬[[xk = jk]] 2 A,
which is again a contradiction.

– Let " = edge(⌫, µ, [[xi = j]]), and assume A^" |= ¬M. This means that there
is no completation of A satisfying M with " in its path.
First, let us assume that ¬[[xi = j]] 62 A and there are A1, A2 completions of
A, satisfying M, with ⌫ in the path of A1 and µ in the path of A2.
Let us define

A3 :=
⇣
A1 \ {[[xi0 = j0]], i0 < i}

⌘
[ {[[xi = j]]} [

⇣
A2 \ {[[xi0 = j0]], i0 > i}

⌘
,

and A0 := A3 [ {¬[[xi0 = j0]] | [[xi0 = j0]] 62 A3}. It is easy to see that A0 is a
completion of A satisfying M with " in the path defined by it.
Therefore, either ¬[[xi = j]] 2 A, so ¬" is propagated by (T4); there is no A1,
so, by the first claim of this Proposition, ¬⌫ is propagated and ¬" is propa-
gated by (T2); or there is no A2, so ¬µ is propagated and (T3) propagates
¬".

⇤

Theorem 4. BasicPath maintains consistency by unit propagation.

Proof. Given a partial assignment A that cannot be extended into a complete
assignment satisfying M, by the previous Proposition, ¬⇢ is propagated. There-
fore, since ⇢ is a clause of BasicPath, a conflict is found. ⇤

Theorem 6. NNFPath maintains domain consistency by unit propagation.

Proof. – Let A be a partial assignment such that A [ {[[xi = j]]} cannot be
extended to a complete assignment satisfying M. Then, given any " =
edge(⌫, µ, [[xi = j]]), A ^ " |= ¬M. By Proposition 6, clauses from BasicPath

propagate ¬".
Therefore, clause P3 propagates ¬[[xi = j]].

– Let A be a partial assignment such that A[{¬[[xi = j]]} cannot be extended
to a complete assignment satisfyingM. Due to constraint EO{[[xi = j0]] | ai 
j0  bi}, for each j0 6= j, A[ {xj0

i } cannot be extended to a complete assign-
ment satisfying M. Therefore, as previously seen, ¬[[xi = j0]] is propagated.
Therefore, EO{[[xi = j0]] | ai  j0  bi} propagates [[xi = j]].

⇤

Proposition 7. Let B be a partial assignment on all the variables. Let UP(B)
be the set of propagated literals with LevelPath. Let ⌫ be a node of M, and "
be an edge of M. Then:

1. ¬⌫ 2 UP(B) if B ^ ⌫ |= ¬M.
2. ¬" 2 UP(B) if B ^ " |= ¬M.



3. ⌫ 2 UP(B) if B ^ ¬⌫ |= ¬M.
4. " 2 UP(B) if B ^ ¬" |= ¬M.

Proof. 1. Let us assume that ¬⌫ 62 UP(B), and Level(⌫) = i. Let us call ⌫i := ⌫.
Using the same argument as in the proof of Proposition 6, we can build a
path ⌫1 = ⇢, "1, ⌫2, . . . , ⌫n+1 = T such that:
– "k = edge(⌫k, ⌫k+1, [[xk = jk]]).
– ¬"k 62 UP(B).
– ¬⌫k 62 UP(B).
– ¬[[xk = jk]] 62 UP(B).

Let us define B0 as follows:

B0 := {[[xk = jk]], ⌫k, "k | 1  k  n} [ {⌫n+1}[
[ {¬[[xk = j]] | j 6= jk} [ {¬⌘ | ⌘ 6= ⌫k} [ {¬" | " 6= "k}.

We just have to prove that B0 � B, B0 |= M and ⌫ 2 B0.
The path defined by B0 is obviously ⌫1 = ⇢, "1, ⌫2, . . . , ⌫n+1 = T ; therefore,
B0 satisfies M and ⌫ 2 B0. Therefore, we only have to prove that B0 is a
completion of B, this is, B0 � B.
Assume that B0 6� B. Then, one of the following cases holds:
– There exists [[xk = j]] 2 B \B0: In this case, j 6= jk. However, since B is

closed under unit propagation of EO{[[xk = j]] | ak  j  bk}, this means
that ¬[[xk = jk]] 2 B. That contradicts that ¬[[xk = jk]] 62 UP(B).

– There exists [[xk = j]] with ¬[[xk = j]] 2 B \B0: In this case, j = kj . But
that means that ¬[[xk = jk]] 2 B ⇢ UP(B), which is again a contradic-
tion.

– There exists µ 2 B \ B0. Let k be the level of µ. Since µ 62 B0, µ 6= ⌫k.
Therefore, since µ 2 B, by (P4), ¬⌫k 2 UP(B), which is a contradiction.

– There exists µ with ¬µ 2 B \B0. Let k be the level of µ. Since ¬µ 62 B0,
µ = ⌫k. This means ¬⌫k 2 B ⇢ UP(B), which is a contradiction.

– There exists " 2 B\B0. Let us define ⌘, µ, k, j such that " = edge(⌘, µ, [[xk = j]]).
Since " 2 B, by (T2) ⌘ 2 UP(B). Since ¬⌫k 62 UP(B), by (P4) ⌘ = ⌫k.
Similarly, since " 2 B, by T4 [[xk = j]] 2 UP(B). Since ¬[[xk = jk]] 62
UP(B) and UP(B) is closed under unit propagation of EO{[[xk = j0]] | ak 
j0  bk}, we can deduce [[xk = j]] = [[xk = jk]].
Since ⌘ = ⌫k and [[xk = j]] = [[xk = jk]], " = "k. This contradicts that
" 2 B \B0.

– There exists " with ¬" 2 B \ B0. Let k be the level of ". Since ¬" 62 B0,
" = "k. This means ¬"k 2 B ⇢ UP(B), which is a contradiction.

Therefore, B0 is a completion of B, it satisfies M and ⌫ 2 B0.
2. The proof is identical as the proof of the second claim of Proposition 6.
3. If B^¬⌫ |= ¬M, then for every ⌫0 with Level(⌫) = Level(⌫0), B^⌫0 |= ¬M.

Therefore, ¬⌫0 2 UP(B). Therefore, by (P4), ⌫ 2 UP(B).
4. Let " = edge(⌫, µ, [[xi = j]]). If every completion ofB satisfyingM contains ",

then they all also contains ⌫. Therefore, ⌫ 2 UP(B). Moreover, they cannot
contain the edges edge(⌫, µ, [[xi = j0]]) with j0 6= j, so ¬ edge(⌫, µ, [[xi = j0]]) 2
UP(B). Therefore, by (T1), " 2 UP(B).

⇤



Theorem 7. LevelPath is unit refutation complete.

Proof. Given a partial assignment B that cannot be extended into a complete
assignment satisfying M, by the previous Proposition, ¬⇢ is propagated. ⇤

Theorem 8. CompletePath is propagation complete.

Proof. – Let B be a partial assignment such that B [ {[[xi = j]]} cannot be
extended to a complete assignment satisfying M. Then, given any " =
edge(⌫, µ, [[xi = j]]), there is no completion B0 of B satisfying M such that
" is on the path defined by B0. By Proposition 7, ¬" is propagated.
Therefore, clause (P3) propagates ¬[[xi = j]].

– Let B be a partial assignment such that B[{¬[[xi = j]]} cannot be extended
to a complete assignment satisfyingM. Due to constraint EO{[[xi = j0]] | ai 
j0  bi}, this means that, for each j0 6= j, B [ {[[xi = j0]]} cannot be ex-
tended to a complete assignment satisfyingM. Therefore, as previously seen,
¬[[xi = j0]] is propagated. Therefore, EO{[[xi = j0]] | ai  j0  bi} propagates
[[xi = j]]}.
Other cases are direct consequences of Proposition 7. ⇤

Lemma 1. Given a NNF N rooted at ⌫ representing formula � and assign-

ment A on the vars(�). If A |= ¬� then unit propagation on A using BaseNNF

propagates ¬⌫ if A is complete, or N is decomposable.

Proof. The proof is induction on the height of the NNF. We show that given
complete assignment A on original variables that if A |= ¬� where � is the
formula rooted at ⌫ with height h then unit propagation on BaseNNF propagates
¬⌫.

The base case are nodes of height 1. A node labelled l is only false if ¬l 2 A
hence the condition holds.

Suppose the result holds for nodes of height less thatn h. Given a node ⌫ of
height h then its children ⌫1, . . . , ⌫k are height less than h.

If ⌫ is an _-node then A |= ¬� hence A |= ¬(�1 _ · · · _ �k) where �i is the
formula rooted at ⌫i. Hence A |= ¬�i, 1  i  k. By induction ¬⌫i 2 UP (A), 1 
i  k, and hence using ⌫ ! ⌫1 _ · · · _ ⌫k, we have ¬⌫ 2 UP (A).

If ⌫ is an ^-node then A |= ¬� hence A |= ¬(�1 ^ · · · ^ �k) where �i is
the formula rooted at ⌫i. If A is complete then A |= ¬�i for some 1  i  k.
Similarly if A is decomposable, then since the variables in each �i are distinct,
A |= ¬(�1 ^ · · · ^ �k) implies that A |= ¬�i for some 1  i  k. By induction
¬⌫i 2 UP (A), and hence using ⌫ ! ⌫i, we have ¬⌫ 2 UP (A). ⇤

Theorem 9. Given an NNF N then BaseNNF is correct

Proof. Lemma 1 shows that any complete assignment A where A |= ¬� has no
extension satisfying BaseNNF. Suppose that A |= � we claim that B = {⌫ | ¬⌫ 62
UP (A)} [ UP (A) gives a complete model of BaseNNF.

The clause ⇢ is satisfied since A 6|= ¬N so ⇢ 2 B. Clearly the clauses for
nodes ⌫ where A |= ¬� are satisfied since ¬⌫ 2 B. Consider a clause for node ⌫



where this does not hold. Then ⌫ 2 B. If ⌫ is an _ node, there must exist i such
that ¬⌫i 62 UP (A) otherwise ¬⌫ 2 UP (A). Hence ⌫i 2 B and hence the clause
for ⌫ is satisfied. If ⌫ is an ^ node, then forall 1  i  k ¬⌫i 62 UP (A) otherwise
¬⌫ 2 UP (A). Hence ⌫1 2 B, 1  i  k and hence all clauses for ⌫ are satisfied.
⇤

Theorem 10. Given a smooth decomposable NNF N then FullNNF is a correct
encoding.

Proof. Let � be a smooth decomposable NNF, and F� be FullNNF�.
BaseNNF� is a correct encoding of � (by Theorem 9) and is a subset of

F�. Therefore any complete assignment A such that A |= ¬� has no extension
satisfying F�.

Consider some complete assignment A such that A |= �. We now claim some
complete assignment B over vars(F�) exists which is consistent with A and
satisfies F�. The argument proceeds by structural induction on �.

If � is some leaf l, F� = {l}. A |= �, so A satisfies F�.
Consider the case where � is either a _ or a ^ node. Assume the hypothesis

holds for all subformulae of �.
Assume � is a _ node. Then there must be some child c of � such that

A |= c. We partition vars(F�) into � [ Vc [ V¬c, where Vc is all nodes which
have c as an ancestor (and c itself). We then set c to true, and all variables
in V¬c to false. This satisfies N1-N3 for all V¬c, N1 for � and N3 for c. As
� is smooth, vars(c) = vars(�) so no leaf clauses are made false. Removing
satisfied clauses and false literals, the remaining clauses are exactly Fc. By the
induction hypothesis, some assignment B � A over vars(Fc) satisfies Fc. Thus
B [ {�} [ {¬⌫ | ⌫ 2 V¬c} satisfies F�, so the hypothesis holds for �.

Now assume � is a ^ node (c1 ^ . . . ^ cm). A |= �, so 8j. A |= cj . � is
decomposable, so for each pair ci, cj vars(ci) \ vars(cj) = ;. To satisfy N2 for
�, we must set B ◆ {c1, . . . , cm}. This also satisfies N3 for c1, . . . , cm. Removing
satisfied clauses, we are left with Fc1 [ . . . [ Fcm . By the induction hypothesis,
there is a set of assignments B1, . . . , Bm, each consistent with A, satisfying each
Fc1 , . . . , Fcm . These assignments are over disjoint sets of variables, so B1[. . . Bm

satisfies Fc1 [ . . . [ Fcm . Thus {phi, c1, . . . , cm} [B1 [ . . . [Bm satisfies F� and
is consistent with A, so the hypothesis holds for �.

Thus, F� is a correct encoding of �.

Theorem 11. Given a smooth decomposable NNF N , then unit propagation
on FullNNF enforces domain consistency. ⇤

Proof. Let F be FullNNFN , A a partial assignment over vars(N), and l some
literal on vars(N ) such that l 62 UPF (A).

The terminal l exists and has at least one parent p such that ¬p 62 UP (A)
(otherwise clause N3 or N4 would have propagated ¬l). p is either the root r,
or itself has some parent p0, ¬p0 62 UP (A). Thus, there is a chain of ancestors
[l = p1, p2, . . . , pk = r] such that ¬pi 62 UP (A).



We now show that for each pi there is some partial assignment asg(pi)
over vars(pi), which is consistent with A [ {l} and satisfies pi. We proceed
via induction. Clearly A [ {l} satisfies l = p1. Now consider pi, i � 2. By
the induction hypothesis, there is some asg(pi�1) over vars(pi�1) satisfying
pi�1. pi is either a _ or a ^ node. If pi is a _ node, asg(pi�1) satisfies pi.
As N is smooth, vars(pi) = vars(pi�1). Therefore asg(pi) = asg(pi�1) sat-
isfies the induction hypothesis for pi. If pi is a ^ node, pi has some set of
children pi�1, c1, . . . , cm. As ¬pi 62 UP (A), ¬cj 62 UP (A) for each cj (other-
wise clause N2 would have propagated). F is a superset of BaseNNFN , so by
Lemma 1 there must be some assignment asg(cj) to vars(cj) which is consistent
with A and satisfies cj . N is decomposable, so the children of pi share no vari-
ables. Therefore asg(pi) = asg(pi�1)[ asg(c1)[ . . .[ asg(cm) satisfies pi, and is
over vars(pi). As each asg(cj) is consistent with A, asg(pi�1) is consistent with
A and l 2 asg(pi�1), asg(pi) satisfies the induction hypothesis for pi. Therefore
the induction hypothesis holds for pi.

Thus, there is some assignment asg(pk) over vars(pk) consistent with A[{l}
which satisfies pk. Since pk = N , asg(pk) is an total assignment over vars(calN)
which satisfies N and contains l.

Therefore FullNNF enforces domain consistency. ⇤


