

G12: From Solver Independent Models to Efficient Solutions

Peter J. Stuckey
NICTA Victoria Laboratory
University of Melbourne

NICTA is proudly supported by:

NICTA Members

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks

Underpants Gnomes Business Plan

- Phase 1: Collect underpants
- Phase 2: ??????
- Phase 3: Profit

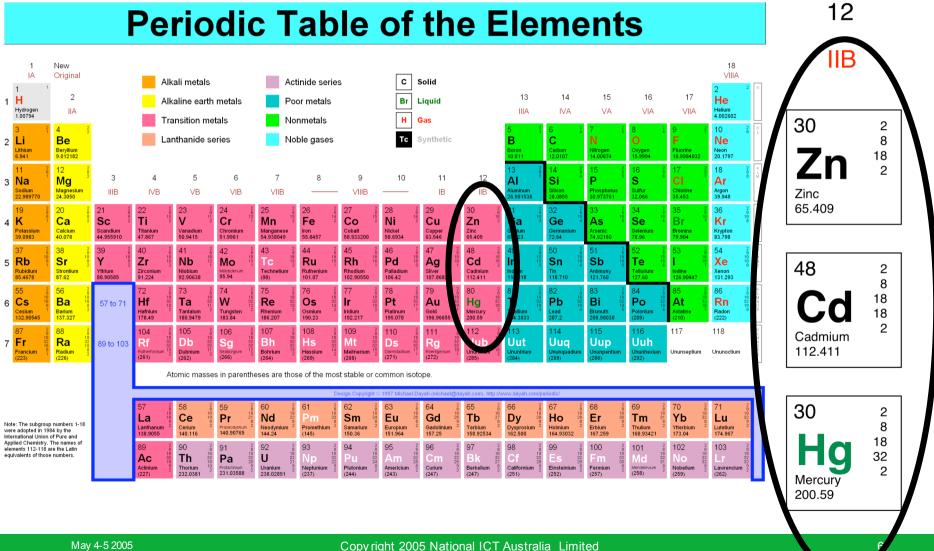
G12 Project Plan

- Phase 1: Solver Independent Modelling
- Phase 2: ?????
- Phase 3: Efficient Solutions

G12 Overview

- G12: a software platform for solving large scale industrial combinatorial optimisation problems.
 - ZINC:
 - A language to specify solver independent models
 - CADMIUM:
 - A mapping language from solver independent models to solvers
 - A language for specifying search
 - MERCURY: (For our purposes)
 - A language to interface to external solvers
 - A language to write solvers
 - A language to combine solvers
 - Providing debugging support

Group 12 of the Periodic Table



G12 Participants

- Peter Stuckey, NICTA Victoria
- Maria Garcia de la Banda, Monash University
- Michael Maher, NICTA Kensington (NSW)
- Kim Marriott, Monash University
- John Slaney, NICTA Canberra
- Zoltan Somogyi, NICTA Victoria
- Mark Wallace, Monash University
- Toby Walsh, NICTA Kensington (NSW)
- and others

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks

The Problem Solving Process

- "Find four different integers between 1 and 5 which sum to 14"
- Conceptual Model
 - User-oriented "declarative" problem statement
 - \exists S. S ⊆ {1..5} \land |S| = 4 \land sum(S) = 14.
- Design Model
 - Correct efficient algorithm
 - [W,X,Y,Z] :: 1..5, alldifferent([W,X,Y,Z]), W + X + Y + Z #= 14, labeling([W,X,Y,Z]).
- Solution

$$- W = 2 \wedge X = 3 \wedge Y = 4 \wedge Z = 5$$

$$S = \{2,3,4,5\}$$

The Problem Solving Process

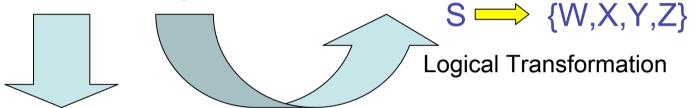
- Conceptual Model
 - User-oriented "declarative" problem statement

- Design Model
 - Correct efficient algorithm

Solution

From Conceptual Model to Design Model

Conceptual Model: logical specification



Mapping the logical constraints to behaviour

$$|\{W,X,Y,Z\}| = 4 \implies \text{alldifferent}([W,X,Y,Z])$$

Adding a specification of search



Design model: algorithmic specification

Behaviour: Choosing a Solving Technology

- Mixed Integer Programming (MIP)
 - strong optimization, lower bounding
 - limited expressiveness for constraints (linear only)
 - able to handle huge problems 1,000s of vars and constraints
- Finite Domain Propagation (FD)
 - strong satisfaction, poor optimization
 - highly expressive constraints
 - specialized algorithms for important sub-constraints
- DPLL Boolean Satisfaction (SAT)
 - satisfaction principally,
 - limited expressiveness (clauses or Boolean formulae)
 - effective conflict learning, highly efficient propagation
- Local Search: SA, GSAT, DLM, Comet, genetic algorithms
 - good optimization, poorer satisfaction (cant detect unsatisfiability)
 - highly expressive constraints (arbitrary functions?)
 - scale to large problems

Complete Solving Technologies

- Mixed Integer Programming (MIP)
 - strong optimization, lower bounding
 - limited expressiveness for constraints (linear only)
 - able to handle huge problems 1,000s of vars and constraints
- Finite Domain Propagation (FD)
 - strong satisfaction, poor optimization
 - highly expressive constraints
 - specialized algorithms for important sub-constraints
- DPLL Boolean Satisfaction (SAT)
 - satisfaction principally,
 - limited expressiveness (clauses or Boolean formulae)
 - conflict learning, highly efficient propagation,

Incomplete Solving Technologies

- Good optimization, poorer satisfaction (cant detect unsatisfiability)
- Highly expressive constraints (arbitrary functions?)
- Scale to large problems
- Local Search:
 - simulated annealing
 - Lagrangian relaxation: DLM, GSAT, ...
 - Comet (language for local search methods)
- Population Methods
 - genetic algorithms
 - ant colony optimization, ...

Behaviour: Hybrid Solving Approaches

- Design model using two or more solving approaches
 - Only need partially model the problem in each part
 - pass constraints from one model to another
 - values of variables W = 2
 - bounds of variables W ≥ 3
 - cuts $2X + 3Y + 4Z \le 15$
 - pass upper or lower bounds from one technique to another
- Decompose the problem into two or more parts using different solving techniques
 - Dantzig-Wolfe decomposition, Column generation, ...

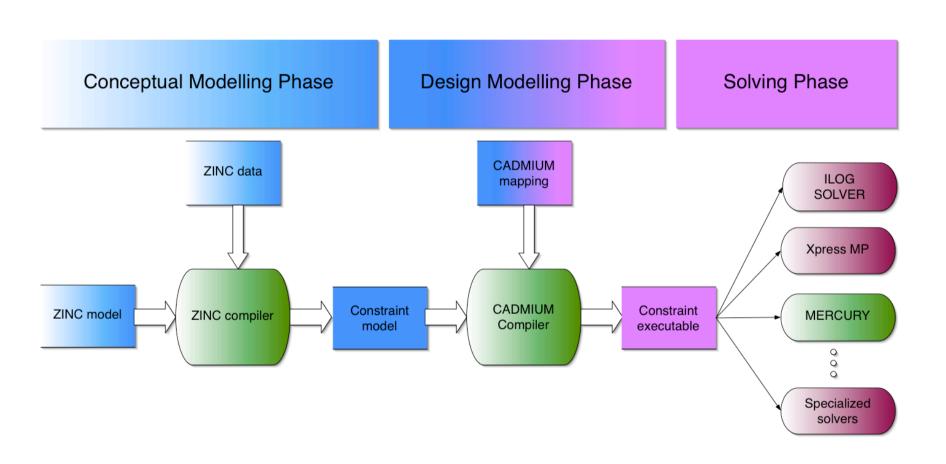
Search

- Generic search strategy:
 - limited discrepancy search, first fail, maximum regret
 - symmetry breaking,
 - learn parameters
- Specific search strategy (programmed)
- Solving technology may restrict search
- Hybrid search:
 - Support the search of one method with another
 - Define heuristic function with one method
 - support limited discrepancy search of other method
 - Wide area local search, repair based methods

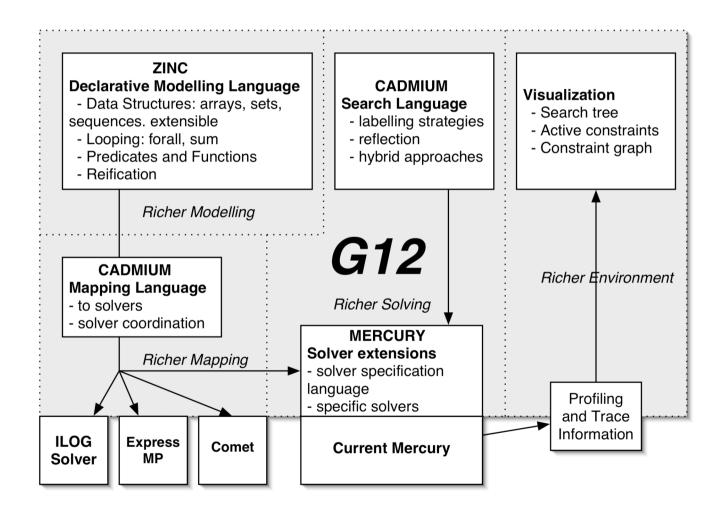
Environment

- The worst answer to a constraint problem?
 - No
- An even worse answer to a constraint problem
 - execution does not terminate in days!
- (Performance) Debugging the Design Model
 - visualization of the "active" constraints
 - visualization of the solver state (e.g. domains of variables)
 - visualization of the search
 - (preferably) mapped back to Conceptual Model
 - Hybrid approaches complicate this!

G12 development model



G12 Project Diagram



Developing Constraint Solutions

- What modelling language is best to express the problem naturally?
- How do we map the problem to the most suitable combination of algorithms to solve it
- How do we support the search for the right algorithm, by high-level control and facilities to visualize and interact with the system as is solves?
- G12 aims to support these questions!

G12 Goals

Richer Modelling

- Separate conceptual modelling from design modelling using
 - solver independent conceptual models
 - mapping from conceptual to design models
- Richer Mapping
 - extensible user defined mappings
 - hybridization of solvers
- Richer Solving
 - hybridization of search
- Richer Environment
 - visualization of search and constraint solving

Advantages of G12 model

- Checking the conceptual model
 - trusted default mappings give basic design model
 - test conceptual model on small examples this way
- Checking the design model
 - check optimized mapping versus trusted default mapping
- Remembering good modelling approaches
 - reuse of
 - model independent mappings
 - transformations/optimizations of design models
- Support for algorithmic debugging
 - reverse mapping to visualize in terms of the conceptual model

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks

What is Solver Independent Modelling

- A model independent of the solver to be used
- Examples
 - cnf format for SAT
 - AMPL for linear and quadratic programming
 - HAL program using solver classes
 - (?) ECLiPSe program (for eplex, ic, fd,etc solvers)
 - (?) OPL (although it essentially connects to one solver)
- All the above fix the form of the constraints by the model
- All except .cnf fix the "solving paradigm"
- More independent
 - ESRA [Uppsala]
 - Essence and Conjure [York]
 - model and transformation rules

Zinc: a solver independent modelling language

- mathematical notation like syntax (coercion, overloading, iteration, sets, arrays)
- expressive constraints (FD, set, linear arithmetic, integer)
- different kinds of problems (satisfaction, explicit optimisation, preference (soft constraints))
- separation of data from model
- high-level data structures and data encapsulation (lists, sets, arrays, records, constrained types)
- extensibility (user defined functions, constraints)
- reliability (type checking, assertions)
- simple, declarative semantics
- Zinc extends OPL and moves closer to CLP language such as ECLiPSe

Example Zinc model

Social Golfers

- Given a set of players, a number of weeks and a size of playing groups.
- Devise a playing schedule so that
 - each player plays each week
 - no pairs play together twice
- Many symmetries (ignore for now)
 - order of groups
 - order of weeks
 - order of players
 - ...

Type Declarations (to be read from data file)

```
enum Players = {...};
```

Parameter Declarations (first 2 from data file)

```
int: Weeks;
int: GroupSize;
int: Groups = |Players| div GroupSize;
```

Assertions on Parameters

```
assert("Players must be divisible by GroupSize")
Groups * GroupSize == |Players|;
```

Variable Declarations

```
array[1..Weeks, 1..Groups] of var set of Player: group;
```


Predicate (and Function) Declarations

Constraints

```
constraint forall (i in 1..Weeks) (
  partition([group[i,j] | j in 1..Groups], Players) /\
  forall (j in 1.. Groups) (
        |group[i,j]| == Groupsize /\
        forall (k in i+1..Weeks; l in 1..Groups)
            maxOverlap(group[i,j],group[k,l],1)
  ));
class("redundant"):: constraint
  forall (a,b in Players where a < b)
    sum (i in 1.. Weeks; j in 1.. Groups)
        holds({a,b} subset group[i,j])
          =< 1;
```



```
int: Weeks;
int: GroupSize;
enum Players = {...};
int: Groups = |Players| div GroupSize;
assert ("Players must be divisible by GroupSize") Groups * GroupSize = |Players|;
array[1..Weeks, 1..Groups] of var set of Player: group;
predicate maxOverlap(var set of $E: x,y, int: m) =
    |x inter y| = < m;
predicate partition(list of var set of $E: sets, set of $E: universe) =
      (forall (i, j in 1..length(sets) where i < j)
          maxOverlap(sets[i], sets[j], 0)
  /\ unionlist(sets) == universe;
constraint forall (i in 1..Weeks) (
   partition([group[i,j] | j in 1..Groups], Players) /\
    forall (j in 1.. Groups) (|group[i,j]| == Groupsize /\
        forall (k in i+1..Weeks; l in 1..Groups)
            maxOverlap(group[i,j],group[k,l],1)
));
class("redundant"):: constraint forall (a,b in Players where a < b)
  sum (i in 1..Weeks; j in 1..Groups) holds({a,b} subset group[i,j]) =< 1;
```


Types:

- float, int, bool, string,
- tuples, records (with named fields), discriminated unions
- sets, lists, arrays (multidimensional = array of array of ...)
- var type
 - arrays and lists of var types: array [1..12] of var int
 - set var type of nonvar type: var set of bool
- coercion
 - nonvar type to var type: float \rightarrow var float (x + 3.0)
 - ground sets to lists: length ({1,2,3,5,8})
 - lists to one-dimensional arrays:
- constrained types (assertions)

```
record Task = (int: Duration, var int: Start, Finish)
    where Finish == Start + Duration;
```


Comparisons

```
- ==, !=, >, <, >= , =<
```

- generated automatically for all types (lexicographic)
- Reification
 - predicates are functions to var bool
 - Boolean operations:

```
• /\ (and), \/ (or), ~ (not), xor, =>, <=, <=>
- ZeroOne = 0..1;
function holds(var bool:b):var ZeroOne:h
```

- h is the integer coercion of the bool b
- Anything can be "reified"
 - problem for solvers?

- List and Set comprehensions
 - generators + tests must be independent of vars

```
- list of int: b = [2*i \mid i \text{ in } 1..100 \text{ where } \sim (kind[i] \text{ in } S)]
```

- shorthand
 - sum (i in 1..Weeks; j in 1..Groups) holds(c) =< 1;
 - sum([holds(c) | i in 1..Weeks; j in 1..Groups]) =< 1;
- Functions and predicates
 - local variables
 - (non-recursive) but foldl, foldr, zip

 - starting point for mapping language Cadmium

Annotations

- classification constraints: class (string)
 - (possible multiple) classifications for constraints
 - used for guiding rewriting, debugging
 - class("linear") :: constraint x + 3*y + 4*z = < q;
- soft constraints: level(int) and strength(float)
 - lower levels are preferential
 - strength gives relative priority over levels
 - int: strong = 1; level(strong) strength(2.0):: constraint x < 2 /\ y < 9;</pre>
 - map to objective function if not supported by solver

Objectives

- minimize/maximize <arithmetic expr>

Zinc Status and Challenges

Status

- Initial language design
- Type checker
- Compiler in progress

Challenges

- Easy to use for mathematical programmers
 - Error messages, syntax
- Symmetry specification
- Multi parameter objective and/or robustness objective specification
- Recursion?
- Pattern matching

Zinc Challenges

- Easy to use for mathematical programmers
 - Error messages, syntax
- Symmetry specification
- Multi parameter objective and/or robustness objective specification
- Recursion?
- Pattern matching

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks

Cadmium

- Maps solver independent models to solvers
 - extension of Zinc
 - term rewriting/constraint handling rules like features
- Model independent transformations! (as far as possible)
- Trying to extract some of the "internal transformations" performed by solvers, to make them
 - visible
 - reusable
 - replaceable
- Also adds search strategy to model
 - not really discussed here

Simple Defaults

```
map = bdd sets.map;
```

Overriding Defaults

Using Classes

```
class("redundant") :: c <=> delay(vars(c), c);
```

Merging Constraints

- Variable Conversion
 - creates mapping sat from original variables to new variables

```
var set of $E: s <=> array[$E] of var bool: sat(s);
```

Mapping of Functions and Predicates

Refinement and Specialization of Constraints

- Multiple levels of Mapping
 - Mapping to CNF (conjunctive normal form)

Multiple Solvers

```
m1 = bdd_sets.map;
m2 = sat_sets.map;
m2::|_| = _ <=> true;
channeling {
   forall (var set of $E:s; $E:e)
    m1::e in bdds(s) ==> m2::sat(s)[e] == true /\
   m1::e notin bdds(s) ==> m2::sat(s)[e] == false /\
   m2::sat(s)[e] == true ==> m1::e in bdd(s) /\
   m2::sat(s)[e] == false ==> m1::e notin bdd(s) /\
}
```


Mapping to Local Search (VAPOR)

```
var set of E: s, |s| = c \ll int :c \mid array [1..c] of var <math>E: local(s);
set of E: s \le int:c = |s|, array [1..c] of E: local(s);
predicate subset(array[$R1] of $E: t, array[$R2]of var $E s) <=>
    forall (i in R1) exists (j in R2) S[j] == t[i];
predicate in($E: e, array[$R] of var $E:s) =
    exists (i in R) s[i] == e
predicate partition(list of var array[$R] of $E: sets, set of $E: universe) =
   forall (e in universe)
          sum (i in 1..length(sets); j in R) holds(sets[i][j] == e) == 1;
maxOverlap( , ,1) <=> true
var int:f = sum [holds(c) | class("redundant") :: c ];
var int:p = sum [holds(c) | c = partition( , ) ];
.. move definition ..
.. tabu list definition ..
.. search (using f) ..
.. debugging check (using p) ..
```


Mapping to Local Search (VAPOR)

Variable and Parameter mapping

```
var set of E:s, |s| == c \ll int:c \mid array [1..c] of var E:lcl(s); set of E:s \ll int:c = |s| \mid array [1..c] of E:lcl(s);
```

Predicate mapping

Mapping to Local Search (VAPOR)

Defining Penalty Functions

```
violation(a =< b) <=> var int: a,b | max(0,a - b);
var int:f = sum [violation(c) | class("redundant") :: c ];
var int:p = sum [holds(c) | c = partition(,)];
```

Defining the algorithm

```
.. move definition ..
.. tabu list definition ..
.. search (using f) ..
.. debugging check (using p) ..
```


Cadmium Challenges ∞

- Specification: polymorphism, solver communication
 - model independent mappings (polymorphism)
 - solver communication
 - full hybridization
- Rewriting: control, confluence?, interaction with subtypes
- Search: Salsa, Comet, CLP
- Error messages: unmapped constraints, etc
- Reverse mappings?
- The last step
 - outputing the format required by an external solver

Cadmium Status and Challenges

- Status
 - many discussions
- Challenges ∞
 - Specification:
 - model independent mappings (polymorphism)
 - solver communication
 - full hybridization
 - Rewriting: control, confluence?, interaction with subtypes
 - Search: Salsa, Comet, CLP
 - Error messages: unmapped constraints, etc
 - Reverse mappings?
 - The last step
 - outputing the format required by an external solver

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion and hybrid example
- Concluding Remarks

Mercury

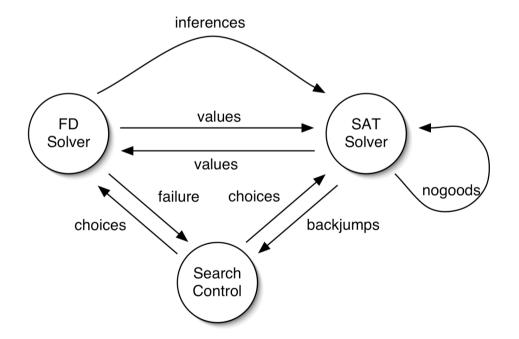
- Purely declarative functional/logic programming language
 - developed since October 1993 at University of Melbourne
 - designed for "programming in the large"
 - strong static typing: Hindley/Milner + type classes with functional dependencies + existential types
 - strong static moding (tracking instantiation of arguments)
 - strong static determinism (number of answers for predicates/functions)
 - strong module system
 - highly efficient, sophisticated compile-time optimizations

Extending Mercury

- No constraint solving (not even Herbrand)
 - added solver types to Mercury
 - Dual view of a type
 - External view: pure declarative solver variable
 - Internal view: data structure representing solver information
 - adding solvers to Mercury
 - herbrand, bdd_sets, sat (MiniSat), lp (cplex, clpr), fd
- Hybridization facilities (currently complete methods only)
 - essentially attach arbitrary code to solver events
 - variable is fixed
 - bounds changes
 - new cut/nogood generated

Mercury hybridization experiment

- bdd FD solver (JAIR 24)
- DPLL based SAT solver (MiniSAT)



BDD based solver

- CP2004, JAIR 24 (2005)
- Essentially a finite domain solver
 - represents variables by "packages of Boolean variables"
 - $\varnothing \subseteq S \subseteq \{1,2,3,4\} :: 1 \in S, 2 \in S, 3 \in S, 4 \in S$
 - $0 \le x \le 3$:: x = 0, x = 1, x = 2, x = 3 OR $x \mod 2 = 1$, x > = 2
 - represents domains as Boolean formulae (ROBDDs)
 - $D(S) = \{\{1\}..\{1,3,4\}\} :: 1 \in S \land \neg (2 \in S)$
 - represents constraints as Boolean formulae (ROBDDs)
 - $|S| = x :: (1 \in S \land 2 \in S \land 3 \in S \land \neg (4 \in S) \land x = 3) \lor ...$
- Propagates constraints using Boolean operations
 - D'(S) = exists x. D(S) \wedge D(x) \wedge |S| = x
- Highly competitive for finite set solving
 - not competitive for finite integer solving

SAT DPLL solver (MiniSAT)

- http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
- by Niklas Eén, Niklas Sörensson
- DPLL based SAT solver.
 - watch literals
 - 1UIP nogood learning, conflict clause minimization
 - (improved) VSIDS dynamic variable order
 - incremental
- Winner of silver medals in 2 Industrial and 1 Handmade classes of SAT 2005
- With preprocessor SatELite winner of gold medals in all 3 Industrial and 1 Handmade classes

Hybridizing BDD and MiniSAT

- Variable to variable propagation
 - fixed variables in BDD <-> fixed variables in MiniSAT
- Scheduling
 - Unit propagation in MiniSAT is one "propagator"
 - higher priority than any BDD propagators
- Modelling
 - all constraints represented in BDD solver
 - NO constraints represented in MiniSAT!

Dynamic clausal representation

Represent inferences of BDD propagators as clauses

$$- D(x) = \{0,1,2\} :: \neg(x = 3)$$

- Propagating |S| = x
- Newly inferred propositions

•
$$\neg (4 \in S)$$
, $\neg (x = 0)$, $\neg (x = 1)$, $x = 2$

simple inferences

•
$$1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (4 \in S)$$

•
$$1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (x = 0)$$

•

clausal representation

•
$$\neg (1 \in S) \lor \neg (2 \in S) \lor 3 \in S \lor x = 3 \lor \neg (4 \in S)$$

•
$$\neg (1 \in S) \lor \neg (2 \in S) \lor 3 \in S \lor x = 3 \lor \neg (x = 0)$$

• ...

Minimal inferences

- A minimal reason for a new proposition p
 is a minimal subset of the reasons that ensure p hold
- Examples

$$-1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (x = 0)$$

- minimal 1 ∈ S
$$\rightarrow \neg$$
 (x = 0)

$$-1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (4 \in S)$$

- minimal 1 ∈ S
$$\land$$
 2 ∈ S \land ¬(x = 3) \rightarrow ¬(4 ∈ S)

Add minimal clauses

$$- \neg (1 \in S) \lor \neg (x = 0)$$

$$- \neg (1 \in S) \lor \neg (2 \in S) \lor x = 3 \lor \neg (4 \in S)$$

- Efficient BDD operations to determine minimal reasons
 - minimal unsatisfiable subset

Dynamic clause generation

- Propagation in the BDD solver represents inferences
 - Initially $D(S) = \{\{\} ... \{1,2,3,4\}\}, D(x) = \{0,1,2,3\}$
 - $-D(S) = \{\{1,2\} ... \{1,2,4\}\}, D(x) = \{0,1,2\}, |S| = x$
 - gives
 - $D(S) = \{\{1,2\}\}, D(x) = \{2\}$
 - Simple inference
 - $1 \in S \land 2 \in S \land \neg (3 \in S) \land \neg (x = 3) \rightarrow \neg (x = 0)$
 - Minimal inference
 - $1 \in S \rightarrow \neg (x = 0)$
- Pass the inferences made to the SAT solver
 - $\neg (1 \in S) \lor \neg (x = 0)$

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 1 (0.70), time 4/5 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 3 (1.76) (surprisingly low!)
 - using inferences in implication graph only (19/20): fails 1/35 1 (0.29), time 1/10 2 (0.78)
 - adding clauses (20/20): fails 1/157 1 (0.10), time 1/62 2 (0.30)
- Versus (improved) VSIDS search strategy from miniSAT (20/20)
 - miniSAT (16/20): fails 0.95 186 (10), time 1/14 58 (2.7)
 - dual model (20/20): fails 1/12 16 (2.3), time 2/3 13 (3.0)
 - sequential (20/20): fails 1/55 13 (0.52), time 1/5 10 (0.95)

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 1 (0.70), time 4/5 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 3 (1.76) (surprisingly low!)
 - using inferences in implication graph only (19/20): fails 1/35 1 (0.29), time 1/10 2 (0.78)
 - adding clauses (20/20): fails 1/157 1 (0.10), time 1/62 2 (0.30)

Experiments

- Social Golfers Problems
- Versus bounds propagation bdd set solver using a sequential smallest element is set search strategy (18/20)
 - simple inferences (18/20): fails 1/2 1 (0.70), time 4/5 2 (1.22)
 - minimal inferences:
 - just inferring (18/20): time 1 3 (1.76) (surprisingly low!)
 - using inferences in implication graph only (19/20): fails 1/35 1 (0.29), time
 1/10 2 (0.78)
 - adding clauses (20/20): fails 1/157 1 (0.10), time 1/62 2 (0.30)
- VSIDS search strategy (20/20)
 - versus miniSAT (16/20): fails 1/186 1.05 (0.10), time 1/58 14 (0.37)
 - versus dual model (20/20): fails 1/16 12 (0.44), time 1/13 3/2 (0.33)
 - versus sequential (20/20): fails 1/13 55 (1.9), time 1/10 5 (1.05)

What does it mean?

- Conflict directed backjumping in another guise?
- Related work
 - PalM, E-constraints: uses decision cuts not 1-UIP
 - Katsirelos and Bacchus CP2003: only forward checking,
 (appear to) only use FC inferences in implication graph
- finite domain propagation = clausal cut generation?

Outline

- G12 Project Overview
- Developing Constraint Solutions
- Solver Independent Modelling
 - Zinc example and features
- Mapping models to algorithms
 - Cadmium mapping tentative examples
- Efficient Solutions
 - Mercury discussion
- Concluding Remarks

G12 Progress

- Zinc
 Language design ✓
 Type checker ✓
 Starting compiler
- Cadmium
- Mercury
 building new solvers: fd, generic propagation structures, value propagation
 integrate solvers: bdd_sets, minisat, CPLEX ✓
 solver types ✓

Other Aspects of the G12 Project

- Logical Transformations (Zinc2Zinc): dualization, etc.
- Robust solutions: insensitive to change in parameters
- Search
- Master-subproblem decompositions: Benders, Lagrangian relaxation, column generation
- Population search: evolutionary algorithms
- Solver visualization
- Default mappings
- Online optimization
- Scripting

Conclusion

- G12 is an ambitious project aiming to provide
 - Solver independent modelling
 - Model independent mappings from conceptual to design models
 - Easy experimentation of hybrid approaches
 - A good environment for exploring design models
- We have only just begun!
- The holy grail
 - Default mappings are good enough: only conceptual model

Advertisement

- Constraint Programming positions available
 - see http://nicta.com.au/jobs.html
 - positions in Melbourne (Network Information Processing) and Sydney (Knowledge Representation and Reasoning)
- G12 postgraduates needed
 - apply to University of Melbourne or University of New South Wales
- G12 visitors welcome
 - are you interested in some of the things discussed here?

END

The imagination driving Australia's ICT future.

