
Constraints manuscript No.

(will be inserted by the editor)

Explaining Circuit Propagation

Kathryn Francis · Peter J. Stuckey

Received: date / Accepted: date

Abstract The circuit constraint is used to constrain a graph represented by a succes-
sor for each node, such that the resulting edges form a circuit. Circuit and its variants
are important for various kinds of tour-finding, path-finding and graph problems. In
this paper we examine how to integrate the circuit constraint, and its variants, into
a lazy clause generation solver. To do so we must extend the constraint to explain
its propagation. We consider various propagation algorithms for circuit and examine
how best to explain each of them. We compare the e↵ectiveness of each propagation
algorithm once we use explanation, since adding explanation changes the trade-o↵ be-
tween propagation complexity and power. Simpler propagators, although less powerful,
may produce more reusable explanations. Even though the most powerful propagator
considered for circuit and variants creates huge explanations, we find that explanation
is highly advantageous for solving problems involving this kind of constraint.

1 Introduction

The circuit constraint is used to constrain a graph represented by a successor for each
node, such that the resulting edges form a Hamiltonian circuit. Circuit and its variations
are important for various kinds of tour-finding, path-finding and graph problems. The
circuit constraint is notable in the sense that we are not aware of any decompositions
of the constraint which are e↵ective, principally because of the exponential number
of possible illegal subtours which must be eliminated. Hence we must rely on global
propagators for circuit.

The circuit(v̄) global constraint requires the variables in its argument list v̄ to take
values such that each variable’s value indicates the index of its successor in a tour
visiting all variables. If we consider the graph G with a vertex ui for each variable vi
and edges (ui, uj) where j is in the domain of vi, a solution to the circuit constraint

K. Francis and P. J. Stuckey
National ICT Australia, Department of Computing and Information Systems, The Univer-
sity of Melbourne, Victoria 3010, Australia
Tel.: +61-3-83441300
Fax: +61-3-93481184
E-mail: {k.francis@pgrad,pjs@}csse.unimelb.edu.au

2

is a Hamiltonian cycle of G. The circuit constraint is a special case of the cycle con-
straint [5]. The constraint cycle(n, ū) holds if each node in ū has a distinct successor,
and the number of di↵erent (including self) cycles is n, hence circuit(v̄) = cycle(1, v̄).

The circuit constraint has a number of closely related variants: path looks for a
Hamiltonian path in a graph; subcircuit looks for a simple cycle in a graph not including
all nodes; while subpath looks for a path in the graph. All the propagation algorithms for
these constraints are highly related (and indeed we can use the propagators for circuit
and subcircuit for path and subpath respectively). Hence we examine propagation for
each of these variants as well.

Lazy clause generation [15] is a hybrid constraint solving technique combining finite
domain propagation with Boolean satisfiability techniques. A propagator in a lazy
clause generation solver reports a reason for every propagation step in the form of a
Boolean clause. These clauses can then be used to generate nogoods and guide search
in the manner of a SAT solver. For more background on propagation based solvers,
SAT solvers, and lazy clause generation, see [18], [13], and [15], respectively.

Clearly the definition of circuit implies that the alldi↵erent constraint must also
hold for circuit to be satisfied, since every variable must have a di↵erent successor in
the circuit. Propagators for the circuit constraint typically re-use alldi↵erent propa-
gation algorithms, using a separate algorithm to prevent subtours. For the purpose
of this article we focus on this circuit specific part of the propagation, as alldi↵erent

propagation is already well studied, including an investigation into its interaction with
lazy clause generation (see [21] and [10,6]).

The next section gives a brief description of propagation based constraint solving
and how this is enhanced with nogood learning. Section 3 discusses modelling with cir-

cuit and introduces the example used for experiments. Section 4 discusses variants on
circuit and their relationship with circuit . Section 5 introduces di↵erent propagators
for circuit and its variants, and explores how best to explain the resulting propagation.
In Section 6 we examine the trade-o↵ between propagation complexity and pruning
strength, and compare the propagators with and without explanation. Section 7 dis-
cusses related constraints to the circuit constraint. Finally Section 8 concludes.

2 Propagation-based constraint solving and Learning

In this section we briefly introduce propagation-based constraint solving and how it is
extended to add learning in a lazy clause generation solver [15].

2.1 Propagation-based constraint solving

We consider a set of integer variables V. A domain D is a complete mapping from
V to finite sets of integers. Let D1 and D2 be domains and V ✓ V. We say that D1

is stronger than D2, written D1 v D2, if D1(v) ✓ D2(v) for all v 2 V. Similarly if
D1 v D2 then D2 is weaker than D1. We use range notation: [l .. u] denotes the set
of integers {d | l d u, d 2 Z}. We assume an initial domain Dinit such that all
domains D that occur will be stronger i.e. D v Dinit.

A valuation ✓ is a mapping of variables to values, written {x1 7! d1, . . . , xn 7! dn}.
We extend the valuation ✓ to map expressions or constraints involving the variables in
the natural way. Let vars be the function that returns the set of variables appearing in

3

an expression, constraint or valuation. In an abuse of notation, we define a valuation
✓ to be an element of a domain D, written ✓ 2 D, if ✓(v) 2 D(v) for all v 2 vars(✓).
We say a variable v is fixed by domain D if |D(v)| = 1, since it implies that v takes
the same value for any valuation ✓ 2 D.

A constraint c is a set of valuations over vars(c) which give the allowable values
for a set of variables. In finite domain propagation constraints are implemented by
propagators. A propagator f for c is a contracting and weakly monotonic [19] function
over domains such that for all domains D v Dinit: f(D) v D and no solutions are
lost, i.e. {✓ 2 D | ✓ 2 c} = {✓ 2 f(D) | ✓ 2 c}. The power of propagation-based con-
straint solving arises from the fact that a propagator for each constraint is completely
independent of other propagators. The focus of this paper will be on propagators for
the circuit constraint.

2.2 Lazy Clause Generation

Lazy clause generation [15] works as follows. Propagators are considered as clause
generators for an underlying SAT solver. Instead of applying propagator f to domain
D to obtain f(D), whenever f(D) 6= D we build a clause that encodes the change
in domains. In order to do so we must link the integer variables of the finite domain
problem to a Boolean representation.

We represent an integer variable x with domainDinit(x) = [l .. u] using the Boolean
variables Jx = lK, . . . , Jx = uK and Jx lK, . . . , Jx u � 1K. The variable Jx = dK is
true if x takes the value d, and false for a value di↵erent from d. Similarly the variable
Jx dK is true if x takes a value less than or equal to d and false for a value greater
than d. The inclusion of these bounds literals is the main feature distinguishing lazy
clause generation from other attempts to incorporate nogood learning in an FD solver,
such as [9]. Note we will use the notation Jx 6= dK as shorthand for the literal ¬Jx = dK.

Not every assignment of Boolean variables is consistent with the integer variable x,
for example {Jx = 3K, Jx 2K} (i.e. both Boolean variables are true) requires that x

is both 3 and 2. In order to ensure that assignments represent a consistent set of
possibilities for the integer variable x we add to the SAT solver the clauses DOM (x)
that encode Jx dK ! Jx d + 1K, l d < u, Jx = lK $ Jx lK, Jx = dK $ (Jx
dK ^ ¬Jx d � 1K), l < d < u, and Jx = uK $ ¬Jx u � 1K where Dinit(x) = [l .. u].
We let DOM = [{DOM (v) | v 2 V}.

Any assignment A on these Boolean variables can be converted to a domain:
domain(A)(x) = {d 2 Dinit(x) | 8JcK 2 A, vars(JcK) = {x} : x = d |= c}, that is,
the domain includes all values for x that are consistent with all the Boolean variables
related to x. It should be noted that the domain may assign no values to some variable.

Example 1 Assume Dinit(x1) = Dinit(x2) = [0 .. 10]. The assignment A = {Jx1 5K,
¬Jx1 1K, ¬Jx1 = 4K, Jx2 7K, ¬Jx2 3K } is consistent with x1 = 2, x1 = 3 and
x1 = 5. Hence domain(A)(x1) = {2, 3, 5}. Similarly domain(A)(x2) = [4 .. 7]. 2

In lazy clause generation a propagator is extended to not only map from domains
to domains but also to generate clauses describing the reasons for the propagations.
When f(D) 6= D we assume the propagator f can determine a set of clauses C which
explain the domain changes.

4

Example 2 Consider the propagator f for x1 x2 � 3. When applied to domain D of
Example 1 it obtains f(D)(x1) = {2, 3}, f(D)(x2) = [4 .. 7]. The clausal explanation
of the change in domain of x1 is Jx2 7K ! Jx1 4K, This becomes the clause
¬Jx2 7K _ Jx1 4K. 2

In practice the lazy clause generation solver keeps track of the domains D of vari-
ables V and the equivalent state A of the Booleans in DOM (D = domain(A)). When
a propagator detects an inconsistency and triggers failure, it provides an explanation
c ! false where c is a conjunction of true literals. This initial nogood c is transformed
by the learning process into an equivalent nogood containing at most one literal which
became true at the current decision level. This is achieved by repeatedly selecting from
c a literal l which was set true by propagator p, asking p to provide an explanation in
the form of a conjunction of literals l1^ · · ·^ ln which imply l, and then replacing l in c

with the conjunction l1^ · · ·^ ln. Once the learning process has derived a final nogood,
the solver adds this nogood to the constraint store and backtracks or backjumps.

Example 3 Consider a problem containing constraints x1 x2 � 3, x1 x4, x1 +
x2 + x3 � 14 with initial domains Dinit(x1) = [0 .. 7], Dinit(x2) = Dinit(x3) =
Dinit(x4) = [0 .. 10]. Suppose search chooses to set Jx3 2K, there is no propagation.
Then if search sets Jx4 6K, this then propagates Jx1 6K using x1 x4, and then
Jx2 � 6K using x1 + x2 + x3 � 14. Now assume search sets Jx2 7K, this propagates
Jx1 4K using x1 x2�3 and then fails using x1+x2+x3 � 14. The initial nogood is
Jx3 2K^Jx2 7K^Jx1 4K ! false returned by the propagator for x1+x2+x3 � 14.
To remove Jx1 4K we ask the propagator that set it (x1 x2 � 3) for an explanation
Jx2 7K ! Jx1 4K and replace obtaining Jx3 2K ^ Jx2 7K ! false. Since this
only contains one literal true at the last level we add it to the constraint store and
backtrack.

2

The advantages of lazy clause generation over a standard FD solver (e.g. [18]) are
that we automatically have the nogood recording and backjumping ability of the SAT
solver applied to our FD problem. We can also use activity counts from the SAT solver
to direct the FD search.

3 Modelling with circuit

The circuit constraint has a Zinc/MiniZinc [12,14] definition of the form

predicate circuit(array[int] of var int: succ);

where the array of integer variables succ represents nodes in a graph numbered from 1
to n, where n is the length of the array. The initial domain of variable succ[i] represents
the possible successors of node i, and hence is a subset of 1..n. The constraint ensures
that the edges represented by the values of the successor variables form a Hamiltonian
cycle of the nodes, that is a complete circuit visiting every node once.

Consider the problem of designing a tour of a set of locations. We imagine a tour
company has selected important sites which should be included in the tour, and wishes
to find an order to visit the sites so that each site is visited exactly once, and the length
of the longest leg is minimised (as their clients do not like sitting in a bus for a long
time). We assume a transport network which is not complete. That is, it is not always

5

include "circuit.mzn";

int: n; % number of locations

set of int: Locations = 1..n;

int: maxLegLen; % length of longest edge in network

% travel times between locations

% -1 means no direct connection exists

array[Locations,Locations] of int: travelTime;

% successor variables

array[Locations] of var Locations: succ;

% only use allowed legs

constraint forall(loc1, loc2 in Locations)

(travelTime[loc1,loc2] < 0 -> succ[loc1] != loc2);

% successors must form a circuit

constraint circuit(succ);

% variable for the length of the longest leg

var 1..maxLegLen: maxleg;

constraint forall(loc1, loc2 in Locations)

(succ[loc1] == loc2 -> maxleg >= travelTime[loc1,loc2]);

solve minimize maxleg;

Fig. 1: MiniZinc model for tour design problem

possible to travel from one site to another directly, without passing through one or
more other sites. Even passing through an already visited site is not allowed, as this
would be frustrating to clients.

A MiniZinc [14] model for this problem is shown in Figure 1. The only global
constraint is the circuit constraint. All other constraints are (reified) binary constraints.

We shall use this model to explore design alternatives for circuit and its variants.
Since it is dominated by the global circuit constraint, it is an e↵ective model for such
evaluation.

The underlying graph used for the transport network is important. Completely
random graphs do not make very realistic transport networks, because there is no con-
sistency in the distances between nodes, and in which nodes are connected to each
other. We have used a more realistic technique to generate networks for our bench-
marks. We first randomly distributed the locations in a two dimensional space, and
calculated the Euclidean distance between each pair. Edges were then added so that
every node was connected to its seven closest neighbours. To keep the instances more
similar in di�culty we then added extra edges to ensure the existence of at at least one
Hamiltonian circuit (to make the instance satisfiable). We achieved this by performing
a random walk of the graph, adding a randomly chosen new edge whenever all existing
edges from the current node lead to already visited nodes, and then adding an edge
from the final node back to the initial node. All data files used in our experiments are
available online.1

1
www.cs.mu.oz.au/

˜

pjs/circuit

6

4 Variations of circuit

In this paper we consider not only the circuit constraint, but close variations, each
of which is introduced below along with a corresponding variation to our example
problem. The propagation algorithms for all variants are similar. Figure 3 provides an
illustration of solutions satisfying each variation of the constraint.

4.1 The path constraint

The circuit constraint can be trivially extended to implement a path constraint. The
path constraint ensures that when the value of each variable is interpreted as the index
of its successor, the result is a single path including all variables.

The path constraint is defined as

predicate path(array[int] of var int: succ,

var int: start, var int: end) =

circuit(succ ++ [start]) /\

succ[end] = length(succ)+1;

where the succ array is a successor relationship, start is the number of the first node
in the path, and end is the number of the last node in the path. Each variable ranges
over 1..n+1 where n is the length of the array succ. The successor relationship defines
a single path from node start to node end. This is achieved by adding a dummy node
(with index n+1) to the graph. Its successor, given by variable start, is added at the
end of the array of original variables (using MiniZinc syntax succ ++ [start]), and
we then apply the standard circuit constraint. In a solution, the value of the start
variable gives the start of the path, and the successor of the final node in the path end
is the dummy node (so index n+ 1, as this is the index of the start variable).

Note that this path constraint is a special case of the path constraint listed in the
global constraints catalog [5]. The more general constraint also accepts an argument
which is the number of paths required (in our case this is always 1).

Returning to our tour design example, the path constraint is applicable when the
tour is not required to start and finish in the same location. The start and end locations
for the tour may be unconstrained, they may be fixed, or there may be a limited number
of options (e.g. cities with international airports). For simplicity we consider the case
where the start and end locations are completely open, so the MiniZinc model is exactly
the same, except that the call to circuit is replaced with a call to path with start

and end unconstrained, and the domain of the succ variables extended by one.

4.2 The subcircuit constraint

The circuit constraint is only applicable when all variables are required to participate
in the circuit. We next consider a variation of circuit, which we call subcircuit, which
drops this requirement.

The subcircuit constraint has a Zinc/MiniZinc [12,14] definition of the form

predicate subcircuit(array[int] of var int: succ);

7

where the argument succ is the same as for circuit .
In subcircuit , a variable excluded from the circuit is required to take its own index

as its value, hence it in e↵ect appears in a self cycle. This means that the alldi↵erent

constraint still holds for subcircuit and prevents a variable not included in the circuit
from becoming the successor of another variable, since a variable v having its own
index as a value prevents any other variable having v as a successor.

Changes are required to the circuit propagation algorithms (and therefore also the
explanations generated) to make them applicable for subcircuit . These will be discussed
in Section 5 where we describe propagation algorithms in detail.

The subcircuit constraint applies to our tour design problem when instead of visiting
every location in the network, a tour is required to visit some subset of the locations
satisfying further constraints. For example, say we have a set of activities required to
be included in the tour (e.g. shopping, beach visit, museum), and each activity is only
available in some locations. The task is to find a tour covering at least one location
providing each activity, while minimising the length of the longest leg. This is the
problem we will use to evaluate subcircuit propagation and explanation. Our MiniZinc
implementation is provided in Figure 2.

4.3 The subpath constraint

The subpath constraint is an extension of subcircuit equivalent to the path extension
for circuit . The successor variables are required to form a path, and any node not in
the path must have itself as its successor. As with path, subpath is implemented by
adding a dummy node n + 1 with successor variable start, and then applying the
subcircuit constraint. For subpath we also need to also ensure that the dummy node is
included in the circuit. This is easily achieved by limiting the domain of the start
variable to only the original nodes.

The subpath constraint is defined analogously to the subcircuit constraint, that is

predicate subpath(array[int] of var int: succ,

var int: start, var int: end) =

subcircuit(succ ++ [start]) /\

start <= length(succ) /\

succ[end] = length(succ)+1;

For a version of the tour design problem appropriate for subpath, we again simply
drop the requirement that the tour must start and finish in the same location.

5 Propagating and explaining circuit

In the following sections we consider three complementary algorithms for propagating
circuit, in order of increasing complexity. For each we define the algorithm and then
examine various alternatives for adding explanations, using experimental results to
justify our final decisions.

In order to reduce the risk of making design decisions which are only justified
for a specific search strategy, the experiments are repeated using two di↵erent search
strategies. The first is in-order labelling of variables using minimum values first. This
simple fixed strategy allows us to more easily isolate the e↵ect of di↵erent design

8

include "subcircuit.mzn";

int: n; % number of locations

set of int: Locations = 1..n;

int: m; % number of activities

set of int: Activities = 1..m;

int: maxLegLen; % length of longest edge in network

% travel times between locations

% -1 means no direct connection exists

array[Locations,Locations] of int: travelTime;

% activity locations

array[Activities,Locations] of bool: activityAvailable;

% successor variables

array[Locations] of var Locations: succ;

% only use allowed legs

constraint forall(loc1, loc2 in Locations)

(travelTime[loc1,loc2] < 0 -> succ[loc1] != loc2);

% visit at least one location with every activity

constraint forall(act in Activities)

(exists(loc in Locations where activityAvailable[act,loc])

(succ[loc] != loc));

% successors must form a circuit

constraint subcircuit(succ);

% variable for the length of the longest leg

var 1..maxLegLen: maxleg;

constraint forall(loc1, loc2 in Locations)

(succ[loc1] == loc2 -> maxleg >= travelTime[loc1,loc2]);

solve minimize maxleg;

Fig. 2: MiniZinc model for a version of the tour design problem where not all locations
are required to be visited as long as at least one location is visited which provides each
of a set of activities

decisions, as the interaction between the design decision and the search strategy is
relatively easy to understand. It also allows us to compare versions of the propagator
with and without learning. The second strategy is activity based dynamic search. This
is the most e↵ective autonomous search for lazy clause generation solvers, and is highly
dynamic.

All experiments in the paper were carried out on a 2.8GHz AMD 6-Core Opteron
4184 CPU with 64GB of memory, using (except where otherwise stated) the lazy clause
generation solver Chuffed.

Throughout this section we use the following notation: V is the set of all nodes (or
variable indices), n = |V |, xi where i 2 V is the variable holding the successor of node
i, and value(xi) is the (fixed) value of variable xi in the current domain D.

Note that all of the algorithms discussed below assume the alldi↵erent constraint
has already been propagated. We use the existing implementation of domain consistent
alldi↵erent for all experiments. Since it is not possible to explain only some propaga-

9

(a) circuit (b) path

(c) subcircuit (d) subpath

Fig. 3: Solutions to variations of the circuit constraint.

tions in Chuffed, whenever explanations are used for circuit they are also used for
alldi↵erent (and all other constraints in the model).

5.1 The check algorithm

A very simple and cheap propagator for the circuit constraint fires only on variable
fixing, and simply follows the chain of fixed variables starting at this newly fixed
variable, until an unfixed variable is found, or a loop is detected. If a loop is detected
with length less than the number of nodes, the propagator reports a conflict. We call
this propagation algorithm check .

For subcircuit (and subpath), a cycle which excludes some nodes is allowed if all
excluded nodes have themselves as successor. Therefore when a cycle of fixed variables
is found in the subcircuit version of the check algorithm, instead of reporting failure
we set the value of all excluded variables to their own indices. If this is not possible for
some variable, then a conflict is reported.

5.1.1 Explanations for check

We consider two alternative explanations for check propagation, shown below. Here C

is the set of nodes included in the small cycle.

^

i2C

Jxi = value(xi)K ! false (1)

^

i2C,j2V \C
Jxi 6= jK ! false (2)

Clause 1 says that the successor variables for nodes in the cycle taking their current
values leads to failure. The second option is more general (but also larger - O(n2) rather
than O(n)), indicating that the fact that no node inside the cycle has a successor outside
the cycle is su�cient to cause failure.

For subcircuit we can use very similar clauses. The two options are shown below.

10

^

i2C

Jxi = value(xi)K ! Jxk = kK, k 2 V \ C (3)

^

i2C,j2V \C
Jxi 6= jK ! Jxk = kK, k 2 V \ C (4)

Table 1 shows experimental results comparing these two alternatives for each vari-
ation of circuit . It seems clear from the table that the second alternative (clauses 2
and 4) is better for all variations of our problem, as for both search strategies the
number of failures, number of propagations, and execution time are all much smaller.
This result demonstrates that general clauses can be more e↵ective than smaller, more
specific clauses. We use clauses 2 and 4 in the remainder of our experiments.

Inorder Search VSIDS Search
Problem Clause Fails Props Time Fails Props Time

circuit 1 2071 14567 199.8 (151) 903 4928 78.2 (52)
2 399 2088 105.9 (75) 1 18 0.3

subcircuit 3 5179 39758 429.1 (325) 2394 13263 225.7 (142)
4 657 3495 215.5 (122) 5 62 0.9

path 1 2301 15584 264.1 (192) 1161 6312 102.5 (70)
2 505 2993 205.5 (139) 2 26 0.6

subpath 3 4606 28863 443.1 (328) 2507 13880 211.2 (122)
4 871 4297 409.5 (269) 8 89 1.8

Table 1: Comparison of alternative explanation clauses for the check algorithm. Each
figure is the average for 500 instances with 50 locations. Failure and propagation counts
are given in thousands, while times are in seconds. Where at least one instance reached
the time limit of 10 minutes, the number of timeouts is shown in brackets.

5.1.2 Choosing an explanation for failure

When not using explanation, it makes sense to exit a propagator as soon as failure
is detected. However, when using lazy clause generation the explanation we give for
failure will a↵ect the clause which is subsequently learned. Therefore if a constraint is
violated in multiple ways it may be worth discovering all of these and using a heuristic
to choose which violation to report.

For subcircuit , when a small cycle is found we report failure if there exists a node
outside that cycle which cannot be a self cycle (that is, a node whose successor variable’s
current domain does not include its own index). By default we have reported failure
using the first such node encountered. However, it is possible to instead collect all nodes
for which this condition holds, and then make a deliberate selection.

The clause we produce to explain subcircuit check conflicts is shown below, where
C is the set of nodes in the cycle, and k is the chosen node outside the cycle.

0

@Jxk 6= kK ^
^

i2C,j2V \C
Jxi 6= jK

1

A ! false

11

Note that for each node we could choose, the clause will include a di↵erent first
literal but will otherwise be the same. We can use the properties of the corresponding
literals to make a good choice for k.

We know that this clause will cause a conflict, and at that point the solver will
compute a learned clause and backjump to some earlier part of the search tree. The
position in the search tree we jump to will depend on the levels at which literals involved
in the failure became fixed. We would like to backjump as far as possible, as this way
we exclude more of the search tree. Therefore it makes sense to choose to include in
our explanation of failure the literal which became fixed highest (earliest) in the search
tree. This information is already available as it is used when deriving learned clauses.

We tested this theory experimentally, comparing four di↵erent selection heuristics
for the node to be used to explain a subcircuit check conflict:

1. The first applicable node. Note that this option entails less overhead as we can
report failure immediately upon finding an appropriate node.

2. The last applicable node.
3. The node k whose corresponding literal xk 6= k became fixed highest in the search

tree. In other words, the node whose successor as itself was excluded the earliest.
4. The node k whose corresponding literal became fixed lowest in the search tree (the

node whose successor as itself was excluded most recently).

The results are shown in Table 2. As expected, choosing the literal which was fixed
highest (earliest) in the search tree is the best option for both subcircuit and subpath,
and choosing the literal which was fixed lowest in the tree is worse than all other
options for both problems.

When using inorder search for subcircuit , choosing the first applicable node is better
than choosing the last. This is probably because an inorder search means successor
variables for nodes earlier in the list will often become fixed higher in the search tree.

For subpath, choosing the last node works quite well (and better than choosing the
first). This is surprising until you realise that the last node in the list is the dummy
node (start), which is never allowed to have itself as a successor. This means that
whenever a small cycle is found which does not include the dummy node, choosing the
last node gives an ideal explanation for the failure, because the corresponding literal
is fixed at the root node.

In all further experiments, we use the highest node heuristic to choose a literal for
subcircuit and subpath failure explanations.

5.2 The prevent algorithm

We now consider a slightly stronger propagation algorithm, described in [4], which we
call prevent. This algorithm finds the start and end of each chain of nodes with fixed
successors, and removes the first node of each chain from the domain of the successor
variable for the end node of that chain (unless the chain includes all variables). This
prevents the chain from becoming a subcycle.

The circuit propagator in the open source constraint solver Gecode (3.5.0) [17] uses
a clever technique to find distinct chains, exploiting the fact that a chain must start
with a node which is not the fixed value of any other successor variable. Assuming that
alldi↵erent has been propagated, the set of all possible starts of chains is the union

12

Inorder Search VSIDS Search
Problem Heuristic Fails Props Time Fails Props Time

subcircuit first 1220 6564 274.5 (159) 7 82 1.3
last 1259 6733 430.7 (288) 7 82 1.2
lowest 1183 6030 481.0 (330) 16 139 2.3
highest 922 5737 212.8 (123) 5 70 1.0

subpath first 1095 5541 501.2 (359) 9 108 2.0
last 1041 5325 458.0 (321) 5 68 1.5
lowest 1189 5488 561.2 (430) 21 174 4.1
highest 922 5419 397.3 (260) 4 59 1.2

Table 2: Comparison of alternative heuristics for choosing an explanation of failure de-
tected by the check algorithm for subcircuit and subpath. Each figure is the average for
500 instances with 55 locations. Failure and propagation counts are given in thousands,
while times are in seconds. Where at least one instance reached the time limit of 10
minutes, the number of timeouts is shown in brackets.

of the domains of the unfixed successor variables. We used this method in our imple-
mentation as well, with the only drawback being that because chains that are already
cycles are not explored, this algorithm is not complete and must be accompanied by
either the check algorithm from above, or the stronger algorithm described in the next
section. In our experiments, the prevent algorithm is always accompanied by check .

5.2.1 Applying prevent to subcircuit

The subcircuit version of the prevent algorithm cannot perform any propagation unless
there exists outside the chain a node k which must be included in the circuit (because
its successor variable’s current domain does not include itself). We call this node the
evidence node, and for evidence node k we refer to xk as the evidence variable, and
Jxk 6= kK as the evidence literal.

5.2.2 Explaining prevent

For the circuit version of prevent we again have two di↵erent options for explanations.
In the following, C is the set of nodes in the fixed chain, a is the first node, and z is
the last node in the chain (so its successor variable is not fixed).

^

i2C,i 6=z

Jxi = value(xi)K ! Jxz 6= aK (5)

^

i2C,i 6=z,j2V \C
Jxi 6= jK ! Jxz 6= aK (6)

The first clause (5) says that the last node is not allowed to have the first node
as a successor because of the current choice of successor for the other nodes in the
chain. The second clause (6) says that the last node is not allowed to have the first
as a successor because none of the other nodes in the chain have a possible successor
outside the chain. If none of the other nodes lead outside the set included in the chain,
then the final node must do so, and therefore it cannot have the first node in the chain
as a successor.

13

Inorder Search VSIDS Search
Problem Clause Fails Props Time Fails Props Time

circuit 5 354 2434 72.8 (50) 0.3 11.8 0.25
6 316 2148 75.0 (50) 0.3 12.0 0.28

path 5 533 4402 212.0 (145) 0.4 18.2 0.37
6 490 3960 220.1 (151) 0.4 18.5 0.44

subcircuit 5 677 5250 166.6 (86) 1.5 38.3 0.55
6 708 5458 181.4 (94) 1.5 38.5 0.56

subpath 5 863 6262 377.8 (236) 1.2 36.7 0.67
6 835 5935 384.3 (236) 1.2 37.0 0.77

Table 3: Comparison between alternative explanation clauses for the prevent algorithm.
Each figure is the average for 500 instances with 55 locations. Failure and propagation
counts are given in thousands, while times are in seconds. Where at least one instance
reached the time limit of 10 minutes, the number of timeouts is shown in brackets.

For the subcircuit version of the algorithm, we need to also specify that one of the
nodes outside the chain cannot have itself as a successor. The two possible explanations
are therefore the same as above but with an extra literal on the left hand side Jxk 6= kK,
where k is a node outside the chain. This is the evidence literal mentioned previously.

Clauses 5 and 6 have the same size complexity as the check explanation clauses -
O(n) and O(n2) respectively.

The results of experiments evaluating the two options are shown in Table 3. In
contrast with the results for check propagation, this time the second clause was not
more e↵ective. Instead for all problems and for both search strategies the first clause
(5) resulted in roughly equal or slightly better performance.

Although the clauses presented for prevent seem analogous to the check clauses,
the second prevent explanation (6 above) is less general than the corresponding check

explanation would be if the chain was later closed into a circuit. The prevent expla-
nations both refer specifically to the final successor variable being equal to the first
node, whereas only the first check explanation does this. The second check explanation
would simply state that no node inside the cycle reaches any node outside. As stated
previously we always use prevent in combination with check as it is not complete on
its own, and in these experiments we used the best discovered options for check , which
means the more general explanations. Perhaps this is why the more general explanation
for prevent did not perform all that well.

Since there was very little di↵erence between the two options, and the first option
is simpler, we chose to use the first option (Clause 5) in all further experiments.

5.2.3 Choosing an evidence literal

For the subcircuit version of the prevent algorithm, we need to choose an evidence
literal to include in our propagation explanation. We experimented with the same four
options used for choosing a literal to include in check failure clauses. That is, the first
appropriate literal, the last, the literal fixed highest (earliest) in the search tree, and
the literal fixed lowest (most recently) in the search tree. The results are shown in
Table 4.

Although the di↵erences are much smaller than those observed in the check case,
we again find that the best option is to choose the literal highest in the search tree.
Recall that when using inorder search we expect the first and highest options to perform

14

Inorder Search VSIDS Search
Problem Heuristic Fails Props Time Fails Props Time

subcircuit first 677 5250 166.6 (86) 1.5 38.3 0.55
last 708 5375 172.2 (92) 1.5 37.9 0.53
lowest 706 5470 181.2 (92) 1.5 38.1 0.54
highest 668 5211 166.5 (85) 1.4 37.7 0.53

subpath first 863 6262 377.8 (236) 1.2 36.7 0.67
last 878 6351 392.6 (243) 1.2 36.9 0.66
lowest 893 6348 399.6 (244) 1.3 37.3 0.67
highest 868 6233 375.8 (240) 1.1 36.2 0.64

Table 4: Comparison of alternative heuristics for selecting an evidence literal for sub-

circuit prevent explanations. Each figure is the average for 500 instances with 55 lo-
cations. Failure and propagation counts are given in thousands, while times are in
seconds. Where at least one instance reached the time limit of 10 minutes, the number
of timeouts is shown in brackets.

similarly. In future experiments we use the highest selection method to choose evidence
literals for prevent explanation.

5.3 The scc algorithm

As mentioned previously, a solution to the circuit constraint is a Hamiltonian cycle of
the graph G where each node v has an edge to all nodes u 2 D(xv). This implies that
for circuit to be feasible G must have a single strongly connected component, as there
is no Hamiltonian cycle in a graph with multiple strongly connected components.

The final propagation algorithm we consider, which we call scc, takes advantage
of this property. The algorithm is based on Tarjan’s depth first search algorithm for
finding strongly connected components [20]. If multiple strongly connected components
are discovered, the algorithm reports failure. With only minor changes to Tarjan’s
algorithm, it is also possible to discover further propagation in some cases. As discussed
in [19], depending on the current domains of variables and the root node chosen, depth
first search may explore multiple disjoint subtrees below the root. Figure 4 shows an
example of this, with nodes numbered in the order they are visited, and the subtrees
shown as triangles. When this happens, reasoning can be applied to prune links between
subtrees which cannot form part of a valid solution, and to enforce links which must
be part of any solution.

The following two observations are made in [19].

1. There must be an edge from each subtree to its predecessor subtree, and an edge
from the first subtree to the root. Hence no edge to the root from a subtree other
than the first can be used.

2. Edges between non-adjacent subtrees are not allowed. That is, if A, B and C are
subtrees such that A was visited before B and B was visited before C, then any
edge that leads from a C to A is forbidden, because if such an edge were used in
the circuit there would be no way to get in and out of B without visiting the root
twice.

We add two more observations, both of which provide further opportunity for propa-
gation with only minor alterations to the algorithm.

15

Fig. 4: Example of a case where depth first search explores multiple disjoint subtrees.
Nodes are numbered in the order they are visited. Edges followed during the search
are solid, while edges leading to already visited nodes are dotted. The three subtrees
are shown as triangles.

3. Any solution must include an edge leading from the root node to the last subtree
(as there is no other way to reach this subtree). Therefore, since a solution can only
include one edge originating at the root node (because the root successor variable
can only take one value), any edge leading from the root to earlier subtrees can be
pruned.

4. At any node x within the search tree, if exploration of x’s first child a does not
reach any node above x, then the edge leading from x to a can be pruned. This is
because the only way out of the subtree rooted by a is through x, so the circuit
must not enter this subtree through x (as x cannot be visited twice). The circuit
must instead enter the subtree rooted at a via a back edge from a later subtree.

In the remainder of this paper we will refer to these new opportunities for propagation
as prune root (rule 3) and prune within (rule 4) respectively. Figure 5 illustrates the
pruning rules.

We now describe the scc algorithm. Pseudo-code for this algorithm is included in
Figure 6. The key idea is to keep track of the search index of the first and last node in
the previous subtree explored, in order to be able to detect for every back edge found
whether the destination is within the current subtree, in the previous subtree, or in an
earlier subtree. Any edge to an earlier subtree can be pruned. Edges to the previous
subtree are counted and the most recently found is stored. After a subtree has been
explored a conflict is reported if there were no back edges, and if there was only one
then this edge can be enforced. Removal of edges leading from the root to subtrees
before the last is done after exploration is complete, while prune within is handled
by testing the lowpoint of the first child at each node, and if this lowpoint is not less
than the index of the current node, the edge to that child is pruned. Obviously if a
strongly connected component is found below the root, or if the search does not reach
all variables, a conflict is reported.

16

(a) (b)

Fig. 5: (a) The SCC exploration graph for circuit starting from root. At least one
(thick) edge from A to the root, from D to C, C to B, and B to A must exist (rule 1).
Backwards (dotted) edges to the root from B, C or D cannot be used (rule 1). The (thin-
dashed) edges from C to A and D to B cannot be used (rule 2). The (thick-dashed)
edges leading from root to A, B and C cannot be used (rule 3). (b) Illustration of prune-
within (rule 4). The edge from x to a cannot be used otherwise we cannot escape the
subtree rooted at a (dark grey). We need to enter the subtree from elsewhere.

5.3.1 Adjusting the scc algorithm for subcircuit

Converting the scc algorithm to apply to subcircuit is a little more di�cult than for the
previous two algorithms. Much of the reasoning for this algorithm depends on the fact
that every subtree must be visited. Our general approach is to perform the algorithm
as per circuit , but before a propagation is performed or conflict reported, an extra
checking step is required as follows.

For subcircuit , it is not necessarily true that there must be an edge from each subtree
to its predecessor subtree. This is only true if both of these subtrees are required to be
included in the circuit (at least one node from each). Similarly, we only require an edge
from the first subtree to the root if there exist nodes both inside and outside that first
subtree that must be in the circuit. Otherwise it doesn’t matter if there is no way out
of the first subtree. So in each of these situations, before pruning or fixing any edges we
ensure that we can find an evidence node (whose successor variable’s current domain
does not include itself) within these subsets of the nodes.

The rule concerning edges skipping subtrees is similarly qualified. Such edges are
only prohibited if the skipped subtrees contain a node which is required to be included
in the circuit. Note that there is no need to ensure that the origin and destination
subtrees of the edge in question are required to be included. If either of these subtrees
is not included, then no edge between them can be used.

Edges from the root to subtrees before the last can be allowed if no node in the last
subtree is required to be included in the circuit. It would be possible to extend this to
say that an edge from the root to a subtree can be pruned if any of the later subtrees
contains a node which must be included in the circuit, but we did not implement that
extra reasoning.

17

At a node x within the search tree, if exploration of x’s first child a does not reach
any node above x, then the edge from x to a can be pruned only if nodes both inside
and outside the part of the tree rooted at a are required to be included in the circuit.

If the search discovers a strongly connected component below the root, a conflict is
reported only if there exist nodes both inside and outside that component which must
be included in the circuit.

If the search does not reach all nodes, instead of reporting a conflict, we first check
that at least one reached node is required to be included in the circuit, and if such a
node can be found we fix all successor variables of nodes not reached by the search to
form self-cycles.

The only other change required to the algorithm is that self-cycle edges must be
handled carefully. These edges are ignored when finding the children of a node, and
edges from the root to itself are not removed as prune root propagations.

5.3.2 Explaining scc propagation

In this section we provide the explanation clauses used for scc propagation. All of the
explanations for this algorithm have size complexity O(n2), as they all include at least
one statement that no (or only one) edge exists between two subsets of the nodes.

When discussing subcircuit we use the notation in(a) to mean that node a must
be included in the circuit, making it a possible evidence node (i.e. a 62 D(xa) for the
current domain D).

There are several di↵erent propagation rules to consider.

1. A strongly connected sub-component exists.
For circuit, on discovery of a strongly connected component made up of a strict
subset of the nodes S, a conflict is reported with explanation

^

i2S,j2V \S
Jxi 6= jK ! false.

For subcircuit, if there exists a node a 2 S where in(a) holds, then for each node
b 2 V \ S we set xb = b with explanation

0

BB@Jxa 6= aK ^
^

i2S
j2V \S

Jxi 6= jK

1

CCA ! Jxb = bK.

2. Only one edge leads from the first subtree to the root.
Let r be the root node, a be the unique node reaching the root from the first
subtree, and A be the set of all nodes in the first subtree.
Then for circuit the clause generated is

^

i2A,j2V \A
i 6=a_j 6=r

Jxi 6= jK ! Jxa = rK.

For subcircuit it is
0

BB@Jxb 6= bK ^ Jxc 6= cK ^
^

i2A,j2V \A
i 6=a_j 6=r

Jxi 6= jK

1

CCA ! Jxa = rK,

18

propagateSCC(variables) {

root selectRoot(variables);

root.index 0;

root.lowlink 0;

nodesSeen 1;

// original subtree is just the root node (index 0)

startSubtree 0;

endSubtree 0;

foreach (v in root.successors) {

if (v.index is undefined) { // haven’t explored this yet

backedges exp lo r e(v, startSubtree, endSubtree);

if (size(backedges) == 0) fail; // no edge to previous subtree

if (size(backedges) == 1) requ i reEdge(backedges[0]);

startSubtree endSubtree + 1;

endSubtree nodesSeen - 1;

}

}

if (nodesSeen 6= size(variables)) fail; // graph not connected

// prune edges from root to all except last subtree

if (startSubtree > 1) { // if there was more than one subtree

foreach (v in root.successors)

if (v.index < startSubtree) pruneEdge((root,v));

}

}

exp lo r e(v, startPrevSubtree, endPrevSubtree) {

v.index nodesSeen;

v.lowlink nodesSeen;

nodesSeen nodesSeen + 1;

foreach (w in v.successors) {

if (w.index is undefined) { // haven’t already visited w

w_backedges exp lo r e(w, startPrevSubtree, endPrevSubtree);

add all edges in w_backedges to backedges;

v.lowlink min(v.lowlink, w.lowlink);

} else { // w has been seen before

if (w.index � startPrevSubtree and w.index endPrevSubtree) {

// w in previous subtree

add edge (v,w) to backedges

} else if (w.index < startPrevSubtree) // edge to w skips a subtree

pruneEdge((v,w));

v.lowlink min(v.lowlink, w.index);

}

}

if (v.lowlink == v.index) fail; // scc rooted at v

return backedges;

}

Fig. 6: Pseudo code for scc propagation algorithm.

where b 2 A, c 2 V \A, in(b) and in(c).
3. Only one edge leads from subtree C to the previous subtree B.

In this case the reason the edge is required depends on the structure of the tree.
Let B be the set of nodes in B, and C be the set of nodes in C. Also let A be the
set of nodes in subtrees before B, and D be the set of nodes which were included
in subtrees after C or not reached in the search at all. Let c be the unique node in
subtree C that reaches node b in subtree B.

19

For circuit the clause is
0

BB@
^

i2A
j2B[C[D

Jxi 6= jK ^
^

i2B
j2C[D

Jxi 6= jK ^
^

i2C,j2B[D
i 6=c_j 6=b

Jxi 6= jK

1

CCA ! Jxc = bK.

For subcircuit, where p 2 B and q 2 C, in(p) and in(q), the clause is

0

BB@Jxp 6= pK ^ Jxq 6= qK ^
^

i2A
j2B[C[D

Jxi 6= jK ^
^

i2B
j2C[D

Jxi 6= jK ^
^

i2C,j2B[D
i 6=c_j 6=b

Jxi 6= jK

1

CCA! Jxc = bK.

4. No edges lead from sub-tree C to the previous subtree B.
This case is very similar to the above case.
For circuit the clause is

0

BB@
^

i2A
j2B[C[D

Jxi 6= jK ^
^

i2B
j2C[D

Jxi 6= jK ^
^

i2C
j2B[D

Jxi 6= jK

1

CCA ! false.

For subcircuit, where p 2 B and q 2 C, in(p) and in(q), the clause is

0

BB@Jxp 6= pK ^ Jxq 6= qK ^
^

i2A
j2B[C[D

Jxi 6= jK ^
^

i2B
j2C[D

Jxi 6= jK ^
^

i2C
j2B[D

Jxi 6= jK

1

CCA ! false.

5. An edge skips one or more subtrees.
In this case reasoning again depends on the structure of the tree. Let c be the origin
of the edge and a its destination. Take A as the set of nodes in the same or an
earlier subtree to that of a, B as the set of nodes in subtrees between that of a and
c (of which there is at least one), and C as the set of nodes in the same or later
subtree as that of c plus nodes not reached by the search.
For circuit the clause generated is

0

@
^

i2A,j2B[C

Jxi 6= jK ^
^

i2B,j2C

Jxi 6= jK

1

A ! Jxc 6= aK.

For subcircuit it is
0

@Jxb 6= bK ^
^

i2A,j2B[C

Jxi 6= jK ^
^

i2B,j2C

Jxi 6= jK

1

A ! Jxc 6= aK,

where b 2 B and in(b).
6. Edges leading from the root to a subtree other than the last.

Let E be the set of nodes in subtrees before the last, L be the set of nodes in the
last subtree or not reached by the search, and r be the root node. An edge from r

to e where e 2 E is pruned with the following explanation.

20

For circuit, ^

i2E,j2L

Jxi 6= jK ! Jxr 6= eK.

For subcircuit, 0

@Jxl 6= lK ^
^

i2E,j2L

Jxi 6= jK

1

A ! Jxr 6= eK,

where l 2 L and in(l).
7. Non-viable edge discovered within a subtree.

This is the case where the first child of a node within the traversal tree does not
reach any node above its parent. The edge from parent to child is pruned, because
there is no way to reach outside the child’s part of the tree without going through
the parent node. The explanations are therefore as follows, where c is the child
node, C is the set of nodes in the subtree rooted at c, p is the parent node, and
A = V \ (C [{p}) is the set of all nodes excluding that of the parent and nodes in
the subtree rooted at the child.
For circuit, ^

i2C,j2A

Jxi 6= jK ! Jxp 6= cK,

and for subcircuit,
0

@Jxa 6= aK ^ Jxb 6= bK ^
^

i2C,j2A

Jxi 6= jK

1

A ! Jxp 6= cK,

where a and b are nodes such that a 2 A, b 2 C, in(a) and in(b).

5.3.3 Root node selection

In [19], it was shown that the choice of root node can have a significant impact on
the performance of the scc algorithm. In particular, choosing a random root was very
successful. We are interested in whether or not choosing the root randomly is still ben-
eficial when using explanations. The e↵ectiveness of lazy clause generation depends on
the opportunity to make use of the learned clauses, so randomness may be detrimental
if it results in a more varied exploration which does not often reach similar nodes.

We consider five options for the root selection strategy.

1. Always choose the first node.
2. Choose the first node with unfixed successor variable.
3. Choose a random node.
4. Choose a random node with unfixed successor variable.
5. Run the algorithm on every node.

If the root’s successor is fixed, then there will be exactly one subtree below it and
therefore no opportunities for propagation unless multiple strongly connected compo-
nents are discovered, or the prune-within rule fires. For this reason it is probably better
to choose an unfixed root. By including this option separately we can more accurately
judge the benefit of making a random selection.

For subcircuit , the first, third and fifth strategies are modified slightly to avoid
choosing a root which is fixed in a self-cycle, as this is guaranteed not to produce any

21

propagation. The other strategies already avoid this by choosing a node with unfixed
successor. In the case where all successors are fixed these strategies also choose a non-
self-cycle node as the root.

Inorder Search VSIDS Search
Problem Root Fails Props Time Fails Props Time

circuit always first 196 1099 71.3 (48) 0.9 17.9 0.64
first unfixed 118 678 42.3 (26) 0.8 16.9 0.60
random 89 524 33.9 (22) 0.8 16.9 0.60
random unfixed 77 453 30.4 (21) 0.7 15.7 0.55
all roots 45 277 52.5 (33) 0.5 12.5 2.65

path always first 350 2242 257.4 (180) 1.5 26.8 1.04
first unfixed 313 2027 244.6 (174) 1.3 25.0 0.90
random 211 1320 162.2 (103) 1.2 25.0 0.85
random unfixed 205 1279 152.4 (95) 1.1 23.4 0.79
all roots 125 869 211.1 (138) 0.7 18.3 3.98

subcircuit always first 385 2636 171.6 (105) 3.2 57.7 1.50
first unfixed 311 2144 149.0 (72) 3.3 60.8 1.52
random 81 509 37.6 (15) 2.1 36.4 1.09
random unfixed 78 487 35.6 (15) 2.2 37.6 1.17
all roots 29 236 79.8 (39) 1.0 25.1 8.88

subpath always first 623 4488 596.6 (494) 5.3 74.2 2.48
first unfixed 628 4411 598.2 (492) 5.3 77.7 2.36
random 271 1706 220.5 (64) 3.4 50.8 1.76
random unfixed 257 1801 251.2 (95) 3.8 53.3 1.68
all roots 120 1034 286.3 (140) 1.6 34.8 10.90

Table 5: Comparison of root selection strategies for the scc algorithm. Each figure is
the average for 500 instances with 65 locations. Failure and propagation counts are
given in thousands, while times are in seconds. Where at least one instance reached
the time limit of 10 minutes, the number of timeouts is shown in brackets.

Table 5 shows the results of our root selection experiments. In most cases, choosing
as root the first node with unfixed successor was better than always choosing the very
first node. Surprisingly that didn’t seem to be the case for subcircuit and subpath when
using VSIDS search. This could be because a node with fixed successor is guaranteed
to be in the circuit (except if it is a fixed self-cycle, but we never choose such a node
as the root). Choosing a root which is fixed and therefore in the circuit may allow
inconsistencies to be detected earlier, even though little other propagation will be
possible. Failing early can be beneficial for VSIDS since it quickly learns how to escape
the inconsistency. Note that we can’t make a meaningful comparison between these
two options for subpath using inorder search because in both cases almost all instances
timed out.

Choosing a random root was clearly beneficial for all versions of the problem,
and for both search strategies. This is in agreement with the results in [19], which
is quite encouraging as it suggests that techniques involving randomness which are
e↵ective without explanation can still be beneficial when using explanation. Running
the algorithm for every potential root did reduce the search space significantly, but due
to the very high overhead this strategy was much slower than random root selection
for all problems.

For circuit and path, choosing randomly from among the nodes with unfixed suc-
cessors appeared to be the best strategy. For subcircuit and subpath the results are not

22

so clear. For subcircuit using VSIDS search and for subpath using inorder search, it was
better to only eliminate nodes fixed in self-cycles, again probably due to the fact that
in order for conflicts to be detected by the subcircuit propagator the exploration must
reach at least one node which is required to be included in the circuit. However, for
subcircuit using inorder search, excluding nodes with fixed successors still resulted in
slightly better results, and for subpath using VSIDS search, although excluding these
nodes resulted in higher numbers of failures and propagations, the execution time was
slightly shorter.

In the remainder of our experiments we use random root selection. The circuit

version of the propagator excludes nodes with fixed successor, while the subcircuit

version only excludes self-cycle nodes (as this appeared to be the better choice overall
for subcircuit and subpath).

5.3.4 Additional pruning rules

We would also like to discover the impact of the two extra pruning rules we have
suggested (prune root and prune within). In the previous experiments we used the
original version of the scc algorithm which excludes these pruning rules. Table 6 shows
the impact of adding one or both of the additional rules for each version of our problem.

It is clear that for all versions of our problem both prune within and prune root are
beneficial. For circuit and path, prune root was more e↵ective, reducing the average
execution time by around 30-40%, while prune within gave a more modest improvement
of between 7% and 30%. For subcircuit and subpath however, prune within performed
better than prune root, most obviously in the case of subpath using inorder search
where adding this rule reduced the execution time by almost 85%.

Combining the two rules was the best (or tied best) option in all cases, whether
considering failures, propagations, or execution time. Therefore in the remainder of
this paper we include both prune within and prune root whenever scc is used.

The decision of whether or not to use prune root will clearly a↵ect the choice
of root selection strategy. We conducted further experiments to verify that using both
additional propagation rules with random root selection is indeed the best combination
for our problems.

5.3.5 Choosing evidence literals

As with prevent explanations, the subcircuit versions of clauses used to explain scc

propagation require the inclusion of evidence literals (literals Jxk 6= kK for a node k

whose successor variable’s current domain does not include k). In many cases there
are several appropriate literals which could be chosen. We experimented with the same
options for selecting evidence literals as discussed for propagation of prevent .

As can be seen in Table 7, in most cases choosing the literal which became fixed
highest in the search tree made very little di↵erence compared with simply choosing
the first applicable literal. However, when using VSIDS search for subpath it did appear
to be beneficial. Since the highest heuristic was never far from the best option, and
was in most cases significantly better than the opposite strategy of choosing the literal
fixed lowest in the search tree, we decided to use the highest heuristic for scc evidence
literal selection in further experiments (making this the same as prevent evidence literal
selection).

23

Inorder Search VSIDS Search
Problem Pruning Rules Fails Props Time Fails Props Time

circuit original scc 77 453 30.4 (21) 0.7 15.7 0.55
scc+within 128 696 28.2 (18) 0.6 14.8 0.41
scc+root 75 447 18.2 (10) 0.6 14.8 0.37
scc+within+root 77 412 16.8 (9) 0.5 13.9 0.35

path original scc 205 1279 152.4 (95) 1.1 23.4 0.79
scc+within 251 1606 128.1 (79) 0.9 21.9 0.56
scc+root 192 1206 92.0 (51) 1.0 22.3 0.56
scc+within+root 148 968 76.1 (40) 0.9 20.9 0.52

subcircuit original scc 81 509 37.6 (15) 2.1 36.4 1.09
scc+within 47 280 12.7 (5) 1.6 33.2 0.80
scc+root 46 299 13.5 (6) 2.0 35.5 0.82
scc+within+root 26 186 7.4 (3) 1.6 32.4 0.75

subpath original scc 271 1706 220.5 (64) 3.4 50.8 1.76
scc+within 71 484 33.7 (7) 2.5 44.7 1.23
scc+root 274 1745 157.0 (35) 3.3 49.4 1.35
scc+within+root 62 425 30.1 (5) 2.4 43.9 1.17

Table 6: Additional propagation rules for the scc algorithm. Each figure is the average
for 500 instances with 65 locations. Failure and propagation counts are given in thou-
sands, while times are in seconds. Where at least one instance reached the time limit
of 10 minutes, the number of timeouts is shown in brackets.

Inorder Search VSIDS Search
Problem Heuristic Fails Props Time Fails Props Time

subcircuit first 26 186 7.4 (3) 1.6 32.4 0.75
last 26 183 7.4 (2) 1.6 32.2 0.73
lowest 36 240 9.8 (3) 1.8 30.2 0.73
highest 23 160 7.5 (3) 1.6 32.4 0.73

subpath first 62 425 30.1 (5) 2.4 43.9 1.17
last 81 554 44.5 (8) 2.0 39.8 1.06
lowest 113 758 65.5 (13) 2.7 42.2 1.22
highest 61 418 29.1 (5) 2.0 39.8 1.05

Table 7: Comparison of heuristics for evidence literal selection for the scc algorithm.
Each figure is the average for 500 instances with 65 locations. Failure and propagation
counts are given in thousands, while times are in seconds. Where at least one instance
reached the time limit of 10 minutes, the number of timeouts is shown in brackets.

6 The e↵ect of explanation

In this section we explore the e↵ect of explaining circuit. We first investigate which
propagation algorithm performs the best with and without explanation, and then go
on to compare explaining and non-explaining propagators.

6.1 Propagation complexity trade-o↵

In all propagators there is a trade o↵ between the complexity of the algorithm and
its power. In lazy clause generation propagators we also need to consider the size and
generality of the explanations produced. When using explanation, a weakly propagating
algorithm which produces short highly reusable explanations, may be able to compete

24

with a stronger propagator whose explanations are much more complex and large and
not very reusable.

We therefore wish to investigate whether adding explanation changes the relative
e↵ectiveness of the di↵erent circuit propagation algorithms. We consider four di↵erent
versions of the propagator, as follows.

1. The check algorithm only.
2. Both check and prevent (recall prevent cannot be used alone).
3. The scc algorithm alone.
4. All three algorithms in combination.

When multiple algorithms are used, we apply the least expensive first, and then
continue with each more expensive algorithm if no conflict has been discovered. For
scc we used random root selection and both extra propagation rules. Experimentation
showed that just as this is the best combination when using explanation, it is also the
best combination when not using explanation.

Table 8 shows the results without explanation. For all versions of the problem the
prevent algorithm is an improvement over check alone. The scc algorithm used alone
performs better than check for circuit and path, but worse than check for subcircuit and
subpath, and always worse than check plus prevent . It appears that the scc algorithm
is too expensive to pay o↵, as using all algorithms together is better than scc alone,
but still slower than check and prevent without scc.

For circuit and path we include execution times for Gecode (version 4.0.0) using the
default circuit implementation which includes all three algorithms (although obviously
without our modifications to scc). It is clear that without explanation the Gecode
implementation is much faster than Chu↵ed.

Problem Size
Problem Algorithm 15 20 25

circuit check 14.9 355.6 (219) 567.7 (459)
check +prevent 7.2 244.0 (129) 536.0 (415)
scc 11.4 289.4 (170) 556.2 (442)
check +prevent +scc 9.2 277.2 (162) 542.3 (423)
Gecode 0.1 4.4 33.5 (20)

path check 25.7 (5) 259.4 (143) 548.0 (426)
check +prevent 15.1 (1) 236.5 (127) 521.0 (398)
scc 22.4 (4) 258.9 (144) 546.2 (421)
check +prevent +scc 20.2 (3) 265.5 (148) 536.7 (414)
Gecode 0.3 25.8 (11) 136.0 (76)

subcircuit check 15.1 (1) 409.9 (269) 578.9 (470)
check +prevent 10.0 318.0 (189) 555.7 (439)
scc 17.0 (1) 396.9 (254) 575.8 (463)
check +prevent +scc 12.5 359.2 (224) 564.8 (452)

subpath check 24.1 (2) 375.7 (237) 576.0 (462)
check +prevent 17.6 (3) 327.2 (194) 556.3 (440)
scc 29.9 (5) 394.9 (253) 576.3 (464)
check +prevent +scc 28.2 (4) 363.8 (224) 570.9 (456)

Table 8: Comparison of propagation algorithms without explanation, using inorder
search. Each figure shown is the average execution time (secs) over 500 instances of the
given size. Where at least one instance reached the 10 minute time limit, the number
of timeouts is given in brackets.

25

Inorder Search VSIDS Search
Problem Algorithm 55 60 65 55 60 65

circuit check 99 (66) 132 (96) 166 (122) 0.42 0.63 2.37 (1)
check +prev 73 (51) 114 (86) 128 (96) 0.26 0.31 0.35
scc 5 (2) 10 (4) 17 (9) 0.24 0.27 0.35
all 11 (8) 19 (13) 22 (14) 0.25 0.30 0.31

path check 265 (184) 305 (227) 353 (271) 0.69 1.00 2.69 (1)
check +prev 214 (146) 274 (201) 314 (233) 0.37 0.48 0.56
scc 48 (22) 48 (20) 76 (40) 0.47 0.41 0.52
all 44 (22) 72 (39) 97 (56) 0.33 0.40 0.46

subcircuit check 216 (127) 195 (100) 270 (154) 1.04 1.74 2.19
check +prev 169 (86) 155 (72) 242 (133) 0.54 0.74 0.94
scc 3 (1) 2 7 (3) 0.45 0.58 0.73
all 7 (3) 2 9 (2) 0.41 0.50 0.61

subpath check 400 (262) 410 (250) 511 (371) 1.17 1.71 2.64
check +prev 382 (245) 393 (245) 494 (343) 0.63 0.85 1.17
scc 19 (3) 19 (4) 29 (5) 0.64 0.82 1.05
all 19 (3) 17 (1) 26 (6) 0.58 0.78 1.04

Table 9: Comparison of propagation algorithms when using explanation. Each figure is
the average execution time (secs) over 500 instances of the given size. Where at least
one instance reached the time limit of 10 minutes, the number of timeouts is shown in
brackets.

We now compare this with the results using explanation shown in Table 9. The
addition of prevent to check was still clearly beneficial. The striking di↵erence is that
with explanation the scc algorithm actually performs very well. This is interesting
as it suggests that the explanations produced by scc, although large, are su�ciently
general to be e↵ective. In most cases when using inorder search scc alone was the
best performing algorithm, but for the hardest problems (large sizes of subpath) it was
better to use all three algorithms together. For VSIDS search, using all three algorithms
together seemed to be the best option.

6.2 Benefit of Explanation

Having investigated the best choice of algorithm when using and not using explana-
tion, we now consider the impact of explanation on the performance of our circuit
propagator. In order to make a direct comparison, we need to use the same circuit
algorithm with and without explanation. When not using explanation, the best choice
of algorithm was check plus prevent without scc, but when using explanation the scc

algorithm was vital for good performance. We have chosen to use all three algorithms
together, since this gives reasonable performance both with and without explanation,
and is the best option when using VSIDS search. We also include results for Gecode,
which was found earlier to be much faster than Chu↵ed without explanation regardless
of the choice of algorithm.

Table 10 shows the average execution time and number of failures for increas-
ing problem sizes, giving a comparison between Chu↵ed without explanation (inorder
search), Chu↵ed with explanation using inorder search, Chu↵ed with explanation and
VSIDS search, and Gecode (inorder search). Comparing Chu↵ed with explanation to
Chu↵ed without explanation, the smallest improvement was for circuit problems. For
the smallest size (15) these were solved almost 80 times faster when using explanation.

26

Execution Time (secs) Fails (000s)
Problem Solver 15 30 60 15 30 60

circuit No expl 9.16 594.4 (492) 600.0 (500) 704 21462 13517
Expl 0.12 0.6 19.1 (13) 0.04 1.8 80.5
VSIDS 0.04 0.1 0.3 0.03 0.1 0.1
Gecode 0.09 111.1 (75) 465.4 (370) 3.97 5362 17821

path No expl 20.19 (3) 597.3 (495) 600.0 (500) 1746 23874 12481
Expl 0.05 2.6 (1) 72.1 (39) 0.12 4.7 130.2
VSIDS 0.04 0.1 0.4 0.06 0.1 0.3
Gecode 0.33 344.3 (249) 586.8 (488) 18.19 15365 23197

subcircuit No expl 12.47 598.6 (498) 600.0 (500) 837 20808 12800
Expl 0.04 0.5 2.4 0.06 3.3 6.9
VSIDS 0.04 0.1 0.5 0.04 0.2 0.5

subpath No expl 28.19 (4) 598.2 (497) 600.0 (500) 1640 20850 12392
Expl 0.04 0.6 16.6 (1) 0.16 2.8 35.0
VSIDS 0.04 0.2 0.8 0.06 0.3 0.8

Table 10: Experiment showing the e↵ect of explanation, comparing Chu↵ed without
explanation, Chu↵ed with explanation, Chu↵ed with explanation using VSIDS search,
and Gecode. Each figure is the average for 500 instances of the given size. Where at
least one instance reached the time limit of 10 minutes, the number of timeouts is
shown in brackets.

For size 30 these problems were solved around 1000 times faster. Looking at size 15,
the improvement was greatest for subpath problems, which are also the hardest. For
subpath problems of this size, using explanation was already more than 700 times faster
than not using explanation. For the larger sizes too many instances timed out when
not using explanation to accurately estimate the improvement factor.

Using VSIDS rather than inorder search was a further improvement over just adding
explanation, and this improvement also increased with increasing problem size. For
example, solving circuit problems using VSIDS search was 3, 6 and 60 times faster
than inorder search (with explanation) for sizes 15, 30 and 60 respectively.

Although Gecode was much faster than Chu↵ed without explanation, it was able to
compete with Chu↵ed with explanation only for the smallest size of circuit problems.
By size 60, Gecode timed out at 10 minutes for 75% of circuit problems and almost
all path problems, while Chu↵ed with explanation took on average 19 and 72 seconds,
and Chu↵ed with explanation and VSIDS averaged less than half a second for both
problems.

The failure counts also given in Table 10 show a similar pattern to the times.

These results make it very clear that explanation is highly e↵ective for circuit (and
subcircuit) propagation. It is also apparent that larger and harder problems benefit
more. That is, those instances with greater average search time without explanation
also have a larger improvement factor. This is probably because when more search is
required, there are more opportunities to make use of learned clauses.

7 Related work

The purpose of this paper is to investigate how explanation can be used, and its e↵ect
on the circuit constraint and its variants. We are unaware of any other work on circuit

27

with explanation. However, for context we briefly describe some related constraints
and propagation algorithms.

In this work we considered three propagation algorithms for circuit . Another (in-
complete) circuit propagation algorithm was suggested in [11]. This algorithm uses
graph separators to detect nonhamiltonian edges which can then be removed. While of
theoretical interest, the algorithm is very complex and appears very slow to propagate,
which is why we have not included it in our study.

The circuit constraint can clearly be implemented using the more general cycle
constraint[1], by fixing the number of cycles to one. This is also possible for subcircuit ,
although an extra constraint is required to ensure that the total number of cycles is one
more than the number of self-cycles, and this means it will not propagate as strongly
as the propagator we describe. Since path and subpath are implemented using circuit

and subcircuit respectively, these can be implemented using cycle as well.
We have already mentioned the more general version of path which enforces n dis-

joint paths where n is a variable. A further generalisation of this is the tree constraint,
introduced in [2] and extended in [3]. The extended version of tree includes precedence,
incomparability and degree constraints, and can be used to implement subpath as well
as path constraints.

Another graph-based constraint of particular relevance is the DomReachability
constraint, which uses reasoning based on node dominance and reachability and can
be used to solve the ordered simple path with mandatory nodes problem [16]. This
problem is equivalent to that solved by subpath with the additional requirement of
enforcing an order between certain pairs of nodes (which is not possible using our
circuit-based implementation).

While this paper focuses on propagation algorithms designed specifically for circuit ,
using a simple transformation to allow these to be applied to path problems, it is
also possible to make the opposite transformation and implement circuit using a path

constraint (or a tree constraint with the ability to restrict the degree of nodes). This
is achieved by selecting an arbitrary node to be the start and end of the path, and
splitting this node into two - the start node keeps all outgoing edges and the end node
keeps the incoming edges.

The same technique can be used for subcircuit as long as there is at least one re-
quired node. A general propagator for subcircuit using the path formulation is possible,
but it would need to wait until at least one node became mandatory before it could
begin propagating, using this node as the start and end of the path.

Actually, the scc algorithm is closely related to a propagation algorithm for path

called Reduced Path [8]. This algorithm finds strongly connected components of the
graph and enforces that they form a chain with exactly one edge between neighbouring
components and no edges skipping components. If the root node from the scc algorithm
were the one to be split during the conversion to a path formulation, then each subtree
would become one or more strongly connected components in this chain. The propa-
gations performed by scc are therefore a subset of those performed by Reduced Path.

The prune within improvement to scc is also covered by existing path propagation
algorithms. This rule is actually a restricted form of dominator based pruning, similar
to that discussed in [7] but only detected when it is convenient to do so as part of the
scc algorithm.

Although path propagators can potentially remove more edges than the scc algo-
rithm, there is a disadvantage to using a path formulation for circuit , which is that the
node to split is chosen up front. This is equivalent to always choosing the same root

28

node for the scc algorithm, and our experimental results show that it is beneficial to
choose the root randomly. An interesting avenue for future work would be a propaga-
tor for circuit based on path propagation algorithms, but which does not commit to a
node to split up front, instead selecting this node each time propagation is performed,
perhaps randomly as we have done for scc.

8 Conclusion

We have investigated how best to add explanation to the global constraint circuit and
its variants. Our results show that explanation is highly beneficial for problems in-
volving these constraints. The resulting propagators compare very favourably against
the state-of-the-art circuit implementation in Gecode, one of the fastest available con-
straint programming solvers.

Somewhat surprisingly the complex scc propagator which creates very large expla-
nations, is not dominated by the cheaper propagators, whose explanations are typically
very much smaller. Indeed it is certainly not always the case that once learning is used
that simpler propagators are preferable. But just as without learning, sometimes weaker
propagators are preferable to strong propagators. A full CP system must support both
kinds.

Perhaps more surprising is the fact that adding randomness to an explaining prop-
agator (the choice of root for scc) is beneficial. Usually explaining propagators want
to be deterministic so that they tend to reuse earlier explanations again and again. It
appears for circuit that the benefit of random root selection is substantial enough to
overcome this disadvantage

Acknowledgments

We are thankful to the reviewers for their helpful comments and suggestions. NICTA
is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

References

1. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathematical
and Computer Modelling, 20(12):97–123, Dec. 1994.

2. N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
volume 3524, pages 64–78. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

3. N. Beldiceanu, P. Flener, and X. Lorca. Combining tree partitioning, precedence, and
incomparability constraints. Constraints, 13(4):459–489, Feb. 2008.

4. Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In Proceedings of the
14th International Conference on Logic Programming (ICLP97), pages 316–330, 1997.

5. cycle constraint. Global constraint catalog: http://www.emn.fr/z-
info/sdemasse/gccat/Ccycle.html.

6. N. Downing, T. Feydy, and P. Stuckey. Explaining alldi↵erent. In M. Reynolds and
B. Thomas, editors, Proceedings of the Australasian Computer Science Conference (ACSC
2012), volume 122 of CRPIT, pages 115–124, Melbourne, Australia, 2012. ACS.

29

7. J. Fages and X. Lorca. Revisiting the tree constraint. In Principles and Practice of Con-
straint Programming – CP 2011, volume 6876, pages 271–285. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

8. J. Fages and X. Lorca. Improving the asymmetric TSP by considering graph structure.
arXiv preprint arXiv:1206.3437, 2012.

9. G. Katsirelos. Nogood processing in CSPs. PhD thesis, University of Toronto, 2008.
10. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings, The Twenti-

eth National Conference on Artificial Intelligence and the Seventeenth Innovative Appli-
cations of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania,
USA, pages 390–396, 2005.

11. L. Kaya and J. Hooker. A filter for the circuit constraint. In F. Benhamou, editor,
Principles and Practice of Constraint Programming - CP 2006, volume 4204, pages 706–
710. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

12. K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M. Garcia de la Banda, and M. Wallace.
The design of the Zinc modelling language. Constraints, 13(3):229–267, 2008.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha↵: Engineering an
e�cient SAT solver. In Proceedings of 38th Conference on Design Automation (DAC’01),
pages 530–535, 2001.

14. N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. Minizinc: Towards
a standard CP modelling language. In C. Bessiere, editor, Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Programming, volume 4741
of LNCS, pages 529–543. Springer-Verlag, 2007.

15. O. Ohrimenko, P. Stuckey, and M. Codish. Propagation via lazy clause generation. Con-
straints, 14(3):357–391, 2009.

16. L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving con-
strained path problems. In Practical Aspects of Declarative Languages, 8th International
Symposium, PADL 2006, Charleston, SC, USA, January 9-10, 2006, Proceedings, volume
3819 of Lecture Notes in Computer Science, pages 73–87, 2006.

17. C. Schulte, M. Lagerkvist, and G. Tack. GECODE - an open, free, e�cient constraint
solving toolkit. http://www.gecode.org/.

18. C. Schulte and P. Stuckey. E�cient constraint propagation engines. ACM Transactions
on Programming Languages and Systems, 31(1):Article No. 2, 2008.

19. C. Schulte and G. Tack. Weakly monotonic propagators. Principles and Practice of
Constraint Programming-CP 2009, page 723–730, 2009.

20. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, June 1972.

21. W. van Hoeve. The alldi↵erent constraint: A survey. http://arxiv.org/abs/cs/0105015,
May 2001.

