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Abstract
Classical planning is concerned with problems
where a goal needs to be reached from a known
initial state by doing actions with deterministic,
known effects. Classical planners, however, deal
only with classical problems that can be expressed
in declarative planning languages such as STRIPS
or PDDL. This prevents their use on problems that
are not easy to model declaratively or whose dy-
namics are given via simulations. Simulators do not
provide a declarative representation of actions, but
simply return successor states. The question we ad-
dress in this paper is: can a planner that has access
to the structure of states and goals only, approach
the performance of planners that also have access to
the structure of actions expressed in PDDL? To an-
swer this, we develop domain-independent, black
box planning algorithms that completely ignore ac-
tion structure, and show that they match the per-
formance of state-of-the-art classical planners on
the standard planning benchmarks. Effective black
box algorithms open up new possibilities for mod-
eling and for expressing control knowledge, which
we also illustrate.

1 Introduction
Planning is a key component of human intelligence [Selig-
man et al., 2016] and one of the key areas of artificial intelli-
gence since its beginnings [Newell and Simon, 1963]. Plan-
ning is normally conceived as “thinking before acting”, and
in AI, as the model-based approach to intelligent behavior,
where model predictions are used to figure out what to do
next [Geffner and Bonet, 2013]. Models come in a variety of
forms, from classical to temporal and POMDP models, but
what is common to most planners is that the models are de-
scribed compactly using declarative languages [Nilsson and
Fikes, 1971; McDermott, 2000]. Planning languages serve
two roles: on the one hand, they are general so that differ-
ent types of problems and domains can be fed into planners,
on the other, they reveal problem structure that can be ex-
ploited computationally. Indeed, the planners that address the
simplest (classical) planning models and scale up best all ex-
ploit in some way the problem structure encoded in action

preconditions, effects, and goals. This includes from the first
means-end and partial-order planners [Newell and Simon,
1963; Tate, 1977; Nilsson, 1980] to the latest SAT, OBDD,
and heuristic search planners [Kautz and Selman, 1996;
Edelkamp and Kissmann, 2009; Richter and Westphal, 2010;
Rintanen, 2012]. The focus on standard, declarative planning
languages has resulted in a dramatic progress in scalability,
but has a downside too: some problems are not easy to model,
and the runtime of planners is often very sensitive to the en-
codings. Moreover, there are many simulators available, that
in many cases describe classical planning models (given ini-
tial state, deterministic actions, and reachability goals), but
classical planners cannot be used for planning in them. These
include simulators for the Atari video games [Bellemare et
al., 2013], the games of the General Video Game competi-
tion [Perez-Liebana et al., 2016], Minecraft [Johnson et al.,
2016], and Universe [OpenAI, 2016].

Domain-independent planners able to plan with simulators
rather than planning languages would be a key addition to
the planning toolbox while broadening the scope of planners.
Such planners would be insensitive to the syntax of action de-
scriptions, since they would not see such descriptions at all.
Indeed, the result of applying an action to a state can be ob-
tained from declarative descriptions or procedures, whatever
is more convenient, reducing the challenge of modeling. The
key question we pose is: is it possible to achieve the goal of
planning with simulations while retaining the scalability of
planners that make use of factored action representations? In
other words, can a domain-independent planner that has ac-
cess to the structure of states and goals only, approach the
performance of planners that have also access to the struc-
ture of actions? To address this question, we develop plan-
ning algorithms that have no access to the structure of actions
and compare them with state-of-the-art planners over stan-
dard planning benchmarks.

The paper is organized as follows. We review state models
and classical planners, introduce factored state models, for-
mulate and test the black box planning algorithms, and dis-
cuss the results and implications.

2 State Models and Classical Planners
A classical planning model S = 〈S, s0, SG, Act, A, f , c〉 is
made up of a set of states S, the initial state s0 ∈ S, the set of
goal states SG ⊆ S, the set of actionsAct, the subsetsA(s) of



actions applicable in state s, the transition function f , where
f(a, s) represents the state s′ that results from doing action a
in state s, and the cost function c, where c(a, s) is the cost of
applying a in s. The solution to a classical planning model
S, or plan, is a sequence of actions that maps the initial state
into a goal state, i.e., π = 〈a0, . . . , an〉 is a plan if there is
a sequence of states s0, . . . , sn+1 such that ai ∈ A(si) and
si+1 = f(ai, si) for i = 0, . . . , n, and sn+1 ∈ SG. The cost
of plan π is given by the sum of action costs c(ai, si), and
a plan is optimal if there is no plan with smaller cost. The
classical planning model is the vanilla planning model, and
differs from other models like temporal, conformant, contin-
gent or POMDP models in its lack of uncertainty and sensing,
and its focus on plans as action sequences.

A classical planner is a program whose input is a compact
representation of a classical planning model S and whose
output is a plan. Compact representations are expressed in
a declarative planning language such as STRIPS or PDDL
[McDermott, 2000]. The planning language provides a way
to represent problems over completely different domains and
reveals problem structure. For example, heuristic estimators
[McDermott, 1999; Bonet and Geffner, 2001b], “helpful” ac-
tions [Hoffmann and Nebel, 2001], and landmarks [Hoff-
mann et al., 2004], all key techniques in modern planners
such as LAMA [Richter and Westphal, 2010], are derived
from the “delete-relaxation” of the compact problem repre-
sentation but cannot be derived from the underlying planning
model alone. The same holds for other planning techniques
such as SAT, OBDD, and partial-order planning. Despite
the PSPACE-completeness of the classical planning prob-
lem [Bylander, 1994], modern planners have been shown to
scale up to problems that define huge state spaces.

3 Factored State Models and Simulators
Purely declarative planning languages are not the only way
to represent classical planning models in compact form. In-
deed, state models S = 〈S, s0, SG, Act, A, f , c〉 can also
be represented in general by using state variables and by en-
coding the functions A(s), f(a, s), and c(a, s) as black box
procedures. Such a representation of actions has been seldom
used in domain-independent planning, and in what follows
we address the question of whether effective, general plan-
ning methods can be developed for it.

For this, we define a factored state model as a tuple F =
〈V ,D, s0,G,Act,A, f , c〉where V is a set of variablesX ,D
represents the domains DX of the variables X ∈ V , s0 is an
assignment to the variables compatible with their domains, G
is a set (conjunction) of goal conditions expressed as Boolean
functions of V , Act is a set of actions, and A : S 7→ 2Act,
f : A × S 7→ S, and c : S → R are functions encoded as
procedures that represent the set of actions applicable in each
state, the state successor function, and the cost function. The
tuple F provides a compact representation of the state model
S = 〈S, s0, SG, Act, A, f, c〉 where S is the set of variable
assignments compatible with their domains, and SG is the
set of assignments satisfying each goal condition in G. The
goal conditions in G do not have to be atoms of the form
X = x, but can be arbitrary procedures mapping states into

Booleans.
A problem in STRIPS is a tuple P = 〈F , I , G, O〉 where

F is a set of atoms, I represents the set of atoms that are
true initially, G the set (conjunction) of atoms to be made
true, and O is the of operators characterized by three sets of
atoms: the precondition list, the add list, and the delete list. A
STRIPS problem can be easily converted into a factored state
model F = 〈V,D, s0, G,Act, A, f, c〉. For this, V = F , all
domains in D are Boolean, s0 is determined by I , Act =
O, c(a, s) = 1, and the action applicability and successor
state functions A and f are derived in linear time from the
information in action preconditions and effects. This simple
and polynomial translation is not bidirectional.

In what follows, a simulator will be a factored state model
F = 〈V,D, s0, G,Act, A, f, c〉 where the functions A, f and
c are given by black box procedures. The focus on black box
methods that plan with simulators does not mean that these
functions cannot be described declaratively or through hy-
brids involving procedures, but rather that simulation-based
planning algorithms make no assumption about the form of
such descriptions.

4 Width-based Search
The methods developed for planning in simulated environ-
ments like ALE and GVG-AI are based mainly on blind and
heuristic search, Monte Carlo Tree Search (MCTS), width-
based search, and hybrids of these [Bellemare et al., 2013;
Perez-Liebana et al., 2016; Soemers et al., 2016]. Blind
search methods can be applied directly to factored state mod-
els that just encode weighted directed graphs in compact
form. Heuristic search methods, on the other hand, require
heuristics, which are not easy to derive from simulations.
MCTS methods potentially combine the benefits of blind and
heuristic search: they can be used off-the-shelf as the former,
but scale up better as value functions akin to heuristic func-
tions are incrementally learned and used to guide the search.
Usually, however, MCTS performs this bootstrapping slowly
when rewards are sparse and there is no domain-dependent
knowledge in the form of informed base policies. This ex-
plains why MCTS is not used in classical planning.

Width-based methods have been used both in simulated
environments like ALE and GVG-AI and in classical plan-
ning [Lipovetzky and Geffner, 2012; Lipovetzky et al., 2015;
Geffner and Geffner, 2015; Shleyfman et al., 2016; Jinnai
and Fukunaga, 2017]. The most basic width-based search
method is IW(k), a breadth-first procedure that prunes states
with novelty greater than k, and which runs in time and space
that are exponential in k (unlike breadth-first search, which
is exponential in the number of variables). The novelty w(s)
of a state in the search is given by the size of the smallest
subset (conjunction) Q of atoms X = x such that Q is true
in s (i.e., all atoms in Q are true in s) and false in all the
states of the search generated before s. For repeated states s,
w(s) is set to |V | + 1. Interestingly, IW(k) with k = 2 has
been shown to find plans over many of the planning bench-
mark domains when the goal features a single atom. In turn,
the procedure Serialized IW (SIW), that calls IW(k) sequen-
tially with k = 1, 2, 3, for achieving joint goals incrementally,



one by one, has been shown to be competitive with a simple
baseline heuristic search planner guided by state-of-the-art
heuristics [Lipovetzky and Geffner, 2012]. Unlike heuristic
search planners, SIW can work directly with simulators, but
its performance on classical benchmarks does not compare
well with the best planners that use other techniques as well.

5 Classical Planning with BFWS(f )
Recently, state-of-the-art performance over classical bench-
marks has been achieved by combining width and heuris-
tic search [Lipovetzky and Geffner, 2017]. Best-first width-
based search is a standard best-first search that uses nov-
elty measures to rank the nodes in OPEN. The novelty w(s)
of a newly generated state s given the functions h1, . . . , hn
is defined as the size of the smallest set (conjunction) of
atoms that is true in s but false in all the states s′ gener-
ated before s that have the same hi values, i.e., such that
hi(s) = hi(s

′) for i = 1, . . . , n. This novelty measure is
also written as w〈h1,...,hn〉. The best monolithic BFWS plan-
ner in [Lipovetzky and Geffner, 2017] is BFWS(f5), which
uses w = w〈#g,#r〉, where #g(s) counts how many atomic
goals in G are not true in s, and #r(s) is a subtler counter
that has to do with potential subgoals that are not explicit in
G. More precisely, when a state s is generated that achieves
more goals than its parent sp, i.e., #g(s) < #g(sp), a set
of atoms R(s) is computed such that, for any descendant s′
of s reached from s through states that do not achieve more
goals than s, #r(s′) is the number of atoms in R(s) that are
made true at some point in the way from s to s′. For example,
if R(s) is defined as a set of landmarks, then #r(s′) would
count the number of those landmarks in R(s) achieved in the
way from s to s′, even if they do not hold in s′ anymore.
In BFWS(f5), R(s) is not defined as a set of landmarks but
as the set of atoms determined by a relaxed plan π(s) com-
puted from s [Hoffmann and Nebel, 2001]; i.e., R(s) con-
tains the preconditions and positive effects of the actions in
π(s). Ties in BFWS(f5) are broken using the #g counter
first (nodes with minimum #g preferred), and the accumu-
lated cost to the node, second (cheaper nodes preferred). The
algorithm BFWS(f5) solves as many problems of the 2014
Int. Planning Competition (IPC) as the best planners LAMA,
Mercury [Katz and Hoffmann, 2014], and Jasper [Xie et al.,
2014]. The general algorithm BFWS(R) below is BFWS(f5)
but with different sets R(s).

6 Simulation Planning with BFWS(R)
The BFWS(f5) algorithm is a state-of-the-art method for
classical planning, yet it cannot be applied to simulations.
This is because the computation of the sets of atoms R(s)
used in the definition of the #r counter relies on the delete-
relaxation of the problem, which is not available from sim-
ulations. In order to have an algorithm that can plan with
the black box functions A(s) and f(a, s) (action costs are as-
sumed to be 1), we generalize the BFWS(f5) procedure into
a family of search algorithms, called BFWS(R), that differ
from BFWS(f5) in the way that the sets of atomsR(s) are de-
fined and computed. Thus, BFWS(R) is a best-first search al-
gorithm with a primary evaluation function given by novelty

measures w〈#r,#g〉, breaking ties using the #g counter and
accumulated costs. The BFWS(f5) algorithm is BFWS(R)
with R(s) defined as the set of atoms in a relaxed plan com-
puted from the state s, which we will denote asRX(s). Other
methods for defining and computing R(s) are explored be-
low, most of which do not require declarative action descrip-
tions. Moreover, we focus only on methods that define and
compute the set R once from the initial state s0 and then fix
R(s) to R(s0) for any other state s where the set R is re-
quired. This is because the computation of such sets, while
polynomial, can be expensive.

The intuition behind the BFWS(R) search schema, where
R is a fixed set of atoms precomputed from the initial state, is
thatR represents a set of “potential subgoals” that, along with
the given goals G, partitions the search nodes into classes
associated with different “subproblems”; namely, the set of
nodes that satisfy the same subset of goals from G and have
reached the same set of subgoals from R. In each subprob-
lem, the aim is to reach another goal or another potential sub-
goal that can eventually lead to another goal, ideally, by ex-
panding novelty-1 nodes only (of which there is a linear num-
ber). Yet, since the number of such subproblems is exponen-
tial in the sizes of G and R, subproblems with the same num-
ber of goals and subgoals #g and #r are merged together.
This is indeed what the novelty measure w〈#r,#g〉 used in
BFWS(R) does.1 In particular, a novelty measure of 1 for a
state s means that s is the first state in the search that makes
some atom p true, among the states s′ generated so far that
belong to the same “subproblem” as s, namely, that have the
same #g and #r counts. The result is that the total number of
subproblems is given by |G| × |R|, and hence the maximum
number of states that can have novelty k is |G| × |R| × |F |k,
where |F | is the number of problem atoms.

The choices of the setsR of atoms in the general algorithm
BFWS(R) that we consider are all fixed, in the sense that each
is computed once from the initial state s0 as a polynomial
form of preprocessing from the simulation, so that for any
state s where the set R(s) is required, R(s) = R(s0). The
different sets R that we consider are:

• R0 is the empty set. For this set, #r(s) = 0 for all s,

• RA is the set of all atoms; i.e., RA = F ,

• R[k] is the set of atoms that are true in the states that are
reachable from s0 by running IW(k), k ∈ {1, 2},
• RG is a goal-oriented version of the R[k] sets obtained

from the plans for the individual goals computed by
IW(1) and IW(2) from s0, if any,

• R∗G is a variant of RG that skips the IW(2) computation
when the number of ground actions is too large, and

• RX is the union of the preconditions and positive effects
of the actions in a relaxed plan computed from s0. This
set cannot be computed from simulations and is included
only as a baseline.

The exact definition of RG is as follows. The procedure
IW(1) is run from s0; if that single invocation of IW(1) finds

1A related discussion can be found in [Lipovetzky, 2014].



PDDL Planners Simulation Planner
FF∗ LAMA-11 BFWS(f5) BFWS(R∗G)

C L T Exp C L T Exp C L T Exp C L T Exp
Barman (20) 11 195 1K 5M 19 219 20 42K 20 174 21 107K 9 226 369 1M
Caved. (20) 7 23 71 1M 7 23 117 1M 7 24 0 8K 7 24 3 44K
Childs.† (20) 7 65 391 278K 5 69 3 2K 2 50 372 406K 5 57 176 59K
CityCar (20) 11 39 3 11K 5 36 631 1M 5 29 153 222K 19 30 57 27K
Floort.† (20) 2 38 5 169K 2 39 21 246K 2 42 5 73K 0 - - -
GED† (20) 0 - - - 20 135 4 3K 18 126 29 17K 20 133 10 8K
Hiking (20) 20 58 3 26K 18 54 284 36K 16 51 150 176K 7 64 246 174K
Maint.† (20) 10 116 3 16K 0 - - - 16 86 38 86 16 85 94 1K
Openst.† (20) 0 - - - 20 892 31 892 20 840 262 65K 14 780 1K 123K
Parking (20) 13 97 433 18K 20 105 114 2K 20 105 205 3K 20 106 397 44K
Tetris (20) 10 61 412 76K 10 60 615 59K 11 70 152 9K 20 61 158 5K
Thought. (20) 10 72 24 190K 16 76 2 673 17 72 3 5K 20 70 19 8.0K
Transp. (20) 4 325 147 15K 12 233 58 6K 20 240 6 39K 20 234 141 43K
Visitall† (20) 0 - - - 20 4K 212 21K 20 3K 52 4K 20 3K 10 3K
Elevat.† (20) 0 - - - 20 229 145 19K 20 247 20 35K 18 334 516 51K
Nomyst. (20) 9 29 234 1M 11 28 0 929 14 30 3 43K 13 30 63 76K
Pegsol (20) 20 31 4 97K 20 33 2 18K 20 29 109 785K 20 29 5 123K
Scanal. (20) 20 50 19 595 20 42 25 508 20 40 5 342 20 40 6 429
Sokob. (20) 18 231 34 487K 19 240 122 817K 15 195 122 2M 14 178 322 5M

All (380) 172 0.94 0.60 0.59 264 0.92 0.51 0.35 283 0.87 0.27 0.35 282 0.89 0.48 0.45

Table 1: Performance of PDDL Planners vs. Best Simulation Planner. Coverage (C), avg. plan length (L), avg. runtime in sec. (T), and avg.
number of expanded nodes (Exp). Averages computed over instances solved by all planners, except in domains marked with †, where there
are less than three commonly-solved instances. Times are total and include preprocessing. Best coverage in bold. Last row shows aggregated
coverage and, for L, T and Exp, the avg. of normalized values computed for each planner over all domains, except those marked with †,
where an L, T, and Exp value x is normalized by dividing it by the maximum value of that attribute over all planners (i.e., lower is better).

plans that reach each one of the individual problem goals,2
then RG is set to the collection of atoms made true by such
plans. If, on the contrary, IW(1) does not return a plan for
some goal, then IW(2) is run from s0. If IW(2) finds plans
for each of the problem goals, RG is set to the collection of
atoms made true by such plans. Last, if neither IW(1) nor
IW(2) reach each of the problem goals, RG is set to RA; i.e.,
the collection of all atoms. This definition takes advantage
of the fact that the width of many standard domains when the
goals are atomic is often 1 or 2, meaning that IW(1) or IW(2)
will find plans for them in low polynomial time [Lipovetzky
and Geffner, 2012]. The requirement that IW(1) and IW(2)
reach all of the goals in order to consider the atoms appearing
in state trajectories reaching a goal is there just to keep things
simple. Indeed, one could consider the atoms in such trajec-
tories even if, say, 10% of the goals are not reached. Also
for simplicity, when each of the problem goals is reached by
IW(1) or IW(2) through more than one plan, we collect inRG

the atoms made true by only the first plan found for each goal,
discarding all the others, which in principle could also yield
useful information.

The definition of RG is reminiscent of the use of relaxed
plans in PDDL planning. Indeed, the union of the plans found
by IW(k) that reach each of the individual problem goals is a
plan for a problem relaxation which is tighter than the stan-
dard delete-relaxation: whereas the relaxed plan for a goal

2Notice that finding plans that reach each of the goals individu-
ally is different than finding plans that reach all goals jointly.

G1 ∧ . . .∧Gn in the delete-relaxation is the union of relaxed
plans for each of the Gi goals, the relaxed plans computed by
IW(k) are made up of actual plans for each Gi. The down-
side of this is that IW(k) will not deliver any individual plan
if the width of the atomic goals Gi is higher than k, and that
even IW(3), while polynomial, can be expensive [Lipovetzky
and Geffner, 2012].

The setR∗G is defined exactly as the setRG except for prob-
lems involving too many ground actions (> 40, 000), where
running IW(2) becomes too expensive. For such problems,
R∗G is set to RG when the IW(1) run reaches all of the prob-
lem goals, but when not, the IW(2) computation is skipped
and R∗G is set directly to the collection of all atoms RA.

Notice that the first three R options, R0, RA and R[k], are
independent of the problem goal, while the last three, RG,
R∗G, and RX , are all goal-oriented, with RX being the only
option that assumes knowledge of action preconditions and
effects. For the other R sets, BFWS(R) is a simulation-based
planning method.

7 Experimental Results
The performance of the simulation-based planning algorithm
BFWS(R) for different R’s is shown in Tables 1 and 2.
The first table compares the top-performing R, R∗G, against
two state-of-the-art PDDL planners, LAMA, and BFWS(f5),
and a version FF∗ of the FF planner [Hoffmann and Nebel,
2001] that is supported in the Fast Downward planner, where
FF’s heuristic is used to drive a best-first search with two



BFWS(RX) BFWS(R0) BFWS(RA) BFWS(R[1]) BFWS(RG)

C L T Exp C L T Exp C L T Exp C L T Exp C L T Exp
Barman† 6 161 759 7M 0 - - - 8 245 75 319K 16 271 109 342K 9 237 391 1M
Caved. 7 23 6 265K 7 23 8 141K 7 26 6 79K 7 23 6 91K 7 24 3 44K
Childs.† 0 - - - 0 - - - 7 54 364 141K 8 56 345 196K 5 57 181 59K
CityCar 4 28 86 184K 15 26 37 35K 5 28 253 488K 5 26 176 176K 18 27 57 28K
Floort.† 1 42 578 14M 0 - - - 0 - - - 0 - - - 0 - - -
GED 20 148 39 269K 20 122 17 13K 20 126 5 8K 20 127 9 8K 20 133 28 8K
Hiking† 16 51 84 116K 2 42 12 142K 6 70 316 209K 3 44 1K 4M 7 76 525 241K
Maint. 14 83 293 582 16 83 122 1K 16 83 104 1K 16 83 99 1K 16 83 109 1K
Openst.† 20 839 112 63K 0 - - - 11 769 1K 124K 2 822 2K 140K 11 778 2K 120K
Parking 20 87 7 2K 20 102 441 51K 20 110 451 46K 20 110 480 46K 16 109 1K 46K
Tetris 17 93 145 261K 20 76 419 17K 20 78 230 10K 20 94 316 17K 20 84 307 11K
Thought. 17 84 8 172K 15 95 14 8K 20 87 71 69K 20 89 392 251K 20 86 187 46K
Transp. 14 248 21 63K 7 233 664 368K 17 224 51 39K 20 231 63 41K 7 290 613 59K
Visitall 20 3K 5 4K 20 3K 9 3K 20 3K 10 3K 20 3K 12 3K 20 3K 22 3K
Elevat. 18 175 19 27K 16 178 314 126K 15 282 148 46K 12 670 372 119K 20 261 348 30K
Nomyst. 19 24 0 4K 6 24 7 100K 10 26 14 124K 12 25 1 8K 13 24 3 16K
Pegsol 20 29 4 81K 20 30 3 100K 20 30 4 111K 20 30 4 111K 20 29 4 123K
Scanal. 20 40 1 358 20 40 6 432 20 40 6 430 20 40 5 430 20 40 7 429
Sokob. 15 186 106 3M 13 178 422 11M 12 184 183 4M 13 182 164 3M 13 191 233 4M

All 268 0.89 0.36 0.56 217 0.87 0.62 0.66 254 0.91 0.53 0.58 254 0.95 0.56 0.56 262 0.92 0.68 0.44

Table 2: Performance of BFWS(R) algorithms for different R sets. These are all simulation-based algorithms except for BFWS(RX ), that
makes use of action structure and is included as a baseline. See caption of Table 1 for an explanation of the different entries.

queues, one restricted to the nodes obtained with helpful ac-
tions only [Helmert, 2006]. FF is a second-generation heuris-
tic search planner that uses helpful actions, while LAMA is a
third-generation heuristic search planner that uses a landmark
heuristic as well. Together, FF and LAMA have been the
top-performing classical planners for the last 15 years. The
original version of FF could not be used, as many instances
include cost information. For the experiments, however, ac-
tions costs are taken to be 1 so that plan cost is equal to plan
length. The second table evaluates BFWS(R) for the differ-
ent choices of R, including the baseline option, R = RX ,
that relies on PDDL encodings for computing a relaxed plan
once from the initial state.

Benchmarked problems include all instances from the last
planning competition (IPC 2014), along with all instances
from IPC 2011 domains that did not appear in IPC 2014,
with the exception of Parcprinter, Tidybot and Woodwork-
ing, which produced parsing errors. There are thus a total
of 19 domains, with 20 instances each, for a total of 380 in-
stances. All planners and configurations in both tables have
been run on AMD Opteron 6378@2.4Ghz CPUs with CPU-
time and memory cutoffs of 1h and 16GB respectively. Ta-
bles report the standard measures: coverage (number of in-
stances solved), and average plan lengths, (total) runtimes,
and number of node expansions. Average times are in sec-
onds rounded to the nearest integer. All averages are over
the instances solved by all planners except when there are
less than three such instances. Implementation details of the
BFWS planners are given in the next Section; LAMA-11
and FF∗ are run using the latest version of Fast Downward
[Helmert, 2006] available at the time of writing.

Table 1 shows that the best simulation-based BFWS(R)
planner, BFWS(R∗G), performs extremely well in spite of

not using any information about action structure, when com-
pared to the state-of-the-art PDDL planners. Indeed, while
LAMA solves 264 of the 380 instances (69.5%), BFWS(R∗G)
solves 282 (74.2%). The PDDL planner BFWS(f5) does only
slightly better, solving 283 (74.5%). FF∗, on the other hand,
solves 172 instances (45.3%), which illustrates that the con-
sidered problems are challenging. The planners, however, do
very differently in the different domains. For example, in the
domains Barman, Hiking, and Openstacks, LAMA solves 19,
18, and 20 instances respectively, while BFWS(R∗G) solves
9, 7, and 14. On the other hand, in domains such as City-
Car, Maintenance, and Tetris, LAMA solves 5, 0, and 10 in-
stances, while BFWS(R∗G) solves 19, 16, and 20. Surpris-
ingly, these numbers are better than those of BFWS(f5) that
solves 5, 16, and 11 instances, suggesting that relaxed plans
are not helping that much in such domains. This seems to be
confirmed by the other PDDL planner,RX , shown in Table 2,
that solves 4, 14, and 17 of the instances. In terms of aver-
age plan lengths and times, there is no clear pattern, although
BFWS(f5) is usually fastest, and along with LAMA-11, is
the one that expands fewer of nodes. The averages of nor-
malized plan lengths, times, and number of expanded nodes,
displayed at the bottom of both tables, show that the simu-
lation planner BFWS(R∗G) is only a bit slower than LAMA,
produces plans of similar quality and, somewhat surprisingly,
does not expand too many more nodes on average, in spite of
the strong exploratory nature of BFWS algorithms.

Table 2 evaluates BFWS(R) for different alternatives of R.
While none of them is better than R∗G in terms of coverage,
they all do better than FF∗ and some approach the perfor-
mance of LAMA. Except forRX , they are all simulated algo-
rithms that do not exploit action descriptions. In comparison
with the simulation planners, the relaxed plan computed by



RX appears to provide useful guidance in domains such as
Hiking, Openstacks, and Nomystery, where simulation plan-
ners solve much less instances. In fact, in Nomystery RX

solves many more instances than LAMA and BFWS(f5), 19
vs. 11 and 14 respectively, meaning that the computation of
all the other relaxed plans does not pay off. Since R∗G is RG

except in instances that have more than 40,000 ground ac-
tions, it is only on those instances where the performance
of BFWS(R∗G) and BFWS(RG) differ. These instances are
mainly in Parking and Transport where the latter solves 16
and 7 instances, while the former solves them all. The empty
R set, R0, is the weakest R, with 217 instances solved, well
behind the other options and LAMA, although well ahead of
FF∗, which solves 172 instances.

The domains where simulated BFWS(R) algorithms strug-
gle are of two types: problems where the atomic goals have
a high width, and problems with tightly constrained plans
where goals and subgoals are not easy to serialize. Exam-
ples of the former class of domains include Barman, Hiking,
and Openstacks. Examples of the latter include Cavediving,
Childsnack, and Floortile. This last class of domains, like
any tight constraint satisfaction problem encoded as a plan-
ning problem, are hard also for heuristic PDDL planners like
LAMA and BFWS(f5), which nevertheless perform much
better in the first class of problems due to the exploitation
of action structure in the form of relaxed plans.

8 Planner
The BFWS(R) algorithms are all implemented in the Func-
tional STRIPS planner FS [Francès and Geffner, 2015], on
top of the LAPKT toolkit (http://lapkt.org) in an ex-
tension that allows the free use of procedures for providing
the denotation of fixed function and predicate symbols ap-
pearing in goals and action preconditions and effects. This
free use of procedures greatly expands the modeling capabil-
ities of the language, but is not easy to accommodate when
heuristics are supposed to be derived automatically. Never-
theless, when FS runs in simulation mode no attempt at de-
riving heuristics is made (the whole action structure being
invisible to the planner), and thus fixed symbols with proce-
dural denotations pose no particular challenge.

The use of simulation mode does however affect the com-
plexity of computing novelty measures. In propositional
mode, testing if the state generated by an action has novelty 1
can be done in constant time by checking whether each one of
the (bounded number of) atoms added by the action is new. In
simulation mode, this test is linear in the number of variables,
as there is no information about action effects, and the value
of all variables in the resulting state needs to be checked. In
general, while novelty-i tests in propositional mode are ex-
ponential in i − 1, in simulation mode they are exponential
in i. For this reason, novelty measures greater than 1 are de-
termined lazily; namely, only when no node with novelty 1
remains in the OPEN list of the search. Moreover, following
[Lipovetzky and Geffner, 2017], only novelty-1 and novelty-
2 measures are computed, and even the latter are skipped in
the BFWS(R) search when the number of atoms is too large.
The selected set R is computed in a preprocessing step.

action move(x1: location)
prec alive(p) ∧ @valid_move(loc(p), x1)
effs loc(p) := x1

¬pellet_at(x1)
pellet_at(x1)−→ C := C + 1

∀g ∈ ghost
[
loc(g) := @moveG(loc(g), x1)

]
goal alive(p), C = K
init alive(p), C = 0, pellet_at(l1), . . .
def alive(p: pacman)≡ ∀g : ghost loc(g) 6= loc(p)

Figure 1: Fragment of Pacman encoding in Functional STRIPS
where goal is to eat K food pellets. Functional (predicate) symbols
@f denote (Boolean) functions specified by external procedures.

9 New Possibilities for Modeling and Control
We have seen how a move from purely declarative planning
languages to simulation languages that freely combine declar-
ative representations with procedures does not entail a signifi-
cant performance loss, as one can plan effectively by exploit-
ing state and goal structure while ignoring action structure.
We now illustrate what can be gained from this move by con-
sidering two other aspects: modeling and control knowledge.

9.1 Modeling
Many classical problems that require reaching a goal by ap-
plying deterministic actions from a known initial state cannot
be modeled easily using the standard planners, sometimes be-
cause of limitations of planners, that do not always provide
good support to complex language constructs [Ivankovic and
Haslum, 2015], sometimes because of limitations of planning
languages. Challenging domains include, for instance, so-
called “pseudo-adversarial” problems involving adversaries
that follow a known, deterministic strategy that is nonetheless
difficult to express propositionally, and problems like Pong,
where physical actions have complex ramifications, like a
ball bouncing against walls. Many of these limitations, how-
ever, can be overcome in one shot through the combination
of expressive modeling languages and black box planning
algorithms. A modeling language like Functional STRIPS
[Geffner, 2000] offers the best of the declarative and proce-
dural worlds; namely, a declarative, first-order logical lan-
guage for modeling, where the denotation of fixed function
and predicate symbols can be given extensionally, through
sets of atoms, or intensionally, by means of procedures. This
distinction makes no difference to simulated planning algo-
rithms like BFWS(R) that get to see only the black box action
transition and applicability functions.

Fig. 1 shows a fragment of a possible Functional STRIPS
encoding of Pacman. In Pacman, the agent has to collect a
number of food pellets (dots) by moving around in a maze,
while avoiding a number of deadly ghosts that chase him.
Functional (predicate) symbols @f denote (Boolean) func-
tions specified by external procedures. In this case, the maze
is implicitly encoded by the Boolean function @valid move,
and the deterministic strategy followed by the ghosts (move
always to the adjacent grid position that is closest to the
pacman according to the Manhattan-distance) is encoded by



the @moveG procedure, where ghosts are assumed to know
where the pacman is moving. For simplicity, “power pellets”
are omitted. We have run different versions of BFWS(R)
in these and other domains that are difficult or impossi-
ble to tackle with PDDL planners. These include a single-
agent version of the Pong videogame, where the agent con-
trols a paddle and aims at hitting a ball with billiard-like
dynamics a certain number of times; Trapping [Ivankovic
and Haslum, 2015], where the agent has to trap an oppo-
nent (a cat) that is always looking for the nearest exit; Help-
ing, in which the agent guides the cat to an exit by turn-
ing lights on that the cat will follow if sufficiently close,
and Pursuit, a predators-and-prey game. All problem encod-
ings and results can be found at https://github.com/
aig-upf/2017-planning-with-simulators. In-
terestingly, the GVG-AI competition problems encoded in
VGDL, an elegant language for encoding grid-problems
that is part declarative and part procedural [Schaul, 2013],
should be easy to translate into Functional STRIPS, once
dynamic object creation and non-determinism are excluded.
Non-deterministic and probabilistic extensions of Functional
STRIPS were implemented early in the GPT planner, that
deals with MDPs and POMDPs [Bonet and Geffner, 2001a].

9.2 Control Knowledge: Features and BFWS(F )
Features offer a way to express domain-dependent knowledge
in the context of width-based search algorithms like IW and
BFWS. A feature φ is a Boolean function of the state which
can be used as an extra atom in the computation of novelty.
For example, in blocks-world problems, a Boolean feature
φx,y can be defined for each goal atom on(x, y), that is true
in a state s when clear(x) and clear(y) are both true in s. By
adding such a feature, BFWS(R0), for example, decrements
the number of nodes expanded to reach the goal by an average
factor of 3. Such a reduction happens because some relevant
states that are reached in the search with novelty 2, will have
novelty 1 once the extra atoms are considered. This is indeed
what conjunctive features do: they promote or give priority to
states that achieve certain conjunctions of atoms. Yet features
can be arbitrary Boolean functions of the state, not just con-
junctions, and an interesting generalization can be obtained
by combining features and explicit priorities.

Let a ranked feature list be a list F = 〈F1, . . . , FM 〉 where
Fi is a set of Boolean features with priority i. Ranked feature
lists provide an abstraction and generalization of the algo-
rithms IW and BFWS, where the notion of novelty is decou-
pled from the problem atoms and the size of conjunctions.
For this, let the F -novelty of a state s in the search, wF (s),
be the minimum i such that for some feature φ in Fi, φ is true
in s for the first time in the search, with the convention that
wF (s) is M + 1 when there is no such feature.

The IW(1) algorithm can be seen as a breadth-first search
where states with novelty wF (s) > 1 are pruned, where
F = 〈F1〉 and F1 is given by the features φ〈p〉, one for each
problem atom, such that φ〈p〉(s) is true iff p is true in s. Simi-
larly, IW(2) is a breadth-first search where states with novelty
wF (s) > 2 are pruned, where F = 〈F1, F2〉, and F2 contains
a feature φ〈p,q〉 for each pair of different atoms p and q, and
φ〈p,q〉(s) is true iff p and q are both true in s.

More interestingly, BFWS(R) for R = R0 (empty R) is
a plain best-first algorithm guided by a novelty function wF

where the features are F = 〈F1, F2〉, and F1 and F2 contain
the features φ〈p,i〉 for each atom p, and the features φ〈p,q,i〉
for each pair p, q, where 1 ≤ i ≤ |G|. The feature φ〈p,i〉 is
true in a state s when p is true in s and #g(s) = i, while
φ〈p,q,i〉 is true in s when both p and q are true in s, and
#g(s) = i. Finally, the general BFWS(R) algorithm can
be approximated when the features in F1 and F2 are defined
as φ〈p,i,j〉 and φ〈p,q,i,j〉 where in both cases the new j com-
ponent, 1 ≤ j ≤ |R|, tests whether the number of atoms in R
that are true in s, #r′(s), is equal to j. This is an approxima-
tion because the #r′ counter is state-dependent, while the ac-
tual counter #r used in BFWS(R) is path-dependent (counts
number of atoms from R reached in the way to s).

The algorithms IW(F ) and BFWS(F ) refer to the IW and
BFWS algorithms where novelties are computed according
to the ranked feature list F . The use of these lists not only
provides a uniform way for understanding and programming
width-search based algorithms, but also opens up the possi-
bility of encoding control knowledge by playing with features
and priorities, which could potentially be inferred from train-
ing data using machine learning algorithms.

10 Conclusions
We have developed a new class of black box planning al-
gorithms that approach the performance of the best classi-
cal planners over the existing PDDL benchmarks. The black
box or simulated algorithms have access to the structure of
states (the variables), the initial state, and the set of goals, but
have no access to the structure of actions; namely, action pre-
conditions and effects. This suggests that the computational
role of declarative planning languages such as PDDL may be
overrated. Declarative languages, however, remain important
from the point of view of modeling. First-order logical plan-
ning languages such as Functional STRIPS appear to provide
the best of both worlds by allowing fixed function and predi-
cate symbols to denote actual procedures. While this expres-
sive power is not compatible with mainstream methods, it can
be exploited by the methods proposed here. Effective black
box planning methods can indeed produce a radical change
in the scope and use of planners, and in the ways in which
planning problems are modeled.
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