
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 7: Controlling Search

Where we discuss how to make the
search for a solution more efficient

2

Controlling Search

 Estimating Efficiency of a CLP Program

 Rule Ordering

 Literal Ordering

 Adding Redundant Constraints

 Minimization

 Identifying Deterministic Subgoals

 Example: Bridge Building

Constraint Logic Programming

Peter Stuckey 2

3

Estimating Efficiency

 Evaluation is a search of the derivation tree

 Size and shape of derivation tree determines
efficiency (ignores solving cost)

� smaller: less search
� answers in the leftmost part: less search before

first answer

 Derivation tree depends on the mode of
usage

4

Mode of Usage

 mode of usage: defines the kinds of
constraints on the argument of a predicate
when evaluated

 fixed: constraint store implies a single value
in all solutions

 free: constraint store allows all values

 others: bounded above, bounded below

Constraint Logic Programming

Peter Stuckey 3

5

Mode of Usage Example

 mode of usage first arg fixed second free
� sumlis t ([1] , S) .
� L=[1,2] ,S > Z, sumli st (L, S) .

 states in derivation tree with sumlist called
� < suml i st ([1] , S) | t rue >
� < suml i st (L ’ , S’) | [1]=[N ’ | L’]

/ \ S = N’ + S’ >

sumlist ([], 0) .

sumlist ([N|L] , N+S) : - sumlist (L, S).

6

Controlling Search Example

 Imagine writing a program to compute

 Reason recursively:
� sum of N numbers is sum of N-1 + N
� sum of 0 numbers is 0

 Problem sum(1,S) doesnt answer

S N= + + +0 1 2 �

(S1) sum(N, S+N) :- sum(N-1, S).

(S2) sum(0, 0).

Constraint Logic Programming

Peter Stuckey 4

7

Controlling Search Example

sum S true

S S

sum S S S false

S S

sum S S S S

S S

sum S S S false

S

(,)|

(, ')| ' [] |

(, ' ')| ' ' [] |

(, ' ' ')| ' ' ' [] |

1

1 2

0 1

1 2

1 1 1

1 2

2 0

1

⇓ ⇓
= +

⇓ ⇓
− = + =

⇓ ⇓
− = +

⇓

Simpli fied derivation tree for sum(1,S)

8

Controlling Search Example

 Infinite derivation before answer

 sum(1,S) answers S=1,

 but sum(1,0)?

(S3) sum(0, 0).

(S4) sum(N, S+N) :- sum(N-1, S).

su m tru e
S

su m tru e
S

su m tru e
S

su m tru e
S

(,) |

(,) |

(,) |

(,) |

1 0
4

0 1
4

1 1
4

2 0
4

⇓
−

⇓
− −
⇓
−
⇓

Constraint Logic Programming

Peter Stuckey 5

9

Controlling Search Example

 Program was not intended to work for
negative numbers. Correct it
(S5) sum(0, 0).

(S6) sum(N, S+N) :- sum(N-1, S), N >= 1.

su m tr u e
S

su m tr u e
S

su m tr u e
S

(,) |

(,) , |

(,) , , |

1 0
6

0 1 0 1
6

1 1 0 1 1 1
6

⇓
− ≥
⇓

− − ≥ − ≥
⇓

10

Controlling Search Example

 Remember left to right processing

 sum(1,S) gives S = , sum(1,0) answers no

 Methods:
� rule reordering
� adding redundant constraints
� literal reordering

(S7) sum(0, 0).

(S8) sum(N, S+N) :- N >= 1, sum(N-1, S).

Constraint Logic Programming

Peter Stuckey 6

11

Rule Ordering

 general rule
� place non-recursive rules before recursive rules
� (this will tend to avoid infinite derivations)

 heuristic rule
� place rules which are “more likely to lead to

answers” before others
� (tend to move the success to the left of tree)

12

Literal Ordering

 Primitive Constraints
� place a constraint at the earliest point in which

it could cause failure (for mode of usage)

 fac(N,F) with N fixed and F free
fac(N, F) :- N = 0,F = 1.
fac(N, FF) :- N >= 1, FF = N *F,

N1 = N - 1, fac(N, F).

fac(N, F) :- N = 0,F = 1.
fac(N, FF) :- N >= 1, N1 = N - 1,

fac(N, F), FF = N * F.

Constraint Logic Programming

Peter Stuckey 7

13

Literal Ordering

 User-define constraints:
� place deterministic literals before others

 deterministic: p(s1,...,sn) in program is
deterministic for a derivation tree if at each
choicepoint where it is rewritten all but one
derivation fails before rewriting a user-
defined constraint (at most one succeeds)

 deterministic predicate p for mode of usage

14

Deterministic Predicates

 sumlist(L,S) is deterministic for mode of
usage L fixed S free. Not for L free S fixed.

 sum(N,S) is similar

 deterministic predicates require little search
to find an answer

 BEWARE moving a predicate can change
whether it is deterministic or not

Constraint Logic Programming

Peter Stuckey 8

15

Literal Reordering Example

father(jim,edward).

father(jim,maggy).
father(edward,peter).

father(edward,helen).

father(edward,kitty).

father(bill,fi).

mother(maggy,fi).

mother(fi,lillian).

father(F,C) is deterministic with C fixed F free, but not
with both free of F fixed and C free. mother(M,C) also

Every child can only have one father

A father can have many children

16

Literal Reordering Example

grandf(GF,GC) :- father(GF,P),father(P,GC).

grandf(GF,GC) :- father(GF,P),mother(P,GC).

For mode of usage GC fixed GF free:

• What modes of usage for first rule literals?

• father(GF,P) both free, father(P,GC) both fixed

• What is the body literals are reversed?

• father(P,GC) free fixed, father(P,GC) free fixed

Constraint Logic Programming

Peter Stuckey 9

17

Literal Reordering Example

grandf(GF,GC) :- father(P,GC),father(GF,P).

grandf(GF,GC) :- mother(P,GC),father(GF,P).

More efficient for mode of usage free fixed

e.g. grandf(X,peter)

63 states in simplified derivation tree for first prog

versus23 states for second prog.

18

Adding Redundant Cons.

 A constraint that can be removed from a
rule without changing the answers is
redundant.

 answer redundant: same set of answers for
� H :- L1, ..., Li, Li+1, ..., Ln
� H :- L1, ..., Li, c, Li+1, ..., Ln

 advantage (for store C in mode of usage)
� <L1,...,Li,c|C> fails but not <L1,...,Li|C>

Constraint Logic Programming

Peter Stuckey 10

19

Adding Redundant Cons.

The constraint N >= 1 added to the sum program
was answer redundant!

Another example sum(N,7) (new mode of usage)
su m N tr u e

S
su m N S N N S N N

S
su m N S N N S N N

S
su m N S N N S N N

S
su m N S N N S

(,) |

(' , ') | ' ' ' '

(' ' , ' ') | ' ' ' ' ' ' ' '

(' ' ' , ' ' ') | ' ' ' ' ' ' ' ' ' ' ' '

(' ' ' ' , ' ' ' ') | ' ' ' ' ' ' ' '

7
8

1 6 0
8

2 4 2 0
8

3 1 3 0
8

4 3

⇓
= + ∧ = − ∧ ≥

⇓
= + ∧ = − ∧ ≥

⇓
= + ∧ = − ∧ ≥

⇓
= + ∧ = − − ∧ ≥4 0N N' ' ' ' ' ' ' '

20

Adding Redundant Cons.

We know each sum of number is non-negative
(S9) sum(0, 0).
(S10) sum(N, S+N) :-

N >= 1, S >= 0, sum(N-1, S).

s u m N tru e
S

s u m N S N N S N N N
S

s u m N S N N S N N N
S

s u m N S N N S N N N
S
fa ls e

(,) |

(' , ') | ' ' ' ' '

(' ' , ' ') | ' ' ' ' ' ' ' ' ' '

(' ' ' , ' ' ') | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' /

[] |

7
1 0

1 6 0 6
1 0

2 4 2 0 2
1 0

3 1 3 0 1 3
1 0

⇓
= + ∧ = − ∧ ≥ ∧ ≤

⇓
= + ∧ = − ∧ ≥ ∧ ≤

⇓
= + ∧ = − ∧ ≥ ∧ ≤

⇓

Constraint Logic Programming

Peter Stuckey 11

21

Solver Redundant Constraints

 solver redundant: a primitive constraint c
is solver redundant if it is implied by the
constraint store

 advantages: if solver is partial can add extra
information (failure)

� F >= 1, N >= 1, FF = N*F, FF >= 1

22

Solver Redundant Example
(F1) fac(N, F) :- N = 0,F = 1.
(F2) fac(N, FF) :- N >= 1, N1 = N - 1,

FF = N * F, fac(N, F).

Goal fac(N,7) runs forever like sum(N,7).

(F3) fac(N, F) :- N = 0,F = 1.
(F4) fac(N, FF) :- N >= 1, N1 = N - 1,

FF = N * F, F >= 1, fac(N, F).

Goal fac(N,7) still runs forever !

Constraint Logic Programming

Peter Stuckey 12

23

Solver Redundant Example

fac N tr ue
F

fac N F F N N F
F

fac N F F N N N F
F

fac N F F N N N N F
F

fac N F F N N N

(,) |

(, ') | ' '

(, ' ') | ' ' () ' '

(, ' " ') | ' " ' () () ' ' '

(, ' ' ' ') | ' ' ' ' ()

7
4

1 1 1 7
4

2 1 2 7 1
4

3 1 3 7 1 2
4

4 1 4 7 1

⇓
− ≥ ∧ ≥ ∧ = ×

⇓
− ≥ ∧ ≥ ∧ = × − ×

⇓
− ≥ ∧ ≥ ∧ = × − × − ×

⇓
− ≥ ∧ ≥ ∧ = × − × () () ' ' ' 'N N F− × − ×2 3

Given that F’’’’ >= 1 and N >= 4 then
N N N N F× − × − × − ×() () () ' ' ' '1 2 3

must be at least 24. constraint is unsatisfiable not
detected (partial solver)

24

Solver Redundant Example

(F3) fac(N, F) :- N = 0,F = 1.
(F4) fac(N, FF) :- N >= 1, N1 = N - 1,

FF = N * F, FF >= N, F >= 1,
fac(N, F).

Fix: add solver redundant constraint N * F >= N

is implied by N >= 1, F >= 1

CAREFUL: 1 = N * F , 2 = N * F succeeds,
therefore use the same name for each N*F

Now the goal fac(N,7) finitely fails

Constraint Logic Programming

Peter Stuckey 13

25

Minimization

 Minimization literals cause another
derivation tree to be searched

 Need to understand the form of this tree
� minimize(G,E) has mode of usage the

same as E < m, G

 For efficient minimization, ensure that G is
efficient when E is bounded above

26

Minimization Example

Program which finds leafs and their level (depth)
leaf(node(null,X,null),X,0).

leaf(node(L,_,_),X,D+1) :- leaf(L,X,D).
leaf(node(_,_,R),X,D+1) :- leaf(R,X,D).

h

j k

i

d

m

o p

n

l

e

b

f

s r

q r

g

c

a

Answers: X=h/\D=3

(h,3),(j,4),(k,4),(m,4),
(o,5),(p,5),(f,2),(s,4),
(t,4),(r,3)

Constraint Logic Programming

Peter Stuckey 14

27

Minimization Example
Goal minimize(leaf(t(a),X,D), D):
After finding X = h /\ D = 3, acts like
D < 3 leaf(t(a),X,D), should never
visit nodes below depth 3

h

j k

i

d

m

o p

n

l

e

b

f

s r

q r

g

c

a

D leaf t a X D true

leaf t a X D D

leaf t b X D D

leaf t d X D D

leaf t i X D D

leaf t k X D D

false

<
⇓

<
⇓

− <
⇓

− <
⇓

− <
⇓

− <
⇓

3

3

1 3

2 3

3 3

4 3

, ((), ,)|

((), ,)|

((), ,)|

((), ,)|

((), ,)|

((), ,)|

[]|

28

Minimization Example

Improve leaf for mode of usage D bounded
above: add an answer redundant constraint

leaf(node(null,X,null),X,0).

leaf(node(L,_,_),X,D+1) :-
D >= 0, leaf(L,X,D).

leaf(node(_,_,R),X,D+1) :-
D >= 0, leaf(R,X,D).

D leaf t a X D true

leaf t a X D D

leaf t b X D D D

leaf t d X D D D

false

<
⇓

<
⇓
− < ∧ ≥
⇓
− < ∧ ≥
⇓

3

3

1 3 1

2 3 2

, ((), ,)|

((), ,)|

((), ,)|

((), ,)|

[]|

Constraint Logic Programming

Peter Stuckey 15

29

Minimization

 The search may not always benefit from the
bounds

� e.g. minimize(leaf(t(a),X,D), -D)
� must still visit every node after finding one leaf
� arguably the original formulation is better since

it involves less constraints

 Key: remember the mode of usage E<m, G

30

Identifying Determinism

 CLP languages involve constructs so that
the user can identify deterministic code so
that the system can execute it efficiently

 if-then-else literals

 once literals

Constraint Logic Programming

Peter Stuckey 16

31

If-Then-Else

 if-then-else literal: (Gtest -> Gthen ; Gelse)

 first test the goal Gtest, if it succeeds
execute Gthen otherwise execute Gelse

 if-then-else derivation step: G1 is L1, L2,
..., Lm, where L1 is (Gt -> Gn ; Ge)

� if <Gt | C1> succeeds with leftmost successful
derivation <Gt | C1> => ... => < [] | C>

� C2 is C, G2 is Gn, L2, ..., Lm
� else C2 is C1, G2 is Ge, L2, ..., Lm

32

If-Then-Else Example
� abs(X,Y) :- (X >= 0, Y = X ; Y = -X).

 if X is pos abs value is X, otherwise -X
abs A true

X Y X Y X X A Y

Y X X A Y X

X A Y X Y X

(,)|

(;)|

|

[]|

4

0 4

4 0

4 0

⇓
≥ → = = − = ∧ =

⇓
= = ∧ = ∧ ≥

⇓
= ∧ = ∧ ≥ ∧ =

X X A Y

X A Y X

≥ = ∧ =
⇓

= ∧ = ∧ ≥

04

4 0

|

[]|

abs A true

X Y X Y X X A Y

Y X X A Y X

X A Y X Y X

(,)|

(;)|

|

[]|

−
⇓

≥ → = = − − = ∧ =
⇓

= − − = ∧ = ∧ ≥
⇓

− = ∧ = ∧ ≥ ∧ = −

4

0 4

4 0

4 0

X X A Y

false

≥ − = ∧ =
⇓

0 4|

[]|

Constraint Logic Programming

Peter Stuckey 17

33

If-Then-Else Example

 What happens to the goals
� abs(X,2), X < 0 and X < 0, abs(X,2)

fails ?! succeeds X = -2 ?

DANGERS

• answers strongly depend on mode of usage

• only the first answer of the test goal is used

34

If-Then-Else Examples

far_eq(X,Y) :- (apart(X,Y,4)-> true ; X = Y).

apart(X,Y,D) :- X >= Y + D.

apart(X,Y,D) :- Y >= X + D.

X and Y are equal or at least 4 apart

• far_eq(1,6) succeeds, far_eq(1,3) fails

• far_eq(1,Y), Y = 6 fails

•WHY? test goal commits to first answer X >= Y + 4

Constraint Logic Programming

Peter Stuckey 18

35

If-Then-Else

 safe usage: the mode of usage makes all
variables in Gtest fixed

 example: safe when N and P0 fixed
cumul_pred([],_,P,P).
cumul_pred([N|Ns],D,P0,P) :-

(member(N,P0) ->
P1 = P0

;
pred(N,D,[N|P0],P1)

),
cumul_pred(Ns,D,P1,P).

36

Once

 once literal: once(G)

 find only the first solution for G

 once derivation step: G1 is L1, L2, ..., Lm,
where L1 is once(G)

� if <G | C1> succeeds with leftmost successful
derivation <G | C1> => ... => < [] | C>

� C2 is C, G2 is L2, ..., Lm
� else C2 is false, G2 is []

Constraint Logic Programming

Peter Stuckey 19

37

Once Example

 Sometimes all answers are equivalent

 example: intersection

 intersect([a,b,e,g,h],[b,e,f,g,,i]) 72 states

 18 states

intersect(L1,L2) :-
member(X,L1), member(X,L2).

intersect(L1,L2) :-
once(member(X,L1), member(X,L2)).

38

Bridge Building Example

 AIM: build 2 dimensional spaghetti bridges

 Approach: first build a program to analyze
bridges, then use it constrain designs

fixed join
floating join

(0,0) (6,0)

a

d

c
d

g

b f

Constraint Logic Programming

Peter Stuckey 20

39

Bridge Building Example

 Constraints:
� 20cm of struts,
� strut of length L can sustain any stretch, only

0.5*(6-L)N compression,
� floating joins can sustain any stretch, only

2Ncompression, sum of forces at a floating join
is zero, once join in the center, at least 3
incident struts to a join, except center join
which needs 2

40

Representing Bridges

 list of joins
� cjoin(x,y,l) (xy coords, list of incident struts)
� join(x,y,l)

 list of struts: strut(n,x1,y1,x2,y2) name and
coords of endpoints

 analysis of the bridge will create an
association list of stretching forces in each
strut f(n,f)

Constraint Logic Programming

Peter Stuckey 21

41

Representing Bridges

(0,0) (6,0)

a

d

c
d

g

b f

js = [join(2,1,[a,c,d]), join(4,1,[d,e,g]),

cjoin(3,-1,[b,c,e,f])]
ss = [strut(a,0,0,2,1), strut(b,1,0,3,-1), strut(c,2,1,3,-1),

strut(d,2,1,4,1), strut(e,3,-1,4,1),
strut(g,4,1,6,0)]

42

Strut Constraints

strutc([],[],0).

strutc([strut(N,X1,Y1,X2,Y2)|Ss],
[f(N,F) |Fs], TL):-

L = sqrt((X1-X2)*(X1-X2)+

(Y1-Y2)*(Y1-Y2)),

F >= -0.5 * (6 - L),

TL = L + RL,
strutc(Ss, Fs, RL).

Builds force association list, calculates total length,
asserts max compression force

Constraint Logic Programming

Peter Stuckey 22

43

Strut Constraints

 Given a fixed list of struts works well

 Like sum total length only causes failure at
end

� FIX add answer redundant constraint RL >= 0

 If the coords of the struts are not fixed
length calculation is non-linear (incomplete)

� (partial) FIX add solver redundant constraints
(linear approximation)

L X X L X X L Y Y L Y Y≥ − ∧ ≥ − ∧ ≥ − ∧ ≥ −1 2 2 1 1 2 2 1

44

Summing Forces
sumf([],_,_,_,0,0).

sumf([N|Ns],X,Y,Ss,Fs,SFX,SFY) :-
member(strut(N,X1,Y1,X2,Y2),Ss),

end(X1,Y1,X2,Y2,X,Y,X0,Y0),

member(f(N,F),Fs), F <= 2,

L = sqrt((X1-X2)*(X1-X2)+

(Y1-Y2)*(Y1-Y2)),
FX = F*(X-X0)/L, FY = F*(Y-Y0)/L,

SFX = FX+RFX, SFY = FY+RFY,

sumf(Ns,X,Y,Ss,Fs,RFX,RFY).

end(X,Y,X0,Y0,X,Y,X0,Y0).
end(X0,Y0,X,Y,X,Y,X0,Y0).

Constraint Logic Programming

Peter Stuckey 23

45

Join Constraints
joinc([],_,_,_).

joinc([J|Js],Ss,Fs,W) :-
onejoin(J,Ss,Fs,W).

joinc(Js,Ss,Fs,W).

onejoin(cjoin(X,Y,Ns),Ss,Fs,W) :-

Ns = [_,_|_],

sumf(Ns,X,Y,Ss,Fs,0,W).
onejoin(join(X,Y,Ns),Ss,Fs,W) :-

Ns = [_,_,_|_],

sumf(Ns,X,Y,Ss,Fs,0,0).

Apply minimum incident struts and sum forces cons.

46

Join Constraints

 Given a fixed list of struts for each join,
works well

 non-deterministic because of end although
there is only one answer

 hence use inside once

Constraint Logic Programming

Peter Stuckey 24

47

Bridge Analysis

 For the illustrated bridge
TL <= 20,

strutc(ss,Fs,TL),

once(joinc(js,ss,Fs,W).

 Answer is W <= 2.63

48

Bridge Design

� strutc and joinc require the topology to be
known to avoid infinite derivations

 too many topologies to search all

 one approach user defines topology
tpl(Js,Ss,Vs) where Vs are the coordinate
variables

 system performs minimization search

Constraint Logic Programming

Peter Stuckey 25

49

Bridge Design

 Unfortunately constraints are nonlinear so
minimization goal will not work

 instead add explicit search to minimize on
which fixes all coordinates
tpl(Js,Ss,Vs), TL <= 20,

strutc(Ss,Fs,TL),

once(joinc(Js,Ss,Fs,W)),

minimize(position(Vs), -W).

 Answer W=6.15 /\ Vs=[2,2,5,1,3,3]

50

Bridge Design

 Integer coordinates are very restrictive

 Idea: use local search to improve the design
� find an optimal (integer) solution
� try moving coordinate + or - 0.5 for better sol
� if so then try +/- 0.25 etc. until solution doesnt

improve very much

 Best local search answer
� W=6.64 /\ Vs=[2.125,2.625,3.875,2.635,3,3.75]

Constraint Logic Programming

Peter Stuckey 26

51

Controlling Search Summary

 Efficiency is measured as size of derivation
tree

 Depends on the mode of usage of predicates

 Change size and shape by reordering literals
and rules (doesnt change answers)

 Add redundant constraints to prune
branches (doesnt change answers)

 Use if-then-else and once to identify sub-
computations which dont need backtracking

