
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 5: Simple Modelling

Where we examine various modelling 
abilities of CLP languages

2

Simple Modelling

 Modelling

 Modelling Choice

 Iteration

 Optimization



Constraint Logic Programming

Peter Stuckey 2

3

Modelling

 Choose the variables that will be used to 
represent the parameters of the problem 
(this may be straightforward or difficult)

 Model the idealized relationships between 
these variables using the primitive 
constraints available in the domain

4

Modelling Example

W

P

A traveller wishes to cross 
a shark infested river as 
quickly as possible. 
Reasoning the fastest route 
is to row straight across 
and drift downstream, 
where should she set off

width of river: W
speed of river: S
set of position: P
rowing speed: R

R

S



Constraint Logic Programming

Peter Stuckey 3

5

Modelling Example

Reason: in the time the rower rows the width of the 
river, she floats downstream distance given by river 
speed by time. Hence model

river(W, S, R, P) :- T = W/R, P = S*T.

Suppose she rows at 1.5m/s, river speed is 1m/s and 
width is 24m.

river(24, 1, 1.5, P).

Has unique answer P = 16

6

Modelling Example Cont.

If her rowing speed is between 1 and 1.3 m/s and 
she cannot set out more than 20 m upstream can 
she make it?

1 <= R, R <= 1.3, P <= 20, 
river(24,1,R,P).

Flexibility of constraint based modelling!



Constraint Logic Programming

Peter Stuckey 4

7

Modelling Choice

 Multiple rules allow modelling relationships 
that involve choice

 E.g. tables of data using multiple facts.

father(jim,edward).

father(jim,maggy).
father(edward,peter).

father(edward,helen).

father(edward,kitty).

father(bill,fi).

mother(maggy,fi).

mother(fi,lillian).

8

Choice Examples

The goal father(edward,X) finds 
children of Edward. Answers:

X peter

X helen

X kitty

=
=
=

,

,

The goal mother(X,fi)finds the mother 
of Fi. Answers:

X maggy=



Constraint Logic Programming

Peter Stuckey 5

9

Choice Examples

We can define other predicates in terms of these

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).
sibling(X,Y) :- parent(Z,X), parent(Z,Y),

X != Y.
cousin(X,Y) :- parent(Z,X), sibling(Z,T),

parent(T,Y).

The goal cousin(peter, X) has a single answer 
X = fi

10

More Complicated Choice

 A call option gives the holder the right to 
buy 100 shares at a fixed price E.

 A put option gives the holder the right to 
sell 100 shares at a fixed price E

 pay off of an option is determined by cost C
and current share price S

 e.g. call cost $200 exercise $300
� stock price $2, don’ t exercise payoff = -$200
� stock price $7, exercise payoff = $200



Constraint Logic Programming

Peter Stuckey 6

11

Options Trading

0 1 2 3 4 5 6 7

call, buying
call, selling-200

-100
0

100
200

call C=200, E = 300              put C=100, E = 300

0 1 2 3 4 5 6

butterfly
-100
-50

0
50

100

Butterfly strike: 
buy call at 500 
and 100 sell 2 
puts at 300

0 1 2 3 4 5 6 7

put, buying
put, selling-200

-100
0

100
200

12

Modelling Functions

call payoff S C E
C S E

S E C S E
_ ( , , )

/

/
=

− ≤ ≤
− − ≥





if 

if 

0 100

100 100

buy_call_payoff(S,C,E,P) :-

0 <= S, S <= E/100, P = -C.

buy_call_payoff(S,C,E,P) :-

S >= E/100, P = 100*S - E - C.

Model a function with n arguments as a predicate with 
n+1 arguments.  Tests are constraints, and result is an 
equation.



Constraint Logic Programming

Peter Stuckey 7

13

Modelling Options

Add an extra argument B=1 (buy), B = -1 (sell)
call_option(B,S,C,E,P) :-

0 <= S, S <= E/100, P = -C * B.

call_option(B,S,C,E,P) :-

S >= E/100, P = (100*S - E - C)*B.

call_option(1, 7, 200, 300, P)

has answer P = 200

The goal (the original call option question)

14

Using the Model

butterfly(S, P1 + 2*P2 + P3) :-

Buy = 1, Sell = -1,

call_option(Buy, S, 100, 500, P1),

put_option(Sell, S, 200, 300, P2),

call_option(Buy, S, 400, 100, P3).

Defines the relationship in previous graph
P >= 0, butterfly(S,P).

has two answers
P S S S

P S S S

= − ∧ ≤ ∧ ≤
= − + ∧ ≤ ∧ ≤

100 200 2 3

100 400 3 4



Constraint Logic Programming

Peter Stuckey 8

15

Modelling Iteration

 Natural model may be iterating over some 
parameter

 CLP languages have no direct iteration 
constructs (for, while) instead recursion

16

Iteration Example

Simple Interest: B P P I R= + × −

Mortgage: principal P, interest rate I, repayment R and 
balance B over T periods

Relationship 
over 3 periods: 

P P P I R

P P P I R

P P P I R

B P

1

2 1 1

3 2 2

3

= + × − ∧
= + × − ∧
= + × − ∧
=

Number of constraints depend on the variable T



Constraint Logic Programming

Peter Stuckey 9

17

Reason Recursively

Zero time periods then B = P

else new princ. P + P*I - R and new time T-1

mortgage(P,T,I,R,B) :- T = 0, B = P. (M1)

mortgage(P,T,I,R,B) :- T >= 1,

NP = P + P * I - R, NT = T - 1, (M2)

mortgage(NP,NT,I,R,B).

18

Example Derivation
mortgage P I R B true

M

mortgage P I R B P P P I R

M

mortgage P I R B P P P I R P P P I R

M

mortgage P I R B P P P I R P P P I R

P P P I R

M

P P P I R P P

( , , , , )|

( , , , , )|

( , , , , )|

( , , , , )|

[]|

3

2

2

2

1

2

0

1

1 1

2 1 2 1 1

3 1 2 1 1

3 2 2

1 2 1

⇓

= + × −

⇓

= + × − ∧ = + × −

⇓

= + × − ∧ = + × − ∧

= + × −

⇓
〈 = + × − ∧ = + × − ∧

= + × − ∧ = 〉
P I R

P P P I R B P
1

3 2 2 3



Constraint Logic Programming

Peter Stuckey 10

19

Translating Iteration

 Novice CLP programmers may have 
difficulty defining recursive relationships

 Give a procedural definition

 translate iteration to recursion

 translate tests and assignments to 
constraints

20

Translation Example

Pseudo C code for the mortgage problem

float mg1(float P, int T, float I, float R)

{
while (T >= 1) {

P = P + P * I - R;
T = T - 1;

}
return P;

}

Remove the while loop using recursion



Constraint Logic Programming

Peter Stuckey 11

21

Translation Example

Pseudo C code for the mortgage problem

float mg2(float P, int T, float I, float R)

{
if (T >= 1) {

P = P + P * I - R;
T = T - 1;
return mg2(P, T, I, R); }

else
return P;

}

Make each variable only take one value

22

Translation Example

Pseudo C code for the mortgage problem

float mg3(float P, int T, float I, float R)

{
if (T >= 1) {

NP = P + P * I - R;
NT = T - 1;
return mg3(NP, NT, I, R); }

else
return P;

}

Replace the function with a procedure answer by ref.



Constraint Logic Programming

Peter Stuckey 12

23

Translation Example

Pseudo C code for the mortgage problem

mg4(float P,int T,float I,float R,float *B)

{
if (T >= 1) {

NP = P + P * I - R;
NT = T - 1;
mg4(NP, NT, I, R, B);  }

else
*B = P;

}

Replace tests and assignments by constraints

24

Translation Example

Pseudo C code for the mortgage problem

mg(P, T, I, R, B) 

:-
T >= 1,
NP = P + P * I - R,
NT = T - 1,
mg(NP, NT, I, R, B).

mg(P, T, I, R, B) :- T = 0, (note extra)
B = P.



Constraint Logic Programming

Peter Stuckey 13

25

Why Constraints and not C

 Both programs can answer the goal
� mortgage(500, 3, 10/100, 150, B).

 But the CLP program can answer
� mortgage(P, 3, 10/100, 150, 0).

 an even the goal
� mortgage(P, 3, 10/100, R, B).

P B R= +0 38553 614457. .

P = 373028.

26

Optimization

 Many problems require a “best” solution

 minimization literal: minimize(G,E) 

 answers are the answers of goal G which 
minimize expression E (in context of state)



Constraint Logic Programming

Peter Stuckey 14

27

Optimization Examples

p(X,Y) := X = 1.
p(X,Y) :- Y = 1.

X >= 0, Y >= 0, minimize(p(X,Y), X+Y)

Answers: X = 1 /\ Y = 0 and X = 0 /\ Y = 1

X >= 0, X >= Y, minimize(true, X-Y)

Answer: X >= 0 /\ X = Y

minimize(butterfly(S,P), -P)

Answer: S = 3 /\ P = 100

28

Optimization Evaluation

 A valuation v is a solution to a state if it is a 
solution of some answer to the state

 minimization derivation step: <G1 | C1>
to <G2 | C2> where G1 = L1,L2,...,Lm

� L1 is minimize(G,E)
� exists solution v of <G | C1> with v(E) = m

and for all other sols w, m <= w(E)
� G2 is G,L2,...,Lm and C2 is C1 /\ E = m

� else G2 is [] and C2 is false



Constraint Logic Programming

Peter Stuckey 15

29

Optimization Example
X >= 0, minimize(X >= Y, X-Y)

X X Y X Y true

X Y X Y X

X Y X X Y

X X Y X Y

≥ ≥ −

⇓

≥ − ≥

⇓

≥ ≥ ∧ − =

⇓

≥ ∧ − = ∧ ≥

0

0

0 0

0 0

, minimize( , )|

minimize( , )|

|

[]|

X Y X

X X Y

≥ ≥

⇓

≥ ∧ ≥

|

[]|

0

0

Minimum value of X-Y is 
0 e.g. { , }X Y� �3 3

Simplified X X Y≥ ∧ =0

30

Optimization

Optimization doesnt only have to be at the goal

straddle(S,C1+C2,E,P1+P2) :-
Buy = 1, 
call_option(Buy, S, C1, E, P1),
put_option(Buy, S, Cs, E, P2).

best_straddle(C,E,P) :-

minimize(straddle(S,C,E,P),-P).



Constraint Logic Programming

Peter Stuckey 16

31

Simple Modelling Summary

 Converting problem constraints to 
constraints of the domain

 Choice is modelled with multiple rules

 Functions are modelled as predicates with 
an extra argument

 Iteration is modelled using recursion

 Optimization requires a new kind of literal


