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Question 1 [11 marks]

The small sudoko problem is played on a 4 × 4 grid rather than a 9 × 9 grid. Each row
and column and sublock of 4 is required to contain exactly the numbers 1 to 4.

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

(a) Define a SICStus Prolog clpfd model for the small sudoko problem using the pred-
icate smallsudoko/1, which defines the constraints of the small sudoko problem.
The argument to this predicate should be a representation of the answer to the
small sudoko board. [3 marks].

(b) Discuss the possible complex constraints that could be used in your model. Give an
illustration of a partially filled board such that one model could make an inference,
where another model could not. [3 marks].

(c) Given the following basic feasible solved form, show the result of a single pivot
moving towards the optimal solution:

minimize 0 + 0.5C − 0.5E subject to
B = 3 − 0.5C − 0.5E ∧
D = 2 − E ∧
A = 4 − E ∧
A,B, C, D, E ≥ 0

[3 marks].

(d) Explain the role of a simplifier simpl(C, V ) in constraint logic programs. Give some
desired properties of a simplifier. [2 marks].

Question 2 [13 marks]

(a) Explain how a solver that maintains node, arc and hyper-arc (or domain) consistency
will treat the constraint

B 6= C ∧ 2A = 3C ∧A ≥ 1 ∧B ≤ 4 ∧B ≥ A + 1

given the initial domains are [0..10]. Give domains for A, B, and C after any changes,
and explain why the change was made. [4 marks].
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(b) Explain how a solver that maintains bounds consistency will treat the constraint

B 6= C ∧ 2A = 3C ∧A ≥ 1 ∧B ≤ 4 ∧B ≥ A + 1

given the initial domains are [0..10]. Give domains for A, B, and C after any changes,
and explain why the change was made. [4 marks].

(c) Give bounds propagation rules for the primitive constraint

X × Y = Z

where X,Y and Z take integer values. Give an example domain where the prop-
agation rules for this constraint make no changes, but the resulting domain is not
hyper-arc (equivalently domain) consistent. [3 marks].

(d) Discuss the advantages and disadvantages of bounds consistency versus hyper-arc
(equivalently domain) consistency. [2 marks].

(e) Singleton consistency works by, for each variable and each possible value in its
domain, setting the variable to that value and seeing if the solver detects failure. If
it does then the value is clearly impossible and can be removed from the domain
of the variable. Give an example of unary and/or binary constraints and variables
with domains where singleton consistency will remove a value not removed by arc
and node consistency. Using unsafe negation not (not (...)) give SICStus Prolog
clpfd code for predicate sing(V) to perform singleton consistency on a variable V .
Assume that getDomain(V,L) returns the current domain of variable V as a list L.
[4 marks].

Question 3 [14 marks]

The following SICStus Prolog clpr program is meant to define a predicate mdist(X1,Y1,X2,Y2,D)
where D is the Manhattan distance from (X1, Y 1) to (X2, Y 2).

abs(X,Y) :- ({X >= 0} -> {Y = X} ; {Y = -X}).

mdist(X1,Y1,X2,Y2,D) :-
{DX = X1 - X2, DY = Y1 - Y2},
abs(DX,AX),
abs(DY,AY),
{ D = AX + AY }.

(a) Give a non-simplified successful derivation for abs(-2,E). [2 marks].

(b) Give a simplified successful derivation for mdist(A,0,2,2,D). [3 marks.]

(c) The goal mdist(A,0,-2,2,D), {A =< -3} finitely fails when it should succeed.
Modify the program so that it correctly succeeds. Ensure that all successful deriva-
tions for the original version are still successful in the new version. [3 marks].
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(d) Give as strong as possible solver redundant constraints that can be placed before
the call abs(A,B) which may cause failure earlier. [2 marks].

The following code can be used to define predicates for sequences using lists:

nonempty([ | ]).

concat([], Y, Y).
concat([A|X], Y, [A|Z]) :- concat(X,Y,Z).

The predicate nonempty(L) constrains L to be a nonempty sequence. The predicate
concat(L1,L2,L3) constrains L3 to be the concatentation of L1 and L2.

(e) The goal nonempty(L1), concat(L1,L2,L), L = [] fails as expected, but nonempty(L2),
concat(L1,L2,L), L = [] does not fail as expected. Explain why? [2 marks].

(f) Using dynamic scheduling we can ensure that both these goals fail. Give a simplified
derivation tree for the second goal, using a dynamic literal selection strategy that is
finitely failed. [2 marks].

Question 4 [15 marks]

A sheet metal workshop cuts pieces of sheet metal from large sheets of 480 cm x 960 cm.
It has received the following order for an amount: it needs to supply 8 pieces of 360 cm
x 500 cm, 13 pieces of 240 cm x 360 cm, and 5 pieces of 200 cm x 600 cm.

Amount dim 1 dim 2
8 360 500
13 240 360
5 200 600

There are only a small number of combinations of cuts from the large sheet that are
efficient for the pieces. The different patterns determine how many copies of each pieces
can be cut from a single sheet.

Pattern P1 P2 P3 P4
360 x 500 1 0 0 0
240 x 360 2 2 3 5
200 x 600 0 2 1 0

The different patterns are illustrated in Figure 1.

The aim is to minimize the number of large sheets required to fill the order.
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P1 P2

P3 P4

Figure 1: 4 different patterns for cutting the required pieces.

(a) Write a mathematical model of the problem to determine the best cutting strategy
to fill the order. Explain the meaning of each problem variable. [3 marks].

(b) Give a SICStus Prolog clpfd goal that will find the optimal cutting strategy for the
example problem. [2 marks].

(c) Give a data independent version of the mathematical model where the set of patterns
and the set of ordered pieces are given as input. [1 mark].

(d) Give a SICStus Prolog clpfd program defining the predicate sheet(Os,Ps,Ns)
which takes as input the list Os of orders of different pieces, the list Ps of pattern
descriptions (each a list of the number of each piece in the patter), and returns Ns
the numbers of each pattern used to make the optimal order. For example the goal

sheet([8,13,5],[[1,2,0],[0,2,2],[0,3,1],[0,5,0]],Ns).

asks the example sheet cutting problem above. The goal might return Ns =
[8, 2, 1, 0]. You can make use of the following predicate definition delfirstcol
which breaks a list of lists into the list of the first elements, and the list of the rest
of the lists.

delfirstcol([],[],[]).
delfirstcol([[A]|T], [A|R], []):-

delfirstcol(T, R, []).
delfirstcol([[A | B] | T], [A | R], [B | T1]):-

delfirstcol(T, R, T1).
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For example delfirstcol([[2,7,6],[9,5,1],[4,3,8]], F, R) returns F = [2,9,4],
R = [[7,6],[5,1],[3,8]]. [7 marks].

(e) Which constraint solver: an integer linear programming solver or finite domain prop-
agation solver would be best to tackle your model. Justify your choice. [2 marks].

Question 5 [13 marks]

A simple constraint domain D over a Booleans, where we use 1 = true and 0 = false,
only allows the following set of primitive constraints: A (A is true), ¬A (A is false) and
C = (A → B) (C is equivalent to A → B), where each of A, B and C are Boolean
variables.

An example constraint is A∧ (C = (A → B))∧C. A valuation in D is a solution if under
the valuation each primitive constraint is satisfied. A solution for the example constraint
is {A 7→ 1, B 7→ 1, C 7→ 1}.

(a) Give a solution of each of the following constraints if one exists, or state it is unsat-
isfiable.

(i) (C = (A → B)) ∧ (C = (B → A)) ∧ C ∧ ¬A
(ii) (C = (A → B)) ∧ (D = (C → E)) ∧ ¬A ∧ (F = (E → D)) ∧ ¬F

[2 marks].

(b) Give a constraint in D which is equivalent to (i) B = ¬A (B is the negation of A)
and (ii) C = (A∧B) (C is the conjunction of A and B). You need to use additional
variables. [2 marks].

(c) A specialised propagation based solver for these constraints keeps track of the vari-
ables that are forced to be true and false, and propagates through the complex con-
straints C = (A → B). Define in psuedo-code the propagation function prop(c, L)
which takes a single constraint c of the form C = (A → B) and a set of literals
L defining the variables known to be true and false, and returns the new set of
literals known to be true and false. Ensure that it captures all possible (correct)
propagations. [3 marks].

(d) Assuming the function prop defined in the previous part, give psuedo-code for a
correct (incomplete) solver solv(c) which takes a conjunction of primitive constraints
in D. [3 marks].

(e) Explain how you could use finite domain variables in SICStus to represent the con-
straints in D. Give SICStus Prolog clpfd goals representing the constraints in a(i)
and a(ii). Give the expected answer from each goal. [3 marks].
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