NICTA VICTORIA LABORATORIES DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING THE UNIVERSITY OF MELBOURNE 433-637 CONSTRAINT PROGRAMMING SECOND SEMESTER, 2010

Linear Programming

1 Gauss-Jordan Eliminaton

Solve the following system of linear equations by Gauss-Jordan elimination

x_1	$+x_2$	$+x_{3}$		=	2
	$3x_2$	$+x_{3}$		=	6
x_1			$-x_4$	=	0
$2x_1$	$-2x_{2}$	$-2x_{3}$	$+2x_{4}$	=	8

Write down an example soluton.

2 Standard Form

Put the following system of linear inequalities in standard form:

3 Pivoting

Consider the tableau represented below (where all variables are non-negative):

z	=	-34	$+x_1$	$+14x_{2}$	$+6x_{3}$
x_4	=	4	$-x_1$	$-x_{2}$	$-x_3$
x_5	=	2	$-x_1$		
x_6	=	3			$-x_{3}$
x_7	=	6		$-3x_{2}$	$-x_{3}$

perform pivots to find the maximal value of objective function z. If you choose the earliest entry variable you can avoid fractions until the last couple of steps!

4 Two Phase Simplex

Solve the problem (where all variables are non-negative):

maximize
$$-3x_1 -2x_2 +x_3$$

subject to
 $x_1 +x_2 = 3$
 $-x_1 -3x_2 +2x_3 +x_4 = 1$

You should first introduce artificial variables and find a basic feasible solution. Once you have this remove the artificial variables and solve by pivoting. Give an optimal solution.

5 Corner Cases

Consider the tableau represented below (where all variables are non-negative):

z	=	12	$+x_{1}$	$-x_{2}$	$-x_{3}$
x_4	=	0	$+2x_{1}$	$-x_{2}$	$-x_{3}$
x_5	=	1	$+x_1$	$+2x_{2}$	$-2x_{3}$
x_6	=	3		$-x_2$	$+x_{3}$
x_7	=	1		$3x_2$	$-x_3$

What is the result of the the simplex algorithm. What is the maximal value of objective function z.

6 Standard Form Again

Put the following problem in standard form

minimize	$2x_1$	$-2x_{2}$			
subject to					
	x_1	$+x_2$		=	3
	x_1			\geq	3
		x_2		\geq	-1
			x_3	\geq	0
	x_1	$-x_2$	$+x_{3}$	\leq	6

where the variables are not necessarily non-negative.