Constraint Logic Programming

Peter Stuckey

Chapter 7. Controlling Search

Wher e we discuss how to make the
search for a solution mor e efficient

pu L U
tu 3 Controlling Search

v Estimating Efficiency of a CLP Program
¥ Rule Ordering

v Literal Ordering

¥ Adding Redundant Constraints

¥ Minimization

¥ |dentifying Deterministic Subgoals

v Example: Bridge Building

Constraint Logic Programming

Peter Stuckey

tu 3 Estimating Efficiency

v Evaluation is a search of the derivation tree

¥ Size and shape of derivation tree determines
efficiency (ignores solving cost)
v smaller: less search
v answers in the leftmost part: less search before
first answer
¥ Derivation tree depends on the mode of
usage

tu: Mode of Usage

v mode of usage: defines the kinds of
constraints on the argument of a predicate
when evaluated

~ fixed: constraint store implies asingle value
in all solutions

~ free: constraint store allows all values
v others: bounded above, bounded below

Constraint Logic Programming

Peter Stuckey

o -
t'lg Mode of Usage Example

sumlist ([J,0).
sumlist ([N|L] , N+S): - sumlist (L, S).

v mode of usage first arg fixed second free
vsumlis t([1] ,9S).
vl=[1,2 1,S> Z, sumli st(L, S).

v states in derivation tree with sumlist called
v< sumlist(1], S)| true >
< sumlist(L’',S)|[1]=N ' |L]
/[\ S= N+ § >

<%
tu 3 Controlling Search Example

~ Imagine writing a program to compute
S=0+1+2+---N
v Reason recursively:
v sum of N numbersissumof N-1+ N
¥ sum of 0 numbersisO
(S1) sum(N, S+N) :- sum(N-1, 9S).
(S2) sum(0, 0).

¥ Problem sum(1,S) doesnt answer

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Controlling Search Example

(sum(, S)|true)
0S1 0s2
(sum(0,9)Is=1+s) | (1]false)
0s1 0S2
(sum(-1,8")Is=1+8") | (1IS=1)
0s1 1S2
(sum(-2,5")|S=0+S")| (] false)
0s1

Simplified derivationtree for sum(1,S)

<%
tu 3 Controlling Search Example

v Infinite derivation kefore answer

(S3) sun{0, 0).
($4) sun(N, S+N) :- sunm(N-1, S).
_ sum(1,0)|true
¥ sum(1,S) answers S=1, ((DSZJ)
¥ but sum(1,0)? (sum(0,-1)|true)
0S4
<sum(—1,—1)|true>
0S4
<sum(—2,0)|tru§>

US4

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Controlling Search Example

¥ Program was not intended to work for

negative numbers. Correct it
(S5) sun(0, 0).
(S6) sun(N, S+N) :- sum(N-1, S), N >= 1.

<sum(1,0)|true>
0S6
<sum(0,—1),0 = 1|true>
0S6
<sum(—1,—1),0 =21-12 1|true>
U S6

<%
tu 3 Controlling Search Example

¥ Remember |eft to right processing

(S7) sum(0, 0).
(S8) sun(N, S+N) :- N >= 1, sum N1, S).

¥ sum(1,S) gives S= , sum(1,0) answers no
¥ Methods:

¥ rule reordering

¥ adding redundant constraints

~ literal reordering

10

Constraint Logic Programming

“ .
t'lg Rule Ordering

¥ generd rule
¥ place non-recursive rules before recursive rules
¥ (thiswill tend to avoid infinite derivations)

~ heuristic rule

¥ place rules which are “more likely to lead to
answers’ before others

~ (tend to move the successto the left of treg

11

P U
ugg Literal Ordering

¥ Primiti ve Constraints

¥ place aconstraint at the earliest point in which
it could cause failure (for mode of usage)

v fac(N,F) with N fixed and F free

fac(N, F) :- N=0,F = 1.

fac(N, FF) :- N >= 1, FF = N *F,
NL = N- 1, fac(N, F).

fac(N, F) :- N=0,F = 1.
fac(N, FF) :- N >= NL = N- 1,
fac(N, F), FF = N* F. 12

e

Peter Stuckey

Constraint Logic Programming

Peter Stuckey

o =
t)g Literal Ordering

v User-define constraints;
¥ place deterministic literals before others
v deterministic: p(sl,...,sn) in program is
deterministic for aderivation treeif at each
choicepoint where it is rewritten all but one
derivation fails before rewriting a user-
defined constraint (at most one succeeds)

¥ deterministic predicate p for mode of usage

13

P} U
tu ¥ Deterministic Predicates

v sumlist(L,S) isdeterministic for mode of
usage L fixed Sfree. Not for L free Sfixed.

v sum(N,S) is similar
¥ deterministic predicates require little search
to find an answer

¥ BEWARE moving a predicate can change
whether it is deterministic or not

14

Constraint Logic Programming

Peter Stuckey

o -
tUJ Literal Reordering Example

father(jimedward). not her (maggy, fi).
father(ji mmggy). nmot her (fi,lillian).
f at her (edwar d, peter).

f at her (edwar d, hel en) .

father(edward, kitty).

father(bill, fi).

father (F,C) is deterministic with C fixed F free but not
with bath free of F fixed and C free mother(M,C) dso

Every child can only have one father

A father can have many children 15

N

S'\l{! Literal Reordering Example

grandf (G-, GC) :- father(G P),father(P, GC).
grandf (G-, GC) :- father(GF, P), nother (P, GC).

For mode of usage GC fixed GF free
» What modes of usage for first rule literals?

» father (GF,P) both free father(P,GC) both fixed
» What isthe body literals are reversed?
» father (P,GC) freefixed, father (P,GC) free fixed

16

Constraint Logic Programming

Peter Stuckey

o

“ . .
Qg Literal Reordering Example

grandf (G-, GC) :- father(P, GC), father(G- P).
grandf (GF, GC) :- nother (P, GC), father (G- P).

More efficient for mode of usage free fixed
e.g. grandf(X,peter)
63 states in simplified derivation tree for first prog

versus23 states for second prog.

17

-
LI Adding Redundant Cons.
-

¥ A constraint that can be removed from a
rule without changing the answersis
redundant.

v answer redundant: same set of answers for

vH:-L1, .., Li L+l .., Ln
vH:-L1, ..., Li,c Li+l, .. Ln

v advantage (for store C in mode of usage)

v<L1,..,Lic|C> failsbut not <L1,...,Li|C>

18

Constraint Logic Programming

Peter Stuckey

o -
t'lg Adding Redundant Cons.

The constraint N >= 1 added to the sum program
was answer redundant!

Another example sum(N,7) (new mode of usage)
<sum(N ,7)|true>

0S8
(sum(N',S')IN = N'+10S'=6- N'ON'>0)
0S8
(sum(N'"",S")|[N = N"+20S"=4-2N"ON"20)
0S8
(sum(N""",S"")[N = N""+30S""'=1-3N""'ON"'"'> 0)
0S8
(sum(N""" S"")[N = N""'+40S""'= -3-4N""ON"">0)
ol =) '
t'lf_.! Adding Redundant Cons.
(V\;e knovr¥(each §um of number is non-negative
S9 sum(0, O
(S10) sum(N, S+N) : -
N>=1, S>=0, sum{(N-1, S).
<sum(N ,7)|true>
S10
(sum(N',S")|N = N'+10S'=6- N'ON'>00N'< 6)
0S10
(sum(N'"',S")[N = N"+20S"=4-2N"ON"200N"< 2)
0S10
(sum(N'",S"")IN = N'"'+30S"'=1-3N""ON'""200N'"'<1/3)
S10
(1] false) .

10

Constraint Logic Programming

Peter Stuckey

o -
t'lg Solver Redundant Constraints

¥ solver redundant: a primitive constraint c
is solver redundant if it isimplied by the
constraint store

v advantages: if solver is partial can add extra

information (failure)
~F>=1, N>=1, FF = N°F, FF >= 1

21

I

t'lf_.! Solver Redundant Example
(F1) fac(N, F) :- N=0,F = 1.
(F2) fac(N, FF) :- N>=1, NL = N- 1,

FF = N* F, fac(N, F).

Goal fac(N,7) runs forever like sum(N,7).

(F3) fac(N, F) :- N=0,F = 1.

(F4) fac(N, FF) :- N>=1, Nl = N- 1,
FF = N* F, F>=1, fac(N, F).

Goal fac(N,7) still runs forever !

22

11

Constraint Logic Programring

Peter Stuckey

o -
tu 3 Sdve Redundart Example

(fac(N,7)|true)
OF4
(fac(N -1,F")|[F'210N 2107 =N x F")
OF4
(fac(N -2,F")|[F">210N 2207=Nx(N -1)x F')
OF4
(fac(N =3,F™")|F"™"'210N 2307=Nx (N -1)x (N -2)x F'")
OF4

Giventhat F’” >= 1and N >= 4 then
Nx(N-1)x(N-2)x(N-3)xF""

must be at least 24. constraint is unsatisfiable not
detected (partia solver) »

(fac(N -4,F"")[F"">10N 2407=Nx(N -1)x (N -2)x (N -=3) x F'""

b

P} U
tu 3 Sdve Redundart Example

Fix: add solver redundant constraint N* F>= N
isimpliedby N>= 1, F>=1

CAREFUL:1=N*F,2=N* F succeeds,

therefore use the same name for each N*F

(F3) fac(N, F) :- N=0,F = 1.

(F4) fac(N, FF) :- N>= 1, Nl = N- 1,
FF = N* F, FF >= N, F >= 1,
fac(N, F).

Now the goal fac(N,7) finitely fails 24

12

Constraint Logic Programming

Peter Stuckey

o -
tu: Minimization

¥ Minimization literals cause another
derivation tree to be searched

¥ Need to understand the form of thistree

>~ m ni m ze(G E) has mode of usage the
sameasE <m G

¥ For efficient minimization, ensurethat G is
efficient when E is bounded above

25

<%
tu 3 Minimization Example

Program which finds leafs and their level (depth)
| eaf (node(null, X, null), X 0).

| eaf (node(L, ,), X D+tl) :- leaf(L, X D).

| eaf (node(_, ,R), X, D+1) :- leaf(R X D).
Answers: X=h\D=3 o]
(h,3),(.4),(k.4),(m4), = - =
(05),(p5).(f2),(s4), Enjppun R e
(t,4),(r,3) O O 0 & =

13

Constraint Logic Programming

Peter Stuckey

tu 3 Minimization Example

Goal mi ninm ze(leaf (t(a), X, D), D):
After finding X=h/AD = 3, actslike

D < 3 leaf(t(a), X D), should never
visit nodes below depth 3

(D <3leaf (t(a), X, D)|true)
0

(leaf (t(a), X, D)|D <3)
O

[b]
[] (e][] [=]

(leaf (t(b), X,D-1)|D<3)
0

(leaf (t(d), X,D-2)|D<3)
O

(leaf (t(k),X,D-4)|D<3)
O

(1 false)

(Ieaf(t(l),X,DD—3)|D<3> |i—|
(o] [»]

<%
tu 3 Minimization Example

Improvel eaf for mode of usage D bounded
above: add an answer redundant constraint

| eaf (node(nul |, X null), X 0).
| eaf (node(L, ,), X D+1) :-

(D <3,leaf (t(a), X, D)|true)
O

(leaf (t(a), X, D)|D <3)
O

D>=0, leaf(L,X D). (leaf (t(b), X,D-1)|D <30D = 1)
| eaf (node(_, ,R), X, D+1) : - O
D>=0, leaf (R X D). (Ieaf(t(d),X,D—D2)|D<3DD22>
(0l false)

28

14

Constraint Logic Programming

Peter Stuckey

o -
tu: Minimization

¥ The search may not always benefit from the
bounds
veg.mnimze(leaf(t(a), X D), -D)
¥ must still visit every node after finding one | eaf

v arguably the origina formulation is better since
it involves less constraints

¥ Key: remember the mode of usage E<m, G

29

<%
tu 3 | dentifying Determinism

v CLP languages involve constructs so that
the user can identify deterministic code so
that the system can execute it efficiently

v if-then-elseliterals
v once literals

30

15

Constraint Logic Programming

Peter Stuckey

pw J W
th If-Then-Else

v if-then-else literal: (Gtest - > Gthen ; Gelse)
~ first test the goal Gtest, if it succeeds
execute Gthen otherwise execute Gelse
v if-then-else derivation step: G1lisL1, L2,
., Lm, whereL1lis(Gt->Gn; Ge)
v if <Gt | C1> succeeds with leftmost successful
derivation<Gt | Cl>=> ...=> <[] | C>
vC2isC,G2isGn, L2, ...,Lm
velseC2isCl,G2isGe, L2, ...,Lm a

<%
t'lf_.! |f-Then-Else Example

vabs(XY) - (X>=0, Y=X; Y=-X.

v if Xisposabsvalueis X, otherwise -X
<abs(4, A)|true>

O
(X20-Y=X;Y=-X)4=XOA=Y)
0 (X204=XDOA=Y)
— — — O
<Y—XH—)<%A—YDX20> (= XDA=YOX 20)
(IB=x0A=YOX 200Y = X) (abs(-4, A)ltrue)
O
(X20-Y=X;Y=-X)-4= X OA=Y)
(X20-4=XDOA=Y) 0
- Y=-X[-4= X OA=YOX 2
(01faise) < = 20

(k4= XDA:YDXEODY:SZ—x>

16

Constraint Logic Programming

Peter Stuckey

o -
tu 3 If-Then-Else Example

¥ What happens to the goals
vabs(X,2), X< 0 andX < 0, abs(X, 2)
fails ?! succeeds X = -2 ?
DANGERS

* answers strongly depend on mode of usage
« only the first answer of thetest goal isused

33

pu L U
t'u"_.! |f-Then-Else Examples

apart(X Y,D) :- X>=Y + D
apart (X, Y,D :- Y >= X + D

Xand Y areequal or at least 4 apart

ofar_eq(1,6) succeeds, far_eq(1,3) fals
efar_eq(1,Y), Y = 6 fals

*WHY ? test goal commitsto first answer X>=Y + 4

far_eq(X Y) :- (apart(X Y,4)->true ; X =Y).

17

Constraint Logic Programming

Peter Stuckey

pw § O
th If-Then-Else

v safe usage: the mode of usage makes all
variablesin Gtest fixed

v example: safe when N and PO fixed
cunmul _pred([], ,P, P).
cunmul _pred([N Ns],D, PO, P) :-
(menber (N, PO) ->
P1 = PO

pred(N, D, [N PO], P1)

)
curmul _pred(Ns, D, P1, P).

35

| U
t'u' J Once

v once literal: once(G)

~ find only the first solution for G

v oncederivation step: G1lisL1, L2, ...,Lm,
where L1 is once(G)

v if <G| C1> succeeds with leftmost successful
derivation<G | Cl> => ..=> <[] | C>

vC2isC,G2isL2, ...,Lm
velse C2isfalse, G2is[]

36

18

Constraint Logic Programming

Peter Stuckey

o -
t'lg Once Example

¥ Sometimes all answers are equivalent

¥ example: intersection
intersect(L1,L2) :-
menber (X, L1), nenber (X, L2).
¥ intersect([a,b,e,g,h],[b,ef,0,,i]) 72 states
intersect(L1,L2) :-
once(menber (X, L1), nmenber (X L2)).

v 18 states

37

<%
t'lf_.! Bridge Building Example

¥ AIM: build 2 dimensional spaghetti bridges

¥ Approach: first build a program to analyze
bridges, then use it constrain designs

O fixedjoin
O floatingjoin

38

19

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Bridge Building Example

¥ Constraints:

¥ 20cm of struts,

¥ strut of length L can sustain any stretch, only
0.5%(6-L)N compression,

~ floating joins can sustain any stretch, only
2Ncompression, sum of forces at afloating join
IS zero, once join in the center, at least 3
incident strutsto ajoin, except center join
which needs 2

39

- -
9 Representing Bridges

3ot

¥ list of joins
¥ ¢join(x,y,l) (xy coords, list of incident struts)
v join(xy,l)
¥ list of struts: strut(n,x1,y1,x2,y2) name and
coords of endpoints

v analysis of the bridge will create an
association list of stretching forcesin each
strut f(n,f)

20

Constraint Logic Programming

Peter Stuckey

js=[join(2,1,[a,c,d]), join(4,1,[d,eq]),
cjoin(3,-1,[b,c,ef])]

ss = [strut(a,0,0,2,1), strut(b,1,0,3,-1), strut(c,2,1,3,-1),
strut(d,2,1,4,1), strut(e,3,-1,4,1),
strut(g,4,1,6,0)]

41

L _
LI I Srut Constraints
A4

strutc([],[],0).
strutc([strut (N, X1, Y1, X2, Y2)]| Ss],
[f(N F) | Fs], TL):-
L = sqgrt((X1-X2)*(X1-X2) +
(Y1-Y2)*(Y1-Y2)),
F>=-0.5* (6 - L),
TL = L + RL,
strutc(Ss, Fs, RL).

Builds force association list, calculates total length,
asserts max compression force

42

21

Constraint Logic Programming

Peter Stuckey

L _
LI I Srut Constraints
r A<

v Given afixed list of struts works well
¥ Like sum total length only causes failure at
end
¥ FIX add answer redundant constraint RL >= 0
¥ |If the coords of the struts are not fixed
length calculation is non-linear (incompl ete)

¥ (partial) FIX add solver redundant constraints
(linear approximation)
L= X1-X20L=2X2-X10L=2Y1-Y20L=2Y2-Y]

Q3 Summing F
Rl mMMmiNg FOrces
sunf([],_, ,_,0,0).

sunf ([N| Ns], X, Y, Ss, Fs, SFX, SFY) : -
menber (strut (N, X1, Y1, X2, Y2), Ss),
end(X1, Y1, X2, Y2, X, Y, X0, YO),
menber (f (N, F),Fs), F <= 2,
L = sqgrt ((X1-X2)*(X1-X2)+

(Y1-Y2)*(Y1l-Y2)),

FX = F*(X-X0)/L, FY = F*(Y-Y0)/L,
SFX = FX+RFX, SFY = FY+RFY,
sunf (Ns, X, Y, Ss, Fs, RFX, RFY) .

end(X, Y, X0, YO, X, Y, X0, YO0).

end(X0, YO, X, Y, X, Y, X0, YO0). 4

22

Constraint Logic Programming

Peter Stuckey

“ . .
tu ¥ Join Constraints

10| nc([],_,_,_).
joinc([J]|Js],Ss,Fs,W :-
onej oin(J, Ss, Fs, W.
joinc(Js,Ss,Fs,W.
onejoin(cjoin(X Y,Ns),Ss, Fs,W : -
Ns = [_, _|_I,
sunf (Ns, X, Y, Ss, Fs, 0, W.
onejoin(join(X Y,Ns),Ss,Fs,W :-
NS = [_1_1_|_];
sunf (Ns, X, Y, Ss, Fs, 0, 0).

Apply minimum incident struts and sum forces cong;

“ . .
tu ¥ Join Constraints

¥ Given afixed list of struts for each join,
works well

¥ non-deterministic because of end although
thereis only one answer

¥ hence use inside once

23

Constraint Logic Programming

Peter Stuckey

(347 Bricge Analya
L Bridge Analysis

¥ For theillustrated bridge
TL <= 20,
strutc(ss, Fs,TL),

v Answer isW<= 2.63

once(joinc(js,ss,Fs,W.

47

9 Bridge Design

variables

¥ system performs minimization search

- strutc andj oi nc require the topology to be
known to avoid infinite derivations

~ too many topologies to search al

¥ one approach user defines topology
tpl (Js, Ss, Vs) where Vs are the coordinate

24

Constraint Logic Programming

Peter Stuckey

(357 ricge Des
L Bridge Design

¥ Unfortunately constraints are nonlinear so
minimization goal will not work

¥ instead add explicit search to minimize on
which fixes all coordinates
tpl (Js,Ss,Vs), TL <= 20,
strutc(Ss, Fs, TL),
once(j oi nc(Js, Ss, Fs, W),
m nimze(position(Vs), -W.

v Answer W=6.15/\Vs=[2,2,5,1,3,3]

49

9 Bridge Design

¥ Integer coordinates are very restrictive

v |dea: use local search to improve the design
~ find an optimal (integer) solution
~ try moving coordinate + or - 0.5 for better sol

¥ if so then try +/- 0.25 etc. until solution doesnt
improve very much

v Best local search answer
~W=6.64 /\ Vs=[2.125,2.625,3.875,2.635,3,3.75]

50

25

Constraint Logic Programming

Peter Stuckey

o -
tu 3 Controlling Search Summary

v Effici ency is measured as size of derivation
tree

¥ Depends on the mode of usage of predicates

¥ Change size and shape by reordering literals
and rules (doesnt change answers)

¥ Add redundant constraints to prune
branches (doesnt change answers)

v Useif-then-else and once to identify sub-
computations which dont need backtracking,

26

