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Chapter 7: Controlling Search

Where we discuss how to make the 
search for a solution more efficient
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Controlling Search

 Estimating Efficiency of a CLP Program

 Rule Ordering

 Literal Ordering

 Adding Redundant Constraints

 Minimization

 Identifying Deterministic Subgoals

 Example: Bridge Building
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Estimating Efficiency

 Evaluation is a search of the derivation tree

 Size and shape of derivation tree determines 
efficiency (ignores solving cost)

� smaller: less search
� answers in the leftmost part: less search before 

first answer

 Derivation tree depends on the mode of 
usage
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Mode of Usage

 mode of usage: defines the kinds of 
constraints on the argument of a predicate 
when evaluated

 fixed: constraint store implies a single value 
in all solutions

 free: constraint store allows all values

 others: bounded above, bounded below
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Mode of Usage Example

 mode of usage first arg fixed second free
� sumlis t ([1] , S) .
� L=[1,2 ] ,S >  Z, sumli st (L, S) .

 states in derivation tree with sumlist called
� < suml i st ([ 1] , S) | t rue >
� < suml i st (L ’ , S’) | [ 1]=[N ’ | L’] 

/ \ S =  N’ +  S’ >

sumlist ([], 0 ) .

sumlist ([N|L] , N+S) : - sumlist ( L, S).
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Controlling Search Example

 Imagine writing a program to compute

 Reason recursively:
� sum of N numbers is sum of N-1 + N
� sum of 0 numbers is 0

 Problem sum(1,S) doesnt answer

S N= + + +0 1 2 �

(S1) sum(N, S+N) :- sum(N-1, S).

(S2) sum(0, 0).



Constraint Logic Programming

Peter Stuckey 4

7

Controlling Search Example

sum S true

S S

sum S S S false

S S

sum S S S S

S S

sum S S S false
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Controlling Search Example

 Infinite derivation before answer

 sum(1,S) answers S=1, 

 but sum(1,0)?

(S3) sum(0, 0).

(S4) sum(N, S+N) :- sum(N-1, S).
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Controlling Search Example

 Program was not intended to work for 
negative numbers. Correct it
(S5) sum(0, 0).

(S6) sum(N, S+N) :- sum(N-1, S), N >= 1.

su m tr u e
S

su m tr u e
S
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S
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Controlling Search Example

 Remember left to right processing

 sum(1,S) gives S = , sum(1,0) answers no

 Methods:
� rule reordering 
� adding redundant constraints
� literal reordering

(S7) sum(0, 0).

(S8) sum(N, S+N) :- N >= 1, sum(N-1, S).
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Rule Ordering

 general rule
� place non-recursive rules before recursive rules
� (this will tend to avoid infinite derivations)

 heuristic rule
� place rules which are “more likely to lead to 

answers” before others
� (tend to move the success to the left of tree)
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Literal Ordering

 Primitive Constraints
� place a constraint at the earliest point in which 

it could cause failure (for mode of usage)

 fac(N,F) with N fixed and F free
fac(N, F) :- N = 0,F = 1.
fac(N, FF) :- N >= 1, FF = N *F, 

N1 = N - 1, fac(N, F).

fac(N, F) :- N = 0,F = 1.
fac(N, FF) :- N >= 1,  N1 = N - 1,

fac(N, F), FF = N * F.
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Literal Ordering

 User-define constraints:
� place deterministic literals before others

 deterministic: p(s1,...,sn) in program is 
deterministic for a derivation tree if at each
choicepoint where it is rewritten all but one 
derivation fails before rewriting a user-
defined constraint (at most one succeeds)

 deterministic predicate p for mode of usage
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Deterministic Predicates

 sumlist(L,S) is deterministic for mode of 
usage L fixed  S free. Not for L free S fixed.

 sum(N,S) is similar

 deterministic predicates require little search 
to find an answer

 BEWARE moving a predicate can change 
whether it is deterministic or not
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Literal Reordering Example

father(jim,edward).

father(jim,maggy).
father(edward,peter).

father(edward,helen).

father(edward,kitty).

father(bill,fi).

mother(maggy,fi).

mother(fi,lillian).

father(F,C) is deterministic with C fixed F free, but not 
with both free of F fixed and C free.  mother(M,C) also

Every child can only have one father

A father can have many children

16

Literal Reordering Example

grandf(GF,GC) :- father(GF,P),father(P,GC).

grandf(GF,GC) :- father(GF,P),mother(P,GC).

For mode of  usage GC fixed GF free:

• What modes of usage for first rule literals?

• father(GF,P) both free, father(P,GC) both fixed

• What is the body literals are reversed?

• father(P,GC) free fixed, father(P,GC) free fixed



Constraint Logic Programming

Peter Stuckey 9

17

Literal Reordering Example

grandf(GF,GC) :- father(P,GC),father(GF,P).

grandf(GF,GC) :- mother(P,GC),father(GF,P).

More efficient for mode of usage free fixed

e.g. grandf(X,peter)

63 states in simplified derivation tree for first prog

versus23 states for second prog.
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Adding Redundant Cons.

 A constraint that can be removed from a 
rule without changing the answers is 
redundant.

 answer redundant: same set of answers for
� H :- L1, ..., Li, Li+1, ..., Ln
� H :- L1, ..., Li, c, Li+1, ..., Ln

 advantage (for store C in mode of usage)
� <L1,...,Li,c|C> fails but not <L1,...,Li|C>
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Adding Redundant Cons.

The constraint N >= 1 added to the sum program 
was answer redundant!

Another example sum(N,7) (new mode of usage)
su m N tr u e
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Adding Redundant Cons.

We know each sum of number is non-negative
(S9) sum(0, 0).
(S10) sum(N, S+N) :-

N >= 1, S >= 0, sum(N-1, S).
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Solver Redundant Constraints

 solver redundant: a primitive constraint c
is solver redundant if it is implied by the 
constraint store

 advantages: if solver is partial can add extra 
information (failure)

� F >= 1, N >= 1, FF = N*F, FF >= 1

22

Solver Redundant Example
(F1) fac(N, F) :- N = 0,F = 1.
(F2) fac(N, FF) :- N >= 1,  N1 = N - 1, 

FF = N * F, fac(N, F).

Goal fac(N,7) runs forever like sum(N,7).

(F3) fac(N, F) :- N = 0,F = 1.
(F4) fac(N, FF) :- N >= 1,  N1 = N - 1, 

FF = N * F, F >= 1, fac(N, F).

Goal fac(N,7) still runs forever !
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Solver Redundant Example

fac N tr ue
F

fac N F F N N F
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must be at least 24. constraint is unsatisfiable not 
detected (partial solver)

24

Solver Redundant Example

(F3) fac(N, F) :- N = 0,F = 1.
(F4) fac(N, FF) :- N >= 1,  N1 = N - 1, 

FF = N * F, FF >= N, F >= 1,
fac(N, F).

Fix: add solver redundant constraint  N * F >= N

is implied by N >= 1, F >= 1 

CAREFUL: 1 = N * F , 2 = N * F succeeds, 
therefore use the same name for each  N*F

Now the goal fac(N,7) finitely fails
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Minimization

 Minimization literals cause another 
derivation tree to be searched

 Need to understand the form of this tree
� minimize(G,E) has mode of usage the 

same as E < m, G

 For efficient minimization, ensure that G is 
efficient when E is bounded above
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Minimization Example

Program which finds leafs and their level (depth)
leaf(node(null,X,null),X,0).

leaf(node(L,_,_),X,D+1) :- leaf(L,X,D).
leaf(node(_,_,R),X,D+1) :- leaf(R,X,D).

h

j k

i

d

m

o p

n

l

e

b

f

s r

q r

g

c

a

Answers: X=h/\D=3

(h,3),(j,4),(k,4),(m,4),
(o,5),(p,5),(f,2),(s,4), 
(t,4),(r,3)
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Minimization Example
Goal minimize(leaf(t(a),X,D), D):
After finding X = h /\ D = 3, acts like 
D < 3 leaf(t(a),X,D), should never 
visit nodes below depth 3

h
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Minimization Example

Improve leaf for mode of usage D bounded 
above: add an answer redundant constraint

leaf(node(null,X,null),X,0).

leaf(node(L,_,_),X,D+1) :-
D >= 0, leaf(L,X,D).

leaf(node(_,_,R),X,D+1) :-
D >= 0, leaf(R,X,D).
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leaf t b X D D D

leaf t d X D D D

false
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− < ∧ ≥
⇓
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Minimization

 The search may not always benefit from the 
bounds

� e.g. minimize(leaf(t(a),X,D), -D)
� must still visit every node after finding one leaf
� arguably the original formulation is better since 

it involves less constraints

 Key: remember the mode of usage E<m, G

30

Identifying Determinism

 CLP languages involve constructs so that 
the user can identify deterministic code so 
that the system can execute it efficiently

 if-then-else literals

 once literals
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If-Then-Else

 if-then-else literal: (Gtest -> Gthen ; Gelse)

 first test the goal Gtest, if it succeeds 
execute Gthen otherwise execute Gelse

 if-then-else derivation step: G1 is L1, L2, 
..., Lm, where L1 is (Gt -> Gn ; Ge)

� if <Gt | C1> succeeds with leftmost successful 
derivation <Gt | C1> => ... => < [] | C>

� C2 is C, G2 is Gn, L2, ..., Lm
� else C2 is C1, G2 is Ge, L2, ..., Lm

32

If-Then-Else Example
� abs(X,Y) :- (X >= 0, Y = X ; Y = -X).

 if X is pos abs value is X, otherwise -X
abs A true
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If-Then-Else Example

 What happens to the goals
� abs(X,2), X < 0 and X < 0, abs(X,2)

fails ?!                           succeeds X = -2 ?

DANGERS

• answers strongly depend on mode of usage

• only the first answer of the test goal is used
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If-Then-Else Examples

far_eq(X,Y) :- (apart(X,Y,4)-> true ; X = Y).

apart(X,Y,D) :- X >= Y + D.

apart(X,Y,D) :- Y >= X + D.

X and Y are equal or at least 4 apart

• far_eq(1,6) succeeds, far_eq(1,3) fails

• far_eq(1,Y), Y = 6 fails

•WHY? test goal commits to first answer X >= Y + 4
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If-Then-Else

 safe usage: the mode of usage makes all 
variables in Gtest fixed

 example: safe when N and P0 fixed
cumul_pred([],_,P,P).
cumul_pred([N|Ns],D,P0,P) :-

(member(N,P0) ->
P1 = P0

;
pred(N,D,[N|P0],P1)

),
cumul_pred(Ns,D,P1,P).
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Once

 once literal: once(G)

 find only the first solution for G

 once derivation step: G1 is L1, L2, ..., Lm, 
where L1 is once(G)

� if <G | C1> succeeds with leftmost successful 
derivation <G | C1> => ... => < [] | C>

� C2 is C, G2 is L2, ..., Lm
� else C2 is false, G2 is []
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Once Example

 Sometimes all answers are equivalent

 example: intersection

 intersect([a,b,e,g,h],[b,e,f,g,,i]) 72 states

 18 states

intersect(L1,L2) :-
member(X,L1), member(X,L2).

intersect(L1,L2) :-
once(member(X,L1), member(X,L2)).

38

Bridge Building Example

 AIM: build 2 dimensional spaghetti bridges

 Approach: first build a program to analyze
bridges, then use it constrain designs

fixed join
floating join

(0,0) (6,0)

a

d

c
d

g

b f
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Bridge Building Example

 Constraints: 
� 20cm of struts, 
� strut of length L can sustain any stretch, only 

0.5*(6-L)N compression,
� floating joins can sustain any stretch, only 

2Ncompression, sum of forces at a floating join 
is zero, once join in the center, at least 3 
incident struts to a join, except center join 
which needs 2

40

Representing Bridges

 list of joins
� cjoin(x,y,l) (xy coords, list of incident struts)
� join(x,y,l)

 list of struts: strut(n,x1,y1,x2,y2) name and
coords of endpoints

 analysis of the bridge will create an 
association list of stretching forces in each 
strut f(n,f)
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Representing Bridges

(0,0) (6,0)

a

d

c
d

g

b f

js = [join(2,1,[a,c,d]), join(4,1,[d,e,g]),

cjoin(3,-1,[b,c,e,f])]
ss = [strut(a,0,0,2,1), strut(b,1,0,3,-1), strut(c,2,1,3,-1),

strut(d,2,1,4,1), strut(e,3,-1,4,1), 
strut(g,4,1,6,0)]

42

Strut Constraints

strutc([],[],0).

strutc([strut(N,X1,Y1,X2,Y2)|Ss],
[f(N,F)              |Fs], TL):-

L = sqrt((X1-X2)*(X1-X2)+

(Y1-Y2)*(Y1-Y2)),

F >= -0.5 * (6 - L),

TL = L + RL,
strutc(Ss, Fs, RL).

Builds force association list, calculates total length, 
asserts max compression force
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Strut Constraints

 Given a fixed list of struts works well

 Like sum total length only causes failure at 
end

� FIX add answer redundant constraint RL >= 0

 If the coords of the struts are not fixed 
length calculation is non-linear (incomplete)

� (partial) FIX add solver redundant constraints 
(linear approximation)

L X X L X X L Y Y L Y Y≥ − ∧ ≥ − ∧ ≥ − ∧ ≥ −1 2 2 1 1 2 2 1
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Summing Forces
sumf([],_,_,_,0,0).

sumf([N|Ns],X,Y,Ss,Fs,SFX,SFY) :-
member(strut(N,X1,Y1,X2,Y2),Ss),

end(X1,Y1,X2,Y2,X,Y,X0,Y0),

member(f(N,F),Fs), F <= 2,

L = sqrt((X1-X2)*(X1-X2)+

(Y1-Y2)*(Y1-Y2)),
FX = F*(X-X0)/L, FY = F*(Y-Y0)/L,

SFX = FX+RFX, SFY = FY+RFY,

sumf(Ns,X,Y,Ss,Fs,RFX,RFY).

end(X,Y,X0,Y0,X,Y,X0,Y0).
end(X0,Y0,X,Y,X,Y,X0,Y0).
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Join Constraints
joinc([],_,_,_).

joinc([J|Js],Ss,Fs,W) :-
onejoin(J,Ss,Fs,W).

joinc(Js,Ss,Fs,W).

onejoin(cjoin(X,Y,Ns),Ss,Fs,W) :-

Ns = [_,_|_],

sumf(Ns,X,Y,Ss,Fs,0,W).
onejoin(join(X,Y,Ns),Ss,Fs,W) :-

Ns = [_,_,_|_],

sumf(Ns,X,Y,Ss,Fs,0,0).

Apply minimum incident struts and sum forces cons.

46

Join Constraints

 Given a fixed list of struts for each join, 
works well

 non-deterministic because of end although 
there is only one answer

 hence use inside once



Constraint Logic Programming

Peter Stuckey 24

47

Bridge Analysis

 For the illustrated bridge
TL <= 20,

strutc(ss,Fs,TL),

once(joinc(js,ss,Fs,W).

 Answer is W <= 2.63

48

Bridge Design

� strutc and joinc require the topology to be 
known to avoid infinite derivations

 too many topologies to search all

 one approach user defines topology
tpl(Js,Ss,Vs) where Vs are the coordinate 
variables

 system performs minimization search
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Bridge Design

 Unfortunately constraints are nonlinear so 
minimization goal will not work

 instead add explicit search to minimize on 
which fixes all coordinates
tpl(Js,Ss,Vs), TL <= 20,

strutc(Ss,Fs,TL),

once(joinc(Js,Ss,Fs,W)),

minimize(position(Vs), -W).

 Answer W=6.15 /\ Vs=[2,2,5,1,3,3]
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Bridge Design

 Integer coordinates are very restrictive

 Idea: use local search to improve the design
� find an optimal (integer) solution
� try moving coordinate + or - 0.5 for better sol
� if so then try +/- 0.25 etc. until solution doesnt

improve very much

 Best local search answer
� W=6.64 /\ Vs=[2.125,2.625,3.875,2.635,3,3.75]
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Controlling Search Summary

 Efficiency is measured as size of derivation 
tree

 Depends on the mode of usage of predicates

 Change size and shape by reordering literals 
and rules (doesnt change answers)

 Add redundant constraints to prune 
branches (doesnt change answers)

 Use if-then-else and once to identify sub-
computations which dont need backtracking


