Constraint Logic Programming

Chapter 9: Advanced
Programming Techniques

A mixed bag of different methods to
improve the efficiency of finding a
solution

PR
tu 3 Advanced Programming

¥ Extending the Constraint Solver

¥ Combining Symbolic and Arithmetic
Reasoning

¥ Programming Optimization
¥ Higher-Order Predicates

¥ Negation

¥ Dynamic Scheduling

Peter Stuckey

Constraint Logic Programming

Peter Stuckey

o -
t'lg Extending the Solver

¥ CLP program provides a solver for user-
defined constraints.

¥ Efficient only for certain modes of usage &
oppacsed to primitive cnstraints

¥ Sometimes worth creaing user-defined
constraints which will be dficient in all
modes of usage

P} U
tu ¥ Solver Extension Examples

Complex numbers x + iy represented as c(X,y)

c_add(c(RL,11), c(R2,12), c(R3,13)) :-
R3=RL+R, 13 =11+12.

c mult(c(RL11), c(R2,12), c(R3,13)) :-
R3 = RI*R2 - 11*12, 13 = RL*I2 + R2*I 1.
« Efficient in al modes of usage

» Only involves afixed number of primitive
constraints

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Solver Extension Examples

Sequence constraints (sequences represented by lists)
non empty sequence, and concatenation of list of
seguences equals a sequence

not _enpty([_|_]).

concat ([S1], S1) .
concat ([S1, S2| Ss],S) : -
append(S1,T,S), concat([S2]|Ss],T).

* concat is efficient only when all the sequences
in the first argument are fixed in length

P} U
tu ¥ Solver Extension Examples

Problems with solver extensions: user-defined
constraints that involve search may behave badly

E.g. Find two sequences L1 and L2 where L2 is not
empty but their concatenation is empty.

not enpty(L2),concat ([L1,L2],L),L =1[].

No solution, but the goal runs forever.

Constraint Logic Programring

Peter Stuckey

6“'53 C Int Sd
L} J Sronger Constraint Sdvers

~ Imagine solving (x+2)*=0
v O (X#2)*(X+2) *(X+2) = 0
v Answer is unknown (from CLP(R))

~ But we can program a constraint solver
(Newton-Raphson method) to solve the
problem

6BN R Method
Lef, ewton-Raphson Metho

From guess xi determine
where the line of slope ' (xi)
that passes through (xi,f(xi))
hits the x axis. Thisisthe
next guess xi+1

fd)

' Xi Xi+1
Need user-defined constraints for the function and its
derivative

F(X, F) - F = (X+2)*(X+2) *(X+2) .
df (X, F) :- F = 3%(X+2)*(X+2).

Constraint Logic Programming

Peter Stuckey

X1 a
L Newton-Raphson Program

sol ve_nr (E, X0, X0) : -
f(X0,F0), -E <= FO, FO <= E.
solve_nr(E, X0, X) :-
f (X0, FO), df (X0, DFO),
FO = DFO * X0 + C, 0 = DFO * X1 + C,
sol ve_nr (E, X1, X) .

sol ve_nr (E, Xo, X) returnsvalue X where [f(X)| <= E
Mode of usageisfirst and second arg fixed.

Note use of constraint solving to determine C and X1

9

=* Combining Symbolic and
tu" ~ Arithmetic Reasoning

~ Tree constraints give symbolic reasoning

~ We can combine both symbolic and
arithmetic reasoning
¥ E.g. representing mathematical expressions
v plus(x,y) == X ty
¥ minus(x,y) ==
v mult(x,y) == XXy
~ power(x,y) ==
~ etc. 10

Constraint Logic Programming

Peter Stuckey

{363 Evaluating an Expressi
¢ W J Evaluating an Expression

eval n(x, X, X).
evaln(N, _,N) :- arithnetic(N).
eval n(power (X, N), X, E) :- E = power (X, N).
eval n(plus(F, §, X, EF+EGQ : -

eval n(F, X, EF), eval n(G X EG .
evaln(mult(F, §, X, EF*EGQ : -

eval n(F, X, EF), eval n(G X EG .

eval n(T, X, V) givesvalueV of an expression T in
variable X, using value X for x. For example

eval n(pl us(power (x, 2), 3), X, E) gives E= X211+3

deriv(N,0) :- arithmetic(N).
deriv(power (x, N, mul t (power(x,N1)) :-
N1 = N- 1.
deriv(plus(F, G, plus(DF, DG) :-
deriv(F,DF), deriv(G DG.
deriv(mult(F, G,D :-
D= plus(mult(DF, G, mult(f,DG),
deriv(F,DF), deriv(G DG .

deri v(T, DT) givesexpression DT whichisthe

differentiation of T wrt X. For example
deriv(plus(power(x,2),3),D

D = plus(power(x, 1), 0) 12

Constraint Logic Programming

Peter Stuckey

) =)
«

sol ve_nr (E,
sol ve_nr (E, F, DF,
eval n(F, X0,
sol ve_nr (E, F, DF,
eval n(F, X0,
FO = DFO *
sol ve_nr (E,

dsol ve(E, F, X0, X) : -

t'lg Newton-Raphson Revisited

deri v(F, DF),
F, DF, X0, X) .
X0, X0) : -
FO), -E <= FO, FO <= E.
X0, X) :-

FO), eval n(DF, X0, DFO),
X0+ C, 0 =DF0 * X1 + C,
F, DF, X1, X) .

Use symbolic differentiation to determine derivative
dsol ve(0. 001, pl us(power (x,2),plus(mult(3,x),2),5, X

givesanswer X =-1 B

6BP . o
L} J Programming Optimization

¥ Optimization algorithms can be
programmed just as constraint solvers

¥ Examples
¥ Branch and Bound minimization
¥ Optimistic partitioning

14

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Programming Branch+Bound

v Predicate bounded_pr ob defines the problem
constraints with bounds

¥ minimize f subject to f < current best and bounded
problem (for current bounds)
¥ examine the solution
~ if al integer return as new best solution

v otherwise add new bounds that split on first non-integer
variable, try lower bound split then upper bound split

15

<%
tu 3 Optimistic Partitioning

¥ Rather than search the entire space

~ first try finding a solution in the lower half of
range for the objective function

v only if that fails try the upper half

¥ Can avoid finding along chain of slightly
better answers

v Example on the scheduling program

16

Constraint Logic Programming

Peter Stuckey

tu 3 Optimistic Partitioning

spl it_mn(Data, M nO, Max0, JLO, JL) :-
= (M nO+Max0)// 2,
(MnO <= End, End <= M,
schedul e(Dat a, End, JL1), i ndomai n(End)->
Max = End-1,
split_m n(Data, M nO, Max, JL1, JL)
; (Md+1 <= End, End <= MaxO,
schedul e(Dat a, End, JL1), i ndomai n(End) - >
Mn = Md+1l, Max = End-1,
split_mn(Data, M n, Max, JL1, JL)
JL = JLO)).

17

JLO isthe current best solution, JL the minimal solution

P} U
t'lg Higher-Order Predicates

¥ higher-order predicatestake a constraint
or goal as an argument
v e.g. once, if-then-else

¥ goals can be represented using terms, e.g.
v menber (X, L1), X=Y, menber (Y, L2)

/ , \
member ,
T~ /S T
X L1 = member
/7 N\ P
X Y Y L2 18

Constraint Logic Programming

Peter Stuckey

n?: Call

¥ built-in literal cal | (G actslikethe goal G

¥ requiresthat G is constrained to be aterm
with the syntax of a goal when executed
¥ Examples
v X = nmenber (A [a,b]), call (X
vhasanswersA=aand A=b
vonce(Q :- (call(Q ->true ; fail).
v defines once in terms of if-then-else

19

“ .
t'lg Negation

¥ Important higher-order predicate not (G

v Useful to have the negation of a user-
defined predicate e.g. member, not_member

v Drawback it only works as expected in quite
restricted modes of usage

20

10

Constraint Logic Programming

Peter Stuckey

P X U
tu 3 Negation

¥ negative literal: not(G)

¥ if G succeeds then fail otherwise succeed

¥ negation derivation step: G1isL1, L2, ...,
Lm, where L1 is not(G)

vif <G| C1> succeeds C2 isfalse, G2 is[]
velseC2isCl, G2isL2,...,Lm

21

P U
tu 3 Negation

v mpI ementing disequality
v ne(X Y) :- not(X=Y).
vGoa X =2, Y =3, ne(XY) succeeds
vGoa X =2, Y =2, ne(XY) fails
v Goa X = 2, ne(X, Y), Y = 3 fals

<n9(X,Y)IXD= 20Y=3) <ne(X,Y),\|(]: 3X =2)
<n0t(X=Y)Ié<=ZDY=3> <not(x:Y),DY:3|x:2>
Wx=20v=3) ([l false)
<X=Y|XEZDY=3> <X:Y|£X:2>
(11l false) (X =20X =Y) 2

11

Constraint Logic Programming

Peter Stuckey

tu 3 Safe Negation

¥ A negative literal is guaranteed to act right
(as the negationof its argument) when the
goal isfixed (has no variables)
¥ Otherwise problems with solver
*Y*Y=4, Y >= 0, not(Y >= 1) fald
+X <0, Y>1, Z> 2, not(X=Y*2) fals
¥ One other usage (testing compatibility)
vis_conpatible(@ :- not(not(Q).
¥ trueif (non-fixed) G is compatible with store =

tu 3 Dynamic Scheduling

¥ Because answers do not depend on the
execution order of literals we can relax the
order of processing

¥ Dynamic scheduling allows the execution of
user-defined constraints to be delayed until
the arguments represent a safe mode of

usage

24

12

Constraint Logic Programming

Peter Stuckey

£33 Dynamic Schedu |
hﬁDynamlcSc uling Example

- delay_until (ground(X) and ground(Y),ne(X Y)).

ne(X,Y) :- not(X =1Y).

Delays the execution of ne literals until the mode of
usage is safe (both arguments are fixed).

(ne(X,Y)|x =20Y =3) <”e(X’Y)‘\%"X =2)

0 (ne(X,Y)|X =20Y =3)

(not(X =Y)|X =20Y =3) 0
0 (not(X = Y)|X =20Y =3)

(11X =20Y=3) 0

(11X =20Y=3)
(X =Y|X=20Y=3)
(X =Y|X =20Y=3)

0
(Ul false) .

([1] false)

P} U
tu 3 Delay Conditions

¥ takes a constraint and returns true or false,
if trueit is said to enable the condition
¥ primitive delay condition:
~ ground(X) : Xtakes afixed vaue
~ nonvar (X) : X cannot take all values
~ ask(c) : the constraint impliesc
v delay condition: primitive delay or
~ Cond1l and Cond2: both conditions hold
~ Condl or Cond2: either condition holds 2%

13

Constraint Logic Programming

Peter Stuckey

(353 Daaying Literal
h"D aying Literals

v delaying literal: del ay_unti| (Cond, Goal)

¥ Evaluation of Goal will delay until the
constraint store enables Cond

¥ Two forms

¥ predicate-based: for al user-defined
constraints for predicate p

v .- delay_until (Cond, p(X))
¥ goal-based: for a particular user-defined constr.
v ..., delay_until (Cond, p(X)), ... 27

X

¥,
3

f» Delaying Literals

¥ Can mimic goal-based with predicate based
and vice-versa. Examine predicate-based

v How do delaying literals execute
¥ We need to dightly modify the execution
strategy

28

14

Constraint Logic Programming

Peter Stuckey

o -
tu ¥ Selection Derivation

v A litera Li is selected for rewriting by a
selection strategy
v derivation step: G1lisL1,..., Li, ...,Lm
¥ Li isaprimitive constraint, C2is C1 A Li
~if soly(C A\ Li) = falsethen G2 = []
+elseG2=L1,...Li-1,Li+1, ...,Lm
¥ Li isauser-defined congtraint, C2 is C1 and G2

isthe rewriting of G1 at Li using some rule and
renaming

29

P} U
t'UJ Selection Derivation + Delay

v Literal selection strategy is safeif it only
selects user-defined constraints p(xX) with a
delay declaration

v:- delay_until (Cond, p(X))

¥ if the store enables Cond

v Sometimes in a state <G|C> no literal can
be selected, the state is floundered

v A derivation with floundered final stateis
successful with answer G\ C 30

15

Constraint Logic Programming

Peter Stuckey

{363 Delay
Red Delaying Program

The string constraint solver but where append is delayed

not _enpty([_|_]).

concat ([S1], S1) .
concat ([S1, S2| Ss],S) : -

.- delay_until (nonvar(X) or nonvar(Z2),
append(X, Y, Z2))
append([],Y,Y).

append(S1,T,S), concat([S2]|Ss],T).

append([A X],Y,[A Z]) :- append(XY, 2Z).

31

H “ - - -
L€ S Derivation with Delay
-
Godl: (not_empty(Lz),concatD([L1,L2], L), L =[]jtrue)
not _enpty(L2), (concat({LL, L2J, L), L=[l|L2=[_|_])
concat ([L1,L2],L), 0
L =11]. (append(L1,T, L), concat([L2], T), L =[l|L2=[_|_])
O
Note that the <append(LLT,L),ﬂ|L2:[_|_]DT: |_2>
derivation runs O
forever if thereisno (append(LL T, LyL2=[_|_]OT=L20L =(])
delay condition. 0
(1 false)

32

16

Constraint Logic Programming

Peter Stuckey

o -
tu ¥ Floundered Derivation

In the final step thereisno literal that can be selected
<concat([L1 L2], L)|true>
O
(append(LL T, L),concat ([L2], T)[true)
O
(append(LLT,L)|T = L2)

Successful derivation answer
append(L1L,T,L)ANT=L2
or smplified append(L1,L2,L) ©

<%
t'lf_.! Delay for Writing Solvers

Boolean solving by local propagation. The constraint
and(X,Y,Z) makesZ = X \'Y it waits until two of the
three are known before executing

- delay_until ((ground(X) and ground(Y)) or

(ground(X) and ground(Z)) or
(ground(Y) and ground(2)),
and(X Y, 2))

and(0,0,0).

and(0,1,0).

and(1,0,0).

and(1,1,1). 3

17

Constraint Logic Programming

o -
t'lg Delay for Solvers

Godl: and(A1, A2,0), and(A1, 1, A3), and(1,0, A3)
has 13 states in the simplified derivation tree using delay
and 29 states without using delay
(and (AL A2,0),and (AL, A3),and (L0, A3)ltrue)
O
(and (AL, A2,0),and (AL, A3)| A3=0)
O
(and (AL A2,0)|A3=00 AL=0)
O
(1l1A3=00A1=00A2=0) £3

= Advanced Programming
tu’ ~ Techniques SUmmary

¥ Extending the constraint solver is
straightforward in CLP, but usually they
have restricted modes of usage

¥ Meta-programming and dynamic scheduling
provide ways of making them more robust

¥ Similarly new optimization can be
programmed

¥ Negation is useful is modelling but of
restricted usefulness as provided in CLP =

Peter Stuckey

