NICTA Victoria Laboratories
 Department of Computer Science and Software Engineering
 The University of Melbourne 433-637 Constraint Programming
 Second Semester, 2010

 Linear Programming

 Linear Programming}

1 Gauss-Jordan Eliminaton

Solve the following system of linear equations by Gauss-Jordan elimination

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
3 x_{2}+x_{3} & =6 \\
x_{1} & =x_{4}
\end{aligned}=0
$$

Write down an example soluton.

2 Standard Form

Put the following system of linear inequalities in standard form:

x_{1}	$+x_{2}$	$+x_{3}$	\leq
x_{1}			4
		x_{3}	\leq
	$-3 x_{2}$	$-x_{3}$	≥-6
x_{1}			\geq
	x_{2}		\geq
		x_{3}	≥ 0

3 Pivoting

Consider the tableau represented below (where all variables are non-negative):

$$
\begin{array}{rrrrrr}
z & = & -34 & +x_{1} & +14 x_{2} & +6 x_{3} \\
\hline x_{4} & = & 4 & -x_{1} & -x_{2} & -x_{3} \\
x_{5} & = & 2 & -x_{1} & & \\
x_{6} & = & 3 & & & -x_{3} \\
x_{7} & = & 6 & & -3 x_{2} & -x_{3}
\end{array}
$$

perform pivots to find the maximal value of objective function z. If you choose the earliest entry variable you can avoid fractions until the last couple of steps!

4 Two Phase Simplex

Solve the problem (where all variables are non-negative):

$$
\begin{array}{rrrrll}
\operatorname{maximize} & -3 x_{1} & -2 x_{2} & +x_{3} & \\
\text { subject to } & & & & & \\
& x_{1} & +x_{2} & & & =3 \\
& -x_{1} & -3 x_{2} & +2 x_{3} & +x_{4} & =1
\end{array}
$$

You should first introduce artificial variables and find a basic feasible solution. Once you have this remove the artificial variables and solve by pivoting. Give an optimal solution.

5 Corner Cases

Consider the tableau represented below (where all variables are non-negative):
$\left.\begin{array}{rrrrr}z & = & 12 & +x_{1} & -x_{2}\end{array}\right)-x_{3}$.

What is the result of the the simplex algorithm. What is the maximal value of objective function z.

6 Standard Form Again

Put the following problem in standard form

$$
\begin{array}{rcccc}
\operatorname{minimize} & 2 x_{1} & -2 x_{2} & & \\
\text { subject to } & & & & \\
& x_{1} & +x_{2} & & =3 \\
& x_{1} & & & \geq \\
& & x_{2} & & \geq-1 \\
& & & x_{3} & \geq
\end{array}
$$

where the variables are not necessarily non-negative.

