
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 9:Advanced
Programming Techniques

A mixed bag of different methods to
improve the efficiency of finding a
solution

2

Advanced Programming

 Extending the Constraint Solver

 Combining Symbolic and Arithmetic
Reasoning

 Programming Optimization

 Higher-Order Predicates

 Negation

 Dynamic Scheduling

Constraint Logic Programming

Peter Stuckey 2

3

Extending the Solver

 CLP program provides a solver for user-
defined constraints.

 Eff icient only for certain modes of usage as
opposed to primitive constraints

 Sometimes worth creating user-defined
constraints which will be eff icient in all
modes of usage

4

Solver Extension Examples

Complex numbers x + iy represented as c(x,y)

c_add(c(R1,I1), c(R2,I2), c(R3,I3)) :-
R3 = R1 + R2, I3 = I1 + I2.

c_mult(c(R1,I1), c(R2,I2), c(R3,I3)) :-
R3 = R1*R2 - I1*I2, I3 = R1*I2 + R2*I1.

• Eff icient in all modes of usage

• Only involves a fixed number of primitive
constraints

Constraint Logic Programming

Peter Stuckey 3

5

Solver Extension Examples

Sequence constraints (sequences represented by lists)
non empty sequence, and concatenation of list of
sequences equals a sequence

not_empty([_|_]).

concat([S1],S1).

concat([S1,S2|Ss],S) :-
append(S1,T,S), concat([S2|Ss],T).

• concat is efficient only when all the sequences
in the first argument are fixed in length

6

Solver Extension Examples

Problems with solver extensions: user-defined
constraints that involve search may behave badly

E.g. Find two sequences L1 and L2 where L2 is not
empty but their concatenation is empty.

not_empty(L2),concat([L1,L2],L),L = [].

No solution, but the goal runs forever.

Constraint Logic Programming

Peter Stuckey 4

7

Stronger Constraint Solvers

 Imagine solving

 (X+2)*(X+2)*(X+2) = 0

 Answer is unknown (from CLP(R))

 But we can program a constraint solver
(Newton-Raphson method) to solve the
problem

()x + =2 03

8

Newton-Raphson Method

xi

f(x)f(xi)

xi+1

From guess xi determine
where the line of slope f’ (xi)
that passes through (xi,f(xi))
hits the x axis. This is the
next guess xi+1

f(X,F) :- F = (X+2)*(X+2)*(X+2).

df(X,F) :- F = 3*(X+2)*(X+2).

Need user-defined constraints for the function and its
derivative

Constraint Logic Programming

Peter Stuckey 5

9

Newton-Raphson Program
solve_nr(E,X0,X0) :-

f(X0,F0), -E <= F0, F0 <= E.
solve_nr(E,X0,X) :-

f(X0,F0), df(X0,DF0),

F0 = DF0 * X0 + C, 0 = DF0 * X1 + C,

solve_nr(E,X1,X).

solve_nr(E,Xo,X) returns value X where |f(X)| <= E

Mode of usage is first and second arg fixed.

Note use of constraint solving to determine C and X1

10

Combining Symbolic and
Arithmetic Reasoning

 Tree constraints give symbolic reasoning

 We can combine both symbolic and
arithmetic reasoning

 E.g. representing mathematical expressions
� plus(x,y) ==
� minus(x,y) ==
� mult(x,y) ==
� power(x,y) ==
� etc.

x y

x y×
x y−

x y+

Constraint Logic Programming

Peter Stuckey 6

11

Evaluating an Expression

evaln(x,X,X).

evaln(N,_,N) :- arithmetic(N).
evaln(power(X,N),X,E) :- E = power(X,N).

evaln(plus(F,G),X,EF+EG) :-

evaln(F,X,EF), evaln(G,X,EG).

evaln(mult(F,G),X,EF*EG) :-

evaln(F,X,EF), evaln(G,X,EG).

evaln(T,X,V) gives value V of an expression T in
variable x, using value X for x. For example

evaln(plus(power(x,2),3),X,E) gives E X= +2 3

12

Symbolic Differentiation
deriv(x,1).

deriv(N,0) :- arithmetic(N).
deriv(power(x,N),mult(power(x,N1)) :-

N1 = N - 1.
deriv(plus(F,G),plus(DF,DG)) :-

deriv(F,DF), deriv(G,DG).
deriv(mult(F,G),D) :-

D = plus(mult(DF,G),mult(f,DG)),
deriv(F,DF), deriv(G,DG).

deriv(T,DT) gives expression DT which is the
differentiation of T wrt x. For example

deriv(plus(power(x,2),3),D)
D = plus(power(x,1),0)

Constraint Logic Programming

Peter Stuckey 7

13

Newton-Raphson Revisited
dsolve(E,F,X0,X) :- deriv(F,DF),

solve_nr(E,F,DF,X0,X).

solve_nr(E,F,DF,X0,X0) :-

evaln(F,X0,F0), -E <= F0, F0 <= E.

solve_nr(E,F,DF,X0,X) :-

evaln(F,X0,F0), evaln(DF,X0,DF0),
F0 = DF0 * X0 + C, 0 = DF0 * X1 + C,

solve_nr(E,F,DF,X1,X).

Use symbolic differentiation to determine derivative
dsolve(0.001,plus(power(x,2),plus(mult(3,x),2),5,X)

gives answer X = -1

14

Programming Optimization

 Optimization algorithms can be
programmed just as constraint solvers

 Examples
� Branch and Bound minimization
� Optimistic partitioning

Constraint Logic Programming

Peter Stuckey 8

15

Programming Branch+Bound

� Predicate bounded_prob defines the problem
constraints with bounds

� minimize f subject to f < current best and bounded
problem (for current bounds)

� examine the solution
� if all integer return as new best solution
� otherwise add new bounds that split on first non-integer

variable, try lower bound split then upper bound split

16

Optimistic Partitioning

 Rather than search the entire space
� first try finding a solution in the lower half of

range for the objective function
� only if that fails try the upper half

 Can avoid finding a long chain of slightly
better answers

 Example on the scheduling program

Constraint Logic Programming

Peter Stuckey 9

17

Optimistic Partitioning
split_min(Data,Min0,Max0,JL0,JL) :-

Mid = (Min0+Max0)//2,
(Min0 <= End, End <= Mid,

schedule(Data,End,JL1), indomain(End)->

Max = End-1,

split_min(Data,Min0,Max,JL1,JL)

; (Mid+1 <= End, End <= Max0,
schedule(Data,End,JL1),indomain(End)->

Min = Mid+1, Max = End-1,

split_min(Data,Min,Max,JL1,JL)

; JL = JL0)).

JL0 is the current best solution, JL the minimal solution

18

Higher-Order Predicates

 higher-order predicates take a constraint
or goal as an argument

� e.g. once, if-then-else

 goals can be represented using terms, e.g.
� member(X,L1),X=Y,member(Y,L2)

,

member ,

memberX L1 =

X Y Y L2

Constraint Logic Programming

Peter Stuckey 10

19

Call

 built-in literal call(G) acts like the goal G

 requires that G is constrained to be a term
with the syntax of a goal when executed

 Examples
� X = member(A,[a,b]), call(X)
� has answers A = a and A = b

� once(G) :- (call(G) -> true ; fail).
� defines once in terms of if-then-else

20

Negation

 Important higher-order predicate not(G)

 Useful to have the negation of a user-
defined predicate e.g. member, not_member

 Drawback it only works as expected in quite
restricted modes of usage

Constraint Logic Programming

Peter Stuckey 11

21

Negation

 negative literal: not(G)

 if G succeeds then fail otherwise succeed

 negation derivation step: G1 is L1, L2, ...,
Lm, where L1 is not(G)

 if <G | C1> succeeds C2 is false, G2 is []
� else C2 is C1, G2 is L2, ..., Lm

22

Negation
� Implementing disequality

� ne(X,Y) :- not(X=Y).
� Goal X = 2, Y = 3, ne(X,Y) succeeds
� Goal X = 2, Y = 2, ne(X,Y) fails
� Goal X = 2, ne(X,Y), Y = 3 fails!

ne X Y X Y

not X Y X Y

X Y

X Y X Y

false

(,)|

()|

[]|

|

[]|

= ∧ =
⇓

= = ∧ =
⇓

= ∧ =

= = ∧ =
⇓

2 3

2 3

2 3

2 3

ne X Y Y X

not X Y Y X

false

X Y X

X X Y

(,), |

(), |

[]|

|

[]|

= =
⇓

= = =
⇓

= =
⇓

= ∧ =

3 2

3 2

2

2

Constraint Logic Programming

Peter Stuckey 12

23

Safe Negation

 A negative literal is guaranteed to act right
(as the negationof its argument) when the
goal is fixed (has no variables)

 Otherwise problems with solver
� Y*Y=4, Y >= 0, not(Y >= 1) fails!
� X < 0, Y > 1, Z > 2, not(X=Y*Z) fails!

 One other usage (testing compatibility)
� is_compatible(G) :- not(not(G)).
� true if (non-fixed) G is compatible with store

24

Dynamic Scheduling

 Because answers do not depend on the
execution order of literals we can relax the
order of processing

 Dynamic scheduling allows the execution of
user-defined constraints to be delayed until
the arguments represent a safe mode of
usage

Constraint Logic Programming

Peter Stuckey 13

25

Dynamic Scheduling Example

:- delay_until(ground(X) and ground(Y),ne(X,Y)).

ne(X,Y) :- not(X = Y).

Delays the execution of ne literals until the mode of
usage is safe (both arguments are fixed).

ne X Y X Y

not X Y X Y

X Y

X Y X Y

false

(,)|

()|

[]|

|

[]|

= ∧ =
⇓

= = ∧ =
⇓

= ∧ =

= = ∧ =
⇓

2 3

2 3

2 3

2 3

ne X Y Y X

ne X Y X Y

not X Y X Y

X Y

X Y X Y

false

(,), |

(,)|

()|

[]|

|

[]|

= =
⇓

= ∧ =
⇓

= = ∧ =
⇓

= ∧ =

= = ∧ =
⇓

3 2

2 3

2 3

2 3

2 3

26

Delay Conditions

 takes a constraint and returns true or false,
if true it is said to enable the condition

 primitive delay condition:
� ground(X): X takes a fixed value
� nonvar(X): X cannot take all values
� ask(c): the constraint implies c

 delay condition: primitive delay or
� Cond1 and Cond2: both conditions hold
� Cond1 or Cond2: either condition holds

Constraint Logic Programming

Peter Stuckey 14

27

Delaying Literals

 delaying literal: delay_until(Cond,Goal)

 Evaluation of Goal will delay until the
constraint store enables Cond

 Two forms
� predicate-based: for all user-defined

constraints for predicate p
� :- delay_until(Cond,p(X))
� goal-based: for a particular user-defined constr.

� ..., delay_until(Cond,p(X)), ...

28

Delaying Literals

 Can mimic goal-based with predicate based
and vice-versa. Examine predicate-based

 How do delaying literals execute

 We need to slightly modify the execution
strategy

Constraint Logic Programming

Peter Stuckey 15

29

Selection Derivation

 A literal Li is selected for rewriting by a
selection strategy

 derivation step: G1 is L1,..., Li, ..., Lm
� Li is a primitive constraint, C2 is C1 /\ Li

� if solv(C /\ Li) = false then G2 = []
� else G2 = L1,...,Li-1,Li+1, ..., Lm

� Li is a user-defined constraint, C2 is C1 and G2
is the rewriting of G1 at Li using some rule and
renaming

30

Selection Derivation + Delay

 Literal selection strategy is safe if it only
selects user-defined constraints p(X) with a
delay declaration

� :- delay_until(Cond,p(X))

 if the store enables Cond

 Sometimes in a state <G|C> no literal can
be selected, the state is floundered

 A derivation with floundered final state is
successful with answer G /\ C

Constraint Logic Programming

Peter Stuckey 16

31

Delaying Program

not_empty([_|_]).

concat([S1],S1).

concat([S1,S2|Ss],S) :-
append(S1,T,S), concat([S2|Ss],T).

:- delay_until(nonvar(X) or nonvar(Z),
append(X,Y,Z))

append([],Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

The string constraint solver but where append is delayed

32

Derivation with Delay
not empty L concat L L L L true

concat L L L L L

append L T L concat L T L L

append L T L L L T L

append L T L L T L L

false

_ (), ([,],), []|

([,],), []| [_ |_]

(, ,), ([],), []| [_ |_]

(, ,), []| [_ |_]

(, ,)| [_ |_] []

[]|

2 1 2

1 2 2

1 2 2

1 2 2

1 2 2

=

⇓

= =

⇓

= =

⇓

= = ∧ =

⇓

= ∧ = ∧ =

⇓

Goal:

not_empty(L2),

concat([L1,L2],L),

L = [].

Note that the
derivation runs
forever if there is no
delay condition.

Constraint Logic Programming

Peter Stuckey 17

33

Floundered Derivation

concat L L L true

append L T L concat L T true

append L T L T L

([,],)|

(, ,), ([],)|

(, ,)|

1 2

1 2

1 2

⇓

⇓

=

In the final step there is no literal that can be selected

Successful derivation answer
append(L1,T,L) /\ T = L2

or simplified append(L1,L2,L)

34

Delay for Writing Solvers

:- delay_until((ground(X) and ground(Y)) or

(ground(X) and ground(Z)) or
(ground(Y) and ground(Z)),

and(X,Y,Z))

and(0,0,0).

and(0,1,0).

and(1,0,0).
and(1,1,1).

Boolean solving by local propagation. The constraint
and(X,Y,Z) makes Z = X /\ Y it waits until two of the
three are known before executing

Constraint Logic Programming

Peter Stuckey 18

35

Delay for Solvers

Goal: and(A1,A2,0), and(A1,1,A3), and(1,0,A3)
has 13 states in the simplified derivation tree using delay
and 29 states without using delay

and A A and A A and A true

and A A and A A A

and A A A A

A A A

(, ,), (, ,), (, ,)|

(, ,), (, ,)|

(, ,)|

[]|

1 2 0 11 3 1 0 3

1 2 0 11 3 3 0

1 2 0 3 0 1 0

3 0 1 0 2 0

⇓

=

⇓

= ∧ =

⇓

= ∧ = ∧ =

36

Advanced Programming
Techniques Summary

 Extending the constraint solver is
straightforward in CLP, but usually they
have restricted modes of usage

 Meta-programming and dynamic scheduling
provide ways of making them more robust

 Similarly new optimization can be
programmed

 Negation is useful is modelling but of
restricted usefulness as provided in CLP

