NATIONAL

The imagination driving Australia’s ICT future.
ICT AUSTRALIA O

G12: From Solver Independent Models to

Efficient Solutions

Peter J. Stuckey
NICTA Victoria Laboratory
University of Melbourne

NICTA is proudly supported by: NICTA Members
—————
. s ASTLOr &> === BusinessACT
R4 Australian Government e o AET GoveRNmENT
e e
Lo Department of Communications, NICTA Partners
Information Technology and the Arts ‘. o) -
” $ The Usiversity of Syduney 0 Queensland Goverrment s R"u%::::t?m‘u m Lu”J LG'IEL'I!‘M
(e b AT Ohmeme vty A ey

Australian Research Council Te Piaca 12 B

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

 G12 Project Overview
« Developing Constraint Solutions

+ Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

 Efficient Solutions
— Mercury discussion

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. @ NATIONAL O
Underpants Gnomes Business Plan

* Phase 1: Collect underpants
* Phase 2: 7?7?7777

 Phase 3' Profit

3 E< 00}(

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
G12 Project Plan

* Phase 1: Solver Independent
Modelling

 Phase 3: Efficint Solutions

Ty = ”»
” T
N

;
0 .
= Y N,
. N < ,‘;__.J
e] 3
BN} S, P ,'v
e o g -
7 L .
-, RN) L
LR i « -t g
Qo /4 s ;
. anE O P O N
R

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
G12 Overview

« (G12: a software platform for solving large scale industrial
combinatorial optimisation problems.

— ZINC:
» A language to specify solver independent models

— CADMIUM:
« A mapping language from solver independent models to solvers
» A language for specifying search
— MERCURY: (For our purposes)
« A language to interface to external solvers
* Alanguage to write solvers
« A language to combine solvers
* Providing debugging support

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future.

Group 12 of the Periodic Table

Periodic Table of the Elements

1 New
1A Original

1 H 2

Hydrogen
1.00794 A

4 3
Be

Beryllium
9.012182

12
Mg

Magnesium
24.3050

20
Ca

Calcium
40.078

38
Sr

Strontium
87.62

56
Ba

Barium
137.327

57to 71

88 5

18
Ra 3
Radium 3
(226)

8910 103

(5]

[Alkali metals
Alkaline earth metals
. Transition metals

Lanthanide series

Actinide series

. Poor metals
. Nonmetals

Noble gases

Atomic masses in parentheses are those of the most stable or common isotope.

17

Ununseptium

18
VIIA

2 2

He

Helium
4.002602

Py
-
oB8Ean

118

Ununoctium

Note: The subgroup numbers 1-18
were adopted in 1984 by the
International Union of Pure and
Applied Chemistry. The names of
elements 112-118 are the Latin
equivalents of those numbers.

May 4-5 2005

Design Copyright © 1997 Michael Dayah (mi com). http/

Nd

rpalBon

44.24
92

c
neR8Eo

Uranium
238.02891

rpoBFo
g
rpaRdon

rpoBBBan

63 : 64
Eu ;§ Gd

Europium Gadolinium
151.964

15725
95 ; 96

65 : 66
To
Terbium 2
158.92534

97 i 98

67 § 68
Ho = Er
Holmium 2
164.93032

rpoBBon

=
o
(=]

rpoRBBaon
3

rpoBBBaon
8

roBBBaon
8

Curium
(247

Californium

Americium &
(243) (251)

Berkelium &
(247) (257)

Copy right 2005 National ICT Australia Limited

Erbium
167.259

Fermium

rpoB8BBaon

Tm

Thulium
168.93421

101

Mendelevium

(258)

70
Yb

Yiterbium
173.04

102

rpal@on

ey
B
3

Nobelium
(259)

71
Lu

Lutetium
174.967

npolBon

=
(=]
w

rpoBBBaon

NATIONAL

ICT AUSTRALIA

12
1IB

2
8
18
18
2

Cadmium
112.411

30 2

Hg

Mercury
200.59

O

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
G12 Participants

« Peter Stuckey, NICTA Victoria

* Maria Garcia de la Banda, Monash University
* Michael Maher, NICTA Kensington (NSW)

* Kim Marriott, Monash University

« John Slaney, NICTA Canberra

« Zoltan Somogyi, NICTA Victoria

« Mark Wallace, Monash University

* Toby Walsh, NICTA Kensington (NSW)

» and others

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

« (G12 Project Overview
« Developing Constraint Solutions

+ Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

 Efficient Solutions
— Mercury discussion

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
The Problem Solving Process

« “Find four different integers between 1 and 5 which sum to 14”

« Conceptual Model

— User-oriented “declarative” prob statement
— 3S.SC{1.5} A |S|=4 A sum(S) = 14.

* Design Model v
— Correct efficient algorithm

— [W,X,Y,Z] :: 1.5, alldifferent((W,X,Y,Z]), W + X + Y + Z #= 14,
labeling([W,X,Y,Z]).

« Solution \/

— W=2AX=3AY=4r2Z=5 r—> S ={2,3,4,5}

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
The Problem Solving Process

« Conceptual Model

— User-oriented “declarative” problem statement

4

* Design Model

— Correct efficient algorithm

4

e Solution

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
From Conceptual Model to Design Model

« Conceptual Model: logical specification

S=> {W,X,)Y,Z}
wogical Transformation
v

— Mapping the logical constraints to behaviour

HW,X,Y,Z}| = 4 = alldifferent([W,X,Y,Z])

— Adding a specification of search

—> labeling([W,X,Y,Z])

« Design model: algorithmic specification

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
: Choosing a Solving Technology

» Mixed Integer Programming (MIP)

— strong optimization, lower bounding

— limited expressiveness for constraints (linear only)

— able to handle huge problems 1,000s of vars and constraints
* Finite Domain Propagation (FD)

— strong satisfaction, poor optimization

— highly expressive constraints

— specialized algorithms for important sub-constraints

 DPLL Boolean Satisfaction (SAT)
— satisfaction principally,
— limited expressiveness (clauses or Boolean formulae)
— effective conflict learning, highly efficient propagation

» Local Search: SA, GSAT, DLM, Comet, genetic algorithms
— good optimization, poorer satisfaction (cant detect unsatisfiability)
— highly expressive constraints (arbitrary functions?)
— scale to large problems

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
Complete Solving Technologies

* Mixed Integer Programming (MIP)

— strong optimization, lower bounding

— limited expressiveness for constraints (linear only)

— able to handle huge problems 1,000s of vars and constraints
* Finite Domain Propagation (FD)

— strong satisfaction, poor optimization

— highly expressive constraints

— specialized algorithms for important sub-constraints

 DPLL Boolean Satisfaction (SAT)

— satisfaction principally,
— limited expressiveness (clauses or Boolean formulae)
— conflict learning, highly efficient propagation,

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
Incomplete Solving Technologies

« Good optimization, poorer satisfaction (cant detect unsatisfiability)

« Highly expressive constraints (arbitrary functions?)
« Scale to large problems
« Local Search:
— simulated annealing
— Lagrangian relaxation: DLM, GSAT, ...
— Comet (language for local search methods)
* Population Methods
— genetic algorithms
— ant colony optimization, ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
. Hybrid Solving Approaches

* Design model using two or more solving approaches
— Only need partially model the problem in each part

— pass constraints from one model to another
 values of variables W = 2
* bounds of variables W = 3
e cuts 2X+3Y +4Z <15

— pass upper or lower bounds from one technique to another

 Decompose the problem into two or more parts using
different solving techniques
— Dantzig-Wolfe decomposition, Column generation, ...

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA

Generic search strategy:
— limited discrepancy search, first fail, maximum regret

— symmetry breaking,
— learn parameters

Specific search strategy (programmed)
Solving technology may restrict search
Hybrid search:

— Support the search of one method with another

— Define heuristic function with one method
» support limited discrepancy search of other method

— Wide area local search, repair based methods

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Environment

* The worst answer to a constraint problem?
— No

* An even worse answer to a constraint problem
— execution does not terminate in days!

* (Performance) Debugging the Design Model
— visualization of the “active” constraints
— visualization of the solver state (e.g. domains of variables)
— visualization of the search
— (preferably) mapped back to Conceptual Model
— Hybrid approaches complicate this!

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL
ICT AUSTRALIA

G12 development model

Conceptual Mod

May 4-5 2005 Copyright 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL
ICT AUSTRALIA O

G12 Project Diagram

ZINC :

Declarative Modelling Language | : CADMIUM Visualization

- Data Structures: arrays, sets, . | Search Language - Search tree
sequences. extensible . | - labelling strategies - Active constraints

- Looping: forall, sum - | - reflection - Constraint araph

- Predicates and Functions - | - hybrid approaches grap

- Reification :

A
Richer Modelling
C.I'\ DMIUM : 1 Richer Bnvironment
Mapping Language :
- to solvers : Richer Solving
- solver coordination :
MERCURY
Richer Mapping Solver exter!s_ior?s
»| - solver specification
language o
- specific solvers : alzzioflllrlgge
ILOG E / Information
Xpress | | Comet Current Mercury
Solver MP

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Developing Constraint Solutions

* What modelling language is best to express the problem
naturally?

 How do we map the problem to the most suitable
combination of algorithms to solve it

 How do we support the search for the right algorithm, by
high-level control and facilities to visualize and interact
with the system as is solves?

« (12 aims to support these questions!

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
G12 Goals

* Richer Modelling

— Separate conceptual modelling from design modelling using
» solver independent conceptual models
* mapping from conceptual to design models

* Richer Mapping

— extensible user defined mappings

— hybridization of solvers

* Richer Solving

— hybridization of search

* Richer Environment
— visualization of search and constraint solving

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
Advantages of G12 model

» Checking the conceptual model
— trusted default mappings give basic design model
— test conceptual model on small examples this way

« Checking the design model

— check optimized mapping versus trusted default mapping

 Remembering good modelling approaches
— reuse of
* model independent mappings
 transformations/optimizations of design models
* Support for algorithmic debugging

— reverse mapping to visualize in terms of the conceptual model

May 4-5 2005 Copyright 2005 National ICT Australia Limited 22

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

« (G12 Project Overview
« Developing Constraint Solutions

« Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

 Efficient Solutions
— Mercury discussion

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
What is Solver Independent Modelling

« A model independent of the solver to be used

« Examples

— .cnf format for SAT

— AMPL for linear and quadratic programming

— HAL program using solver classes

— (?) ECLiPSe program (for eplex, ic, fd,etc solvers)

— (?) OPL (although it essentially connects to one solver)
« All the above fix the form of the constraints by the model
« All except .cnf fix the “solving paradigm”

 More independent
— ESRA [Uppsala]

— Essence and Conjure [York]
 model and transformation rules

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Zinc: a solver independent modelling language

« mathematical notation like syntax (coercion, overloading, iteration,
sets, arrays)

« expressive constraints (FD, set, linear arithmetic, integer)

 different kinds of problems (satisfaction, explicit optimisation,
preference (soft constraints))

« separation of data from model

» high-level data structures and data encapsulation (lists, sets,
arrays, records, constrained types)

« extensibility (user defined functions, constraints)
 reliability (type checking, assertions)
* simple, declarative semantics

« Zinc extends OPL and moves closer to CLP language such as
ECLiPSe

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Example Zinc model

* Social Golfers

— Given a set of players, a number of weeks and a size of playing
groups.

— Devise a playing schedule so that
» each player plays each week
* no pairs play together twice

— Many symmetries (ignore for now)
 order of groups
 order of weeks
 order of players

May 4-5 2005 Copyright 2005 National ICT Australia Limited 26

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Social Golfers in Zinc 0.1

« Type Declarations (to be read from data file)

enum Players = {...};

« Parameter Declarations (first 2 from data file)

int: Weeks;

int: GroupSize;
int: Groups = |Players| div GroupSize;

 Assertions on Parameters

assert (“Players must be divisible by GroupSize”)
Groups * GroupSize == |Players]|;

 Variable Declarations

array[l..Weeks,1l..Groups] of var set of Player: group;

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Social Golfers in Zinc 0.1

* Predicate (and Function) Declarations

predicate maxOverlap (var set of SE: x,y, int: m) =
|x inter y| =< m;

predicate partition(list of var set of $E:sets,
set of $SE: univ) =
forall (i,7 in 1..length(sets) where i1 < 73)
maxOverlap (sets[i],sets[]],0)

/\ unionlist(sets) == univ;

May 4-5 2005 Copyright 2005 National ICT Australia Limited 28

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Social Golfers in Zinc 0.1

e (Constraints

constraint forall (i in 1..Weeks) (

partition([group[i,Jj] | j in 1..Groups], Players) /\
forall (3 in 1.. Groups) (
|lgroup[i,j]| == Groupsize /\

forall (k in i+l..Weeks; 1 in 1..Groups)
maxOverlap (groupl[i,j],grouplk,1],1)
));

class (“redundant”) :: constraint
forall (a,b in Players where a < b)
sum (i1 in 1..Weeks; j in 1..Groups)
holds ({a,b} subset groupl[i,]j])
=< 1;

29

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Social Golfers in Zinc 0.1

int: Weeks;
int: GroupSize;

enum Players = {...};
int: Groups = |Players| div GroupSize;
assert (“Players must be divisible by GroupSize”) Groups * GroupSize = |Players];

arrayl[l..Weeks,1l..Groups] of var set of Player: group;

predicate maxOverlap(var set of SE: x,y, int: m) =
|x inter y| =< m;

predicate partition(list of wvar set of S$E: sets, set of $E: universe) =
(forall (i,3J in 1..length(sets) where i < 7J)
maxOverlap (sets[i],sets[]],0)
/\ unionlist (sets) == universe;

constraint forall (i in 1..Weeks) (
partition([group[i,Jj] | J in 1..Groups], Players) /\
forall (j in 1.. Groups) (|group[i,j]| == Groupsize /\
forall (k in i+l..Weeks; 1 in 1..Groups)
maxOverlap (group[i,j]l,grouplk,1],1)
))
class (“redundant”) :: constraint forall (a,b in Players where a < Db)
sum (i in 1..Weeks; J in 1..Groups) holds({a,b} subset groupli,j]) =< 1;

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL
ICT AUSTRALIA O
Zinc Features

 Types:
— float, int, bool, string,
— tuples, records (with named fields), discriminated unions
— sets, lists, arrays (multidimensional = array of array of ...)
— var type
« arrays and lists of var types: array [1..12] of var int
» setvartype of nonvar type: var set of bool

— coercion
« nonvartypetovartype: float -> var float (x + 3.0)
« ground sets to lists: length({1,2,3,5,8})

* lists to one-dimensional arrays:
— constrained types (assertions)
record Task = (int: Duration, var int: Start, Finish)
where Finish == Start + Duration;

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Zinc Features

 Comparisons
, >, <, >=, =<

4

— generated automatically for all types (lexicographic)

* Reification
— predicates are functions to var bool

— Boolean operations:
« /\ (and), \/ (or), ~ (not), xor, =>, <=, <=>
— ZeroOne = 0..1;
function holds (var bool:b) :var ZeroOne:h

* his the integer coercion of the bool b
— Anything can be “reified”
» problem for solvers?

May 4-5 2005 Copy right 2005 National ICT Australia Limited 32

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Zinc Features

» List and Set comprehensions

— generators + tests must be independent of vars
- list of int: b = [2*1 | 1 1n 1..100 where ~(kind[i] 1in S)]

— shorthand

e sum (1 1in 1..Weeks; J in 1..Groups) holds(c) =< 1;

e sum([holds(c) | 1 in 1..Weeks; J in 1..Groups]) =< 1;

« Functions and predicates
— local variables

— (non-recursive) but foldl, foldr, zip
— function unionlist(list of var set of SE: sets):
var set of SE =
foldl (union, {}, sets)

— starting point for mapping language Cadmium

May 4-5 2005 Copy right 2005 National ICT Australia Limited KK]

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Zinc Features

 Annotations

— classification constraints: class (string)

» (possible multiple) classifications for constraints

 used for guiding rewriting, debugging

e class(“linear”) :: constraint x + 3*y + 4*z =< q;
— soft constraints: 1level (int) and strength (float)

» lower levels are preferential

» strength gives relative priority over levels
* int: strong = 1;

level (strong) strength(2.0):: constraint x < 2 /\ y < 9;
* map to objective function if not supported by solver

* Objectives
- minimize/maximize <arithmetic expr>

May 4-5 2005 Copy right 2005 National ICT Australia Limited 34

NATIONAL O

The imagination driving Australia’s ICT future. @
Zinc Status and Challenges

o Status

— Initial language design
— Type checker
— Compiler in progress
« Challenges
— Easy to use for mathematical programmers
» Error messages, syntax
— Symmetry specification

— Multi parameter objective and/or robustness objective
specification

— Recursion?
— Pattern matching

May 4-5 2005 Copy right 2005 National ICT Australia Limited 35

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Zinc Challenges

» Easy to use for mathematical programmers
— Error messages, syntax

« Symmetry specification

« Multi parameter objective and/or robustness objective
specification

* Recursion?
« Pattern matching

May 4-5 2005 Copy right 2005 National ICT Australia Limited 36

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

« (G12 Project Overview
« Developing Constraint Solutions

+ Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

 Efficient Solutions
— Mercury discussion

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Cadmium

« Maps solver independent models to solvers
— extension of Zinc

— term rewriting/constraint handling rules like features
* Model independent transformations! (as far as possible)

* Trying to extract some of the “internal transformations”
performed by solvers, to make them
— visible
— reusable
— replaceable

« Also adds search strategy to model
— not really discussed here

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Cadmium Examples (VAPOR)

« Simple Defaults

map = bdd sets.map;

« Overriding Defaults
map = bdd sets.map;

predicate partition(list of var set of S$SE: sets,
set of SE: univ) =

bdd partition(sets, univ, [prop = cardinality]);
« Using Classes
class (“redundant”) :: c <=> delay(vars(c), c);

« Merging Constraints
map = bdd sets.map;
partition(sets, univ), sorted(sets) <=>
list of var set of SE: sets, set of SE: univ |
bdd and prop (bdd partition(sets,univ),bdd sorted(sets));

May 4-5 2005 Copy right 2005 National ICT Australia Limited 39

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Cadmium Examples (VAPOR)

 Variable Conversion

— creates mapping sat from original variables to new variables
var set of SE: s <=> array[SE] of var bool: sat(s);

* Mapping of Functions and Predicates
function || (array[$E] of var bool:s): var int =
sum (e 1in SE) holds(s[e]);
function inter (array[SE] of var bool:s,t):
array[SE] of var bool = [s[e] /\ t[e] | e in SE 1;

function {}: array[SE] of bool = [false | e in S$SE]; (?2?2??7?)

* Refinement and Specialization of Constraints
S subset t <=> set of SE:s, var set of SE:t |
forall (e in s) e 1in t;
maxOverlap(s,t,cl) \ maxOverlap(s,t,c2) <=>
int: c¢l, int :c2, cl =< c2 | true.

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL
ICT AUSTRALIA O

Cadmium Examples (VAPOR)

« Multiple levels of Mapping

— Mapping to CNF (conjunctive normal form)
X and y == z <=> var bool:x,y,z |

(~z \/ x) /\ (~z \/ y) /\ (z \/ ~x \/ ~y)

partition(list of array[$E]lof var bool:sets, set of SE:univ)=

forall (e in univ) sum (s in sets) holds(s[e]) == 1
/\ forall (s 1in sets) (s subset univ)
sum([holds(b) | b in bs]) <=>
list of var bool:bs, var bool: b | sumb(bs)
sumb (bs) == ¢ <=> sumb(bs) =< ¢ /\ sumb (bs) >= c
sumb (bs) =< ¢ <=> list of wvar bool: bs, int:c |
forall (1 in subsequences (bs,ct+l)) exists (b in 1) ~b;

— subsequences in Mercury? or add recursion to Cadmium

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Cadmium Examples (VAPOR)

* Multiple Solvers
ml = bdd sets.map;

m2 = sat sets.map;
m2::| | = <=> true;

channeling {

forall (var set of $E:s; SE:e)

ml::e in bdds(s) ==> m2::sat(s) [e] == true /\
ml::e notin bdds(s) ==> m2::sat(s) [e] == false /\
m2::sat(s) [e] == true ==> ml::e in bdd(s) /\
m2::sat(s) [e] == false ==> ml::e notin bdd(s) /\

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Mapping to Local Search (VAPOR)

var set of $E: s, |s| = ¢ <=> int :c | array [l..c] of var $E: local(s);

set of $E: s <=> int:c = |s|, array [l..c] of $E: local(s);

predicate subset (array[S$SR1] of S$SE: t, array[$SR2]of var $E s) <=>
forall (i in $R1) exists (j in SR2) s[j] == t[i];

predicate in($E: e, array[$R] of var S$E:s) =
exists (1 in SR) s[i] == e

predicate partition(list of var array[SR] of $E: sets, set of S$SE: universe) =
forall (e in universe)
sum (i in 1..length(sets); j in $R) holds(sets[i][]] == e) == 1;

maxOverlap(, ,1) <=> true
var int:f = sum [holds(c) | class(“redundant”) :: c 1;
var int:p = sum [holds(c) | ¢ = partition(,)];
. move definition
tabu list definition
search (using f)
debugging check (using p)

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
Mapping to Local Search (VAPOR)

« Variable and Parameter mapping

var set of $E:s, |s| == ¢ <=> int:c | array [l..c] of var $E:1cl(s);

set of SE: s <=> int:c = |s| | array [l..c] of $E: 1lcl(s);

* Predicate mapping

predicate subset (array[SR1] of var SE: s, t) =
forall (i in S$SR1) exists (3 in SR2) s[i] == t[]];

predicate partition(list of var array[SR] of SE: sets,
set of SE: univ) =
forall (e in univ)
sum (i1 in 1..length(sets); Jj in SR) holds(sets[i] [jl==e) == 1;

maxOverlap(, ,1) <=> true

May 4-5 2005 Copyright 2005 National ICT Australia Limited 44

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Mapping to Local Search (VAPOR)

« Defining Penalty Functions

violation(a =< b) <=> var int: a,b | max(0,a - b);
var int:f = sum [violation(c) | class (“redundant”) :: c];
var int:p = sum [holds(c) | ¢ = partition(,)];

* Defining the algorithm

move definition

tabu list definition
search (using f)
debugging check (using p)

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL

The imagination driving Australia’s ICT future. @ O
ICT AUSTRALIA
Cadmium Challenges ©

« Specification: polymorphism, solver communication
— model independent mappings (polymorphism)
— solver communication
— full hybridization

* Rewriting: control, confluence?, interaction with subtypes
« Search: Salsa, Comet, CLP

« Error messages: unmapped constraints, etc

* Reverse mappings?

* The last step

— outputing the format required by an external solver

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Cadmium Status and Challenges

« Status
— many discussions

« Challenges
— Specification:
* model independent mappings (polymorphism)
 solver communication
« full hybridization
— Rewriting: control, confluence?, interaction with subtypes
— Search: Salsa, Comet, CLP
— Error messages: unmapped constraints, etc
— Reverse mappings?
— The last step
» outputing the format required by an external solver

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

« (G12 Project Overview
« Developing Constraint Solutions

+ Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

« Efficient Solutions
— Mercury discussion and hybrid example

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. @

NATIONAL
ICT AUSTRALIA O

» Purely declarative functional/logic programming
language

developed since October 1993 at University of Melbourne
designed for “programming in the large”

strong static typing: Hindley/Milner + type classes with
functional dependencies + existential types

strong static moding (tracking instantiation of arguments)

strong static determinism (number of answers for
predicates/functions)

strong module system
highly efficient, sophisticated compile-time optimizations

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Extending Mercury

* No constraint solving (not even Herbrand)

— added solver types to Mercury
» Dual view of a type

— External view: pure declarative solver variable
— Internal view: data structure representing solver information
— adding solvers to Mercury
» herbrand, bdd_sets, sat (MiniSat), Ip (cplex, clpr), fd

- Hybridization facilities (currently complete methods only)

— essentially attach arbitrary code to solver events
« variable is fixed
* bounds changes
* new cut/nogood generated

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Mercury hybridization experiment

bdd FD solver (JAIR 24)
DPLL based SAT solver (MiniSAT)

inferences

values
>
-
values
failure choices nogood
choices backjumps
Search
Control

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
BDD based solver

. CP2004, JAIR 24 (2005)

« Essentially a finite domain solver
— represents variables by “packages of Boolean variables”
- JCSC{1,234}:1€8S,2€8,3€8,4€S
* 0=x=3:x=0,x=1,x=2,x=3 OR xmod2=1,x>=2
— represents domains as Boolean formulae (ROBDDs)
« D(S)={{1}.{1,34)}:1ES A =(2€S)
— represents constraints as Boolean formulae (ROBDDs)
e |IS|=x:(1€SA2€ESA3ESA-EFES)AXx=3)V ..
* Propagates constraints using Boolean operations
— D’(S) = exists x. D(S) A D(x) A |S] =x
« Highly competitive for finite set solving
— not competitive for finite integer solving

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

SAT DPLL solver (MiniSAT)

 http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

* Dby Niklas Eén, Niklas Sorensson

 DPLL based SAT solver
— watch literals
— 1UIP nogood learning, conflict clause minimization
— (improved) VSIDS dynamic variable order
— incremental
« Winner of silver medals in 2 Industrial and 1 Handmade classes of
SAT 2005

« With preprocessor SatELite winner of gold medals in all 3 Industrial
and 1 Handmade classes

May 4-5 2005 Copy right 2005 National ICT Australia Limited 53

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Hybridizing BDD and MiniSAT

» Variable to variable propagation
— fixed variables in BDD <-> fixed variables in MiniSAT

« Scheduling

— Unit propagation in MiniSAT is one “propagator”

— higher priority than any BDD propagators
* Modelling

— all constraints represented in BDD solver
— NO constraints represented in MiniSAT!

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future. @
Dynamic clausal representation

« Represent inferences of BDD propagators as clauses

— D(S)={{1,2},{1,24}} :1€SA2E€SA-(3€YS)

— D(x)={0,1,2} :: =(x = 3)

— Propagating |S| = x

— Newly inferred propositions
 -(4€398),-(x=0),-(x=1),x=2

— simple inferences
« 1ESA2ESA-(BES)A~(x=3)— ~(4ES)
« 1ESA2ESA-(B3ES)A-(Xx=3)— ~(x=0)

— clausal representation
e = (1€S)v-(2€S)v3eSvx=3v-(4€9)
e = (1€8)v-(2€S)v3eSvx=3v-(x=0)

May 4-5 2005 Copy right 2005 National ICT Australia Limited 55

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Minimal inferences

* A minimal reason for a new proposition p
IS a minimal subset of the reasons that ensure p hold
« Examples
— 1€8A2€8SA-B€8)A~-(x=3)— =(x=0)
— minimal1&€ S — -(x=0)
— 1€8SA2ES8SA-BE8)A-(Xx=3)—>-(4€Y9)
— minimal1eSaAa2€SA-(x=3)—=-(4€39)
 Add minimal clauses
- -(1€8)v -(x=0)
- -(1€8)v-(2€8S)vx=3v-(4€S)
« Efficient BDD operations to determine minimal reasons
— minimal unsatisfiable subset

May 4-5 2005 Copy right 2005 National ICT Australia Limited 56

NATIONAL O

The imagination driving Australia’s ICT future. @
ICT AUSTRALIA
Dynamic clause generation

* Propagation in the BDD solver represents inferences
— Initially D(S) = {{} .. {1,2,3,4}}, D(x) = {0,1,2,3}
— D(S)={{1,2} .. {1,2,4}}, D(x) = {0,1,2}, S| = x
* gives
* D(S) ={{1.2}}, D(x) = {2}
— Simple inference
« 1ESA2ESA-(BES)A =(x=3)— =(x=0)
— Minimal inference
1S —=-(x=0)
« Pass the inferences made to the SAT solver
- = (1€S)v =(x=0)

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Experiments

 Social Golfers Problems

» Versus bounds propagation bdd set solver using a sequential smallest
element is set search strategy (18/20)
— simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)

— minimal inferences:
* justinferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
+ using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time 1/10 - 2
(0.78)

» adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)
» Versus (improved) VSIDS search strategy from miniSAT (20/20)
— miniSAT (16/20): fails 0.95 - 186 (10), time 1/14 - 58 (2.7)
— dual model (20/20): fails 1/12 - 16 (2.3), time 2/3 - 13 (3.0)
— sequential (20/20): fails 1/55 - 13 (0.52), time 1/5 - 10 (0.95)

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL

The imagination driving Australia’s ICT future.
ICT AUSTRALIA O
Experiments

 Social Golfers Problems

* Versus bounds propagation bdd set solver using a
sequential smallest element is set search strategy
(18/20)

— simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 -2 (1.22)
— minimal inferences:

* justinferring (18/20): time 1 - 3 (1.76) (surprisingly low !)

 using inferences in implication graph only (19/20): fails 1/35 - 1
(0.29), time 1/10 - 2 (0.78)

» adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)

May 4-5 2005

Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Experiments

 Social Golfers Problems

* Versus bounds propagation bdd set solver using a sequential
smallest element is set search strategy (18/20)
— simple inferences (18/20): fails 1/2 - 1 (0.70), time 4/5 - 2 (1.22)

— minimal inferences:
 justinferring (18/20): time 1 - 3 (1.76) (surprisingly low !)
 using inferences in implication graph only (19/20): fails 1/35 - 1 (0.29), time
1/10 - 2 (0.78)

» adding clauses (20/20): fails 1/157 - 1 (0.10), time 1/62 - 2 (0.30)
« VSIDS search strategy (20/20)
— versus miniSAT (16/20): fails 1/186 - 1.05 (0.10), time 1/58 - 14 (0.37)
— versus dual model (20/20): fails 1/16 - 12 (0.44), time 1/13 - 3/2 (0.33)
— versus sequential (20/20): fails 1/13 - 55 (1.9), time 1/10 - 5 (1.05)

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL

The imagination driving Australia’s ICT future. @ O
ICT AUSTRALIA
What does it mean?

« Conflict directed backjumping in another guise?

 Related work
— PalM, E-constraints: uses decision cuts not 1-UIP

— Katsirelos and Bacchus CP2003: only forward checking,
(appear to) only use FC inferences in implication graph

« finite domain propagation = clausal cut generation?

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
Outline

« (G12 Project Overview
« Developing Constraint Solutions

+ Solver Independent Modelling
— Zinc example and features

 Mapping models to algorithms
— Cadmium mapping tentative examples

 Efficient Solutions
— Mercury discussion

« Concluding Remarks

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL O

The imagination driving Australia’s ICT future.
ICT AUSTRALIA
G12 Progress

e Zinc

— Language design v
— Type checker v
— Starting compiler

V

e Cadmium

* Mercury A

— building new solvers:|fd, generic propagation structures, value

propagation
— integrate solvers: bdd_sets, minigat, CPLEX v
— solver types v

May 4-5 2005 Copy right 2005 National ICT Australia Limited 63

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

Other Aspects of the G12 Project

* Logical Transformations (Zinc2Zinc): dualization, etc
* Robust solutions: insensitive to change in parameters
« Search

« Master-subproblem decompositions: Benders,
Lagrangian relaxation, column generation

* Population search: evolutionary algorithms
« Solver visualization

« Default mappings

* Online optimization

 Scripting

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL

The imagination driving Australia’s ICT future.
ICT AUSTRALIA O
Conclusion

« (G12is an ambitious project aiming to provide
— Solver independent modelling

— Model independent mappings from conceptual to design models
— Easy experimentation of hybrid approaches
— A good environment for exploring design models

« We have only just begun!
* The holy grall

— Default mappings are good enough: only conceptual model

May 4-5 2005 Copy right 2005 National ICT Australia Limited

NATIONAL

The imagination driving Australia’s ICT future.
ICT AUSTRALIA O
Advertisement

« Constraint Programming positions available

— see http://nicta.com.au/jobs.html

— positions in Melbourne (Network Information Processing) and
Sydney (Knowledge Representation and Reasoning)

« (12 postgraduates needed

— apply to University of Melbourne or University of New South
Wales

+ G12 visitors welcome
— are you interested in some of the things discussed here?

May 4-5 2005 Copy right 2005 National ICT Australia Limited

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

END

The imagination driving Australia’s ICT future. NATIONAL O
ICT AUSTRALIA

May 4-5 2005 Copyright 2005 National ICT Australia Limited

