Constraint Logic Programming

Peter Stuckey

Chapter 4.Constraint Logic
Programs

Where we [earn about the only
programming concept rules, and how
programs execute

“ . .
tu ¥ Constraint Logic Programs

v User-Defined Constraints

¥ Programming with Rules

v Evaluation

v Derivation Trees and Finite Failure
v Goal Evaluation

v Simplified Derivation Trees

v The CLP Scheme




Constraint Logic Programming

“ . .
tu ¥ User-Defined Constraints

¥ Many examples of modelling can be
partitioned into two parts

v ageneral description of the object or process

v and specific information about the situation at
hand

¥ The programmer should be able to define
their own problem specific constraints

v~ Rules enable this

A user defined constraint R1 R2
to define the model of the v

simple circuit: | [ J‘l llz

paral l el _resistors(V,I|,Rl, R2)

And the rule defining it
paral lel resistors(V,1,Rl, R2) :-

V=I1*Rl, V=12* R, I1+12-=1.

Peter Stuckey



Constraint Logic Programming

Peter Stuckey

@
Qg Using Rules

paral l el _resistors(V,I,Rl, R2) :-
V=I11*RL, V=I12*R, I1+12=1.

Behaviour with resistors of 10 and 5 Ohms
parallel resistors(V,I,RLR2)ORL=100R2=5

Behaviour with 10V battery where resistors are the same
paral | el _resistors(10,1,R,R)

It represents the constraint (macro replacement)
10=11xRO10=12xROI1+12=1

P} U
tu ¥ User-Defined Constraints

v user-defined constraint: p(tl,...,tn) where
pisan n-ary predicate and t1,...,tn are
expressions

~ literal: aprim. or user-defined constraint

v goal: asequence of literalsL1,...,.Lm

v rule: A:- Bwhere Aisauser-defined
constraint and B a goal

¥ program: a sequence of rules




Constraint Logic Programring

Peter Stuckey

o -
t'lg Its not macro replacement!

I magine two uses of parallel resistors
paral l el _resistors(VA IA 10,5),
parall el _resistors(VB,IB,8,3),
VA+VB =V | =1IB, | =1A

After macro replacement (converting commato conj)
VA= 11x100VA=12x5011+12=1A0
VB=11x80VB=12x3011+12=1B0
VA+VB=V Ol = IBOI = 1A

Confused the two sets of local variables |1, |2 7

t'UJ Renamings

v A renamingr isabijective (invertable)
mapping of variablesto variables

¥ A syntactic object is aconstraint, user-
defined constraint, goal or rule

¥ Applying arenaming to a syntactic object
gives the object with each variable x
replaced by r(X)

v variant 0’ of object 0 has renaming r(0’)=0

8




Constraint Logic Programming

Peter Stuckey

o -
tu 3 Rewriting User-Defined Cons.

v goal G of the form (or empty m=0 [])
vL1,..,Li-1, Li, Li+1, .., Lm

v Li isof theform p(t1,...,tn)

v Risof theform p(sl,...,sn) :- B

vrisarenamingst. varsinr(R) nat in G

¥ Therewriting d G at Li by Rusing
renamingr is
v L1,..Li-1tl=r(sd),...,tn=r(sn),r(B),Li+1,..., ng

P Y U
9 Rewriting Example

3ot

paral l el _resistors(VA IA 10,5),
parall el resistors(VB,IB,8,3),
VA+VB =V, | =1IB, | =1A

Rewritethefirst literal with rule

paral lel resistors(V,1,Rl, R2) :-

V=I1*R, V=I12* R, I1+12=1.
Renaming: {VHV'.I = 1".Rlo Rl R25 R2, 115 11,1215 121
parallel_resi sto rs(V',I'R1",R 2):

10

V=11 *R1,V =12"R2 U2 =T




Constraint Logic Programming

Peter Stuckey

P X U
t'lg Rewriting Example
VA=V , I A=I", 10=R1', 5=R2’,
vV =11T*Rl", V =1227*R2’", 11'+12 =1",

parall el _resistors(VB,IB,8,3),
VA+VB=V, | =1B, I =1A

Rewrite the 8th literal
Renaming:y > V"I > I",Rl> R, R2> R2", 1165 11,121 12"}

parallel _resistors(V',1"",Rl'" , R2"") :-
Vllzllll*Rlll’Vll:IZII*mll’ Illl+|2llél|ll

P Y U
9 Rewriting Example

3ot

VA=V , | A=I’, 10=R1l’, 5=R2’,

V =I11T*Rl’, V =122*R2", 1’42 =1",
vB=v'', IB=I"", 8=Rl'"’, 3=R2’’

V' =1T"'*Rl’, V'=[22"*R2"", 1" +12" ="
VA+VWVB=V | =1IB | =1A

Simplifying onto the variables of interest V and |
V =26/3x|

12




Constraint Logic Programming

Peter Stuckey

Qe ing with Ru
hHProgrammlngwn Rules

A voltage divider vV —
circuit, where cell
must be 9 or 12V
resistors 5,9 or 14 ' [

vol tage divider(V,1,RL,R2,VD,ID) :-
V1l = I*Rl, VD= 12*R2, V = V1+WD, | = |2+l D

cell (9). (shorthand for cell(9) :- [].)
cell (12).

resistor(5). resistor(9). resistor(14). 13

N

S'\l{! Programming with Rules

Aim: find component values such that the divider
voltage VD is between 5.4 and 5.5 V when the divider
current ID i1s0.1A

vol tage_divider(V,1,Rl,R2, VD, I D),
5.4 <= VD, VD <= 5.5 1ID=20.1,
cell(V), resistor(Rl), resistor(R2).

Note: whenrewritingcel | andr esi st or literals
there is a choice of which ruleto use

(V=9,R1=5,R2=5) unsatisfiable constraint

(V=9,R1=5,R2=9) satisfiable constraint “




Constraint Logic Programming

Peter Stuckey

Qe ing with Ru
“HProgrammlngwn Rules

NI = 0 1 ifN=0
TENX(N-1)! ifN21
Consider the factoria function, how do we write
rulesfor apredicatef ac( N, F) whereF = N!

(R1) fac(0,1).
(R2) fac(N,N*F) :- N>= 1, fac(N1, F).

Note how the definition is recursive (in terms of
itself) and mimics the mathematical definition

15

6?'5 Programming with Rules
Red g g
(R1) fac(0,1).

(R2) fac(N,N*F) :- N>= 1, fac(N1, F).
Rewriting thegoal f ac( 2, X) (i.e. whatis?2!)

fac(2, X)
OR2
2=N,X=NxF,N =21 fac(N-1,F)

OR2
2=N,X=NxF ,N=21N-1=N'F=N'xF' N'21 fac(N'-1,F")

OR1
2=N,X=NxF,N=21,N-1=N',F=N'xF' N'21,N-1=0,F'=1
Simplified onto variable X, then answer X = 2 5




Constraint Logic Programming

Peter Stuckey

o -
tu ¥ Evaluation

¥ In each rewriting step we should check that
the conjunction of primitive constraintsis
satisfiable
¥ derivation does this
¥ in each step aliteral is handled
¥ primitive constraints: added to constraint store
¥ user-defined constraints: rewritten

17

P} U
tu 3 Evaluation

v state: <G1| C1> where Glisagoal and C1
IS aconstraint
v derivation step: GlisL1,L2, ...,Lm
v L1lisaprimitive constraint, C2isC1/A\ L1
-if solv(C A\ L1) = falsethen G2 = []
~elseG2=L2,..,Lm

v L1 isauser-defined constraint, C2 is C1 and
G2 istherewriting of G1 at L1 using some rule
and renaming

18




Constraint Logic Programming

Peter Stuckey

tu ¥ Evaluation

v derivation for <GO | CO>:
(Gojco) 0 (G1c) O (G2|c2) O
v where each <Gi | Ci> to<Gi+1| Ci+1> isa
derivation step

v derivation for G is aderivation for the state
<G| true>

19

3ot

“-5 Derivation for f ac( 1, Y)
> AA<

( fac(l, Y)|true>

OR2
(1=N,Y=NxF,N 21, fac(N -1, F)|true)
(Y=NxF,N 21,?ac(N -LF)L=N)
(N >1, fac(N —1,F?|1: NOY=NxF)
(fac(N -1,F)L= NDDY: NxFON>1)

ORL
(N-1=0,F=11=NOY=NxFON21)
0

(F=11=NDOY=NxFON=2=10N-1=0)
0
(IL=NOY=NxFON210N-1=00F =1)
20

Corresponding answer simplifiedtoYisY=1

10



Constraint Logic Programming

Peter Stuckey

t

~

u‘-} Derivation for f ac( 1, Y)
“a >

( fac(l, Y)|true>
ORL
(1=0,Y = 1jtrue)
O
(n=0)

A failed derivation for f ac( 1, Y)

21

pu

L

pu

“ - "
€3 Derivations
-~

J

¥ For derivation beginning at <GO | CO>

v success state: <[] | C> where solv(C) =
false

v successful derivation: last state is success
v answer: simpl(C, vars(<G0 | C0>))

v fail state: <[] | C> where solv(C) = false
v failed derivation: last state isfail state

22

11



Constraint Logic Programming

Peter Stuckey

o -
tu: Derivation Trees

v derivation treefor goa G
vrootis< G| true>

¥ the children of each state are the states
reachable in one derivation step

¥ Encodes all possible derivations

¥ when leftmost literal is prim. constraint only
one child

v otherwise children ordered like rule order

23

“ . .
tu 3 Derivation Tree Example

( fac(LY)|true>
URL OR2
(1=0,Y=1jtrue) (1=N,Y = NxF,N =21 fac(N -1 F)|true)
0 0
{n=0) (Y=NxF,N2>1 faq(N-1F)[CL=1= N)
0
failed derivation (N21 fac(N-1F)IC2=C10Y = N xF)
0
(fac(N-1,F)|C3=C20N 21)
ORL OR2
(N-1=0,F =1C3) (N-1=N',F = N'xF',N'21, fag(N'-1,F")|C3)
O 0
(F=1C4=C30N-1=0) (F=NxF",N'21 fag(N'-LF')|C6=C30N -1= N')
O 0
(NIcs=C4DF =1) (N'21, fac(N'-1,F")|C7 = C60F = N'xF")
0
answer: Y=1 (nice=c7on=1) failed derivation
24

12



Constraint Logic Programming

Peter Stuckey

“ . .
t'lg Derivation Trees

¥ The previous example shows three
derivations, 2 failed and one successful

¥ finitely failed: if aderivation treeisfinite
and all derivations are failed
¥ next slide afinitely failed derivation tree

v Infinite derivation tree: some derivations
areinfinite

25

tu: Finitely Failed Example

fac(L0)|true
ORL OR2
(1=0,0=1ftrue) (1=N,0=NxF,N =21, fac(N -1, F)|true)
0 0
{e=0) (0=NxF,N =1 facq(N-1F)|Cl=1= N)
0
(N =21, fac(N-1,F)|C2=C100= N xF)
0
(fac(N-1,F)|C3=C20N 21)
ORL OR2
(N-1=0,F =1C3) (N-1=N',F = N'xF",N"2 1, fag(N'-1, F")|C3)
O 0
(F=1C4=C30N-1=0) (F=NxF",N'21 fag(N'-LF')|C6=C30N -1= N')
O 0
(NIcs=C4DF =1) (N'21, fac(N'-1,F")|C7 = C60F = N'xF")
0
(nic8=c70ON'21)
26

13



Constraint Logic Programming

“ . . . .
t'UJ Infinite Derivation Tree

(Sl) stupid(X) :- stupid(X).
(S2) stupid(1l).

<stupid( X )|true>
0s1 0s2

<X = X',stupid(X')|true> <X =1|true>
O O
(stupid (X')|X = X*) x =1) Answer: X=1

os1 0s2

(X=X, stupid (X)X = X') | (X'=1X = X")
O O

{stupid (X)X = X'OX'= X" |{1Ix = x'Ox'=1) Answer: X=1
os1 0s2

Infinite derivation
27

“ .
t'lg Goal Evaluation

¥ Evaluation of agoal performs an in-order
depth-first search of the derivation tree

¥ when a success state in encountered the
system returns an answer

¥ the user can ask for more answers in which
case the search continues

¥ execution halts when the users requests no
more answers or the entire tree is explored

28

Peter Stuckey



Constraint Logic Programming

I .
t)f 3 Goal Evaluation Example
oY ad L (facwY)true) |
ORL OR2
[ (1=0Y=1true) | | (1=N,Y=NxF N21 fag(N-1,F)true) |
0 O
| (In=0) | [{Y=NxF,N21faqN-1F)[Cl=1=N) |
O
| (N>1 fag(N-1F)|C2=C10Y=NxF) |
O
| (fac(N-1F)|C3=C20N =1 |
ORL OR2
| (N-1=0F=13c3 | [(N-1=N',F=N*F' ,N'>1 faq(N-1F)[C3) |
0 O
[(F =yca=c30N-1=0)|[(F = N'xF',N'21, fac(N'-1,F')|C6=C3ON -1= N) |
0 O
| (Qcs=canF=1 | | (N'21fagN'-1F')[C7=C60F =N'xF') |
O
Return answer: Y= 1more? ~ L_IC8=C7EN=Y | Return nognore

<%
tu 3 Goal Evaluation Example 2

0s1 0s2
|<X = X',stupid(X')|true> | <X :1|true>
0 0
[ (stupid(X)[X = X) | @ix =1)
0s1 0s2
[(x'=X"" stupid (X)X = X'} | (X=X = X")
0 0
[stupid (X )X = X'OX'= X"} ]|{[]IX = X'OX'=1)

0s1

though infinitely many exist

os2

The evaluation never finds an answer, even

30

Peter Stuckey

15



Constraint Logic Programming

Peter Stuckey

o -
t'lg Smplified Derivation Trees

¥ Derivation trees are very large
¥ A simplified form which has the most
useful information

¥ constraints in simplified form (variablesin the
initial goal and goal part of state)
¥ uninteresting states removed

31

“ . .
t'lf_.! Smplified Sate

v simplified state: <GO | CO> in derivation
for G
¥ replace CO with C1=simpl(CO, vars(G,G0))
vif x=tin Clreplacex by tin GO giving G1
¥ replace C1 with C2=simpl (C1, vars(G,G1))
(fac(N'-LF)L=NOY=NxFON=210N-1=N'OF = F')
vars={Y,N',F'}
(fac(N'-1L,F)|N'=00Y = F')
replaceN' by 0 and smplify again
(fac(-1F)lY=F) i

v Example

16



Constraint Logic Programming

Peter Stuckey

{‘.’u‘.} lified L
hﬁSlmpll Derivation

v A stateiscritical if itisthefirst or last state
of aderivation or the first literal i1s a user-
defined constraint

v A simplified derivation for goal G contains
all the critical statesin simplified form

v similarly for asimplified derivation tree

33

O Example Smolif
- - ample Smplified Tree
(fac(L, Y)|true)
URL OR2
_ (nifalse) | {fac(0,F)|Y=F)
ORL OR2
Cv=n ] (it

Note: fail states are <[] | false> and success states
contain answers

17



Constraint Logic Programming

Peter Stuckey

pw i WY
th The CLP Scheme

¥ The scheme defines afamily of
programming languages
¥ A language CLP(X) is defined by
¥ constraint domain X
v solver for the constraint domain X
v simplifier for the constraint domain X

¥ Example we have used CLP(Real)
¥ Another example CLP(Tree)

35

pw § U
tu: CLP(R)

¥ Example domain for chapters 5,6,7

v Elements are trees containing real constants

v Congtraints are {=:#} for trees
vand {=.5,<,2,>} for arithmetic

36

18



Constraint Logic Programming

Peter Stuckey

=* Constraint Logic Programs
tw.t £ Smmary

¥ rules: for user-defined constraints
¥ multiple rules for one predicate
¥ can berecursive
¥ derivation: evaluates a goal
¥ successful: gives an answer (constraint)
~ failled: can go no further
v infinite
¥ scheme: defines a CLP language

37

19



