Lemmata zum Hurwitz-Kriterium

Markus Müller, TU Ilmenau

31. Mai 2005
1 Die Routh-Hurwitz Bedingungen

Vergleiche [1, Seiten 247ff und Seiten 272f]. Sei \(p \in \mathbb{R}[s] \) ein reelles Polynom, gegeben durch
\[
p(s) = p_0 + p_1 s + \cdots + p_{n-1} s^{n-1} + p_n s^n, \quad p_n \neq 0.
\] (1)

Definiere Polynome \(E_0, E_1 \in \mathbb{R}[s] \) mit
\[
E_0(s) = p_0 + p_2 s + \cdots + p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n}{2} \right\rfloor}
\] (2)
\[
E_1(s) = p_1 + p_3 s + \cdots + p_{\left\lfloor \frac{n-1}{2} \right\rfloor} s^{\left\lfloor \frac{n-1}{2} \right\rfloor}
\] (3)

Es gilt \(p(s) = E_0(s^2) + s E_1(s^2) \).

Definiere weitere Polynome \(E_k \in \mathbb{R}[s] \) für \(k \in \{2, \ldots, n\} \) mit
\[
E_k(s) = \frac{1}{s} (E_{k-1}(0) E_{k-2}(s) - E_{k-2}(0) E_{k-1}(s)).
\] (4)

Da \(\deg(E_{k-1}(0) E_{k-2}(s) - E_{k-2}(0) E_{k-1}(s)) > 0 \) ist, sind die Polynome \(E_k \) für alle \(k \in \{2, \ldots, n\} \) wohldefiniert.

Definiere nun das Polynom \(q \in \mathbb{R}[s] \) mit
\[
q(s) = E_1(s^2) + s E_2(s^2).
\] (5)

Es gilt
\[
q(s) = p_1 + p_3 s^2 + \cdots + p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n}{2} \right\rfloor} + \frac{1}{s} \left[p_1 E_0(s^2) - p_0 E_1(s^2) \right]
\]
\[
= p_1 + p_3 s^2 + \cdots + p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n}{2} \right\rfloor} + \frac{1}{s} \left[p_1 p_0 + p_1 p_2 s^2 + \cdots - p_0 p_1 - p_0 p_3 s^2 - \cdots \right]
\]
\[
= p_1 + \cdots + p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n}{2} \right\rfloor} + p_1 p_2 s + \cdots + p_1 p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n}{2} \right\rfloor - 1}
\]
\[
- p_0 p_3 s - \cdots - p_0 p_{\left\lfloor \frac{n}{2} \right\rfloor} s^{\left\lfloor \frac{n-1}{2} \right\rfloor - 1},
\]

und insbesondere
\[
q_0 = p_1.
\] (6)

Bemerkung 1.1. Sei \(p \in \mathbb{R}[s] \) definiert wie in (1). Dann folgt für das entsprechende \(q \in \mathbb{R}[s] \) definiert wie in (5)
\[
\deg(q) = \max \left\{ 2 \left\lfloor \frac{n-1}{2} \right\rfloor, 2 \left\lfloor \frac{n}{2} \right\rfloor - 1 \right\}
\]
\[
= \begin{cases}
2 \frac{n-1}{2}, & \text{für } n \text{ ungerade} \\
2 \frac{n}{2} - 1, & \text{für } n \text{ gerade}
\end{cases} = n - 1.
\]

Definition 1.2. Ein Polynom \(p \in \mathbb{R}[s] \) heißt genau dann Hurwitz-Polynom (oder kurz Hurwitz), wenn
\[
\{ s \in \mathbb{C} \mid p(s) = 0 \} \subset \mathbb{C}_- := \{ s \in \mathbb{C} \mid \Re(s) < 0 \},
\] (7)

d.h. alle Nullstellen von \(p \) liegen in der offenen linken komplexen Halbebene.

\[\text{Es ist } |x| := \max \{n \in \mathbb{Z} \mid n \leq x \} \text{ für } x \in \mathbb{R}.\]
Bemerkung 1.3.

(i) Sei \(p \in \mathbb{R}[s] \) definiert wie in (1) mit \(n = 0 \), i.e. \(p(s) = p_0 \). Dann ist \(p \) Hurwitz, für alle \(p_0 \neq 0 \).

(ii) Sei \(p \in \mathbb{R}[s] \) definiert wie in (1) mit \(n = 1 \), i.e. \(p(s) = p_1 s + p_0 \). Dann ist \(p \) genau dann Hurwitz, wenn \(-p_0/p_1 < 0 \) ist.

Lemma 1.4. Es sei \(p \in \mathbb{R}[s] \) definiert wie in (1). Dann ist \(p \) genau dann ein Hurwitz-Polynom, wenn \(\left(s \mapsto \frac{p(s)}{p_n} = \frac{p_0}{p_n} s + \cdots + \frac{p_{n-1}}{p_n} s^{n-1} + s^n \right) \) ein Hurwitz-Polynom ist.

Ohne Beschränkung der Allgemeinheit betrachten wir im Folgenden das Polynom \(p \) aus (1) mit \(p_n = 1 \), i.e.

\[p(s) = p_0 + p_1 s + \cdots + p_{n-1} s^{n-1} + s^n. \] (8)

Lemma 1.5. Es sei \(p \in \mathbb{R}[s] \) mit \(p \) wie in (8) definiert ein Hurwitz-Polynom. Dann sind \(p_0 > 0 \) sowie \(p_1 > 0 \).

Beweis Es sei \(p(s) = \prod_{i=1}^{n} (s - \lambda_i) \) mit \(\{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{C} \). Damit, und da \(p \) ein reelles Polynom ist, folgt \(p_0 = p(0) = \prod_{i=1}^{n} (-\lambda_i) \in \mathbb{R} \) und \(p_1 = \sum_{i=1}^{n} \prod_{i=1}^{n} (-\lambda_i) \in \mathbb{R} \).

Ohne Beschränkung der Allgemeinheit seien \(\{\lambda_1, \ldots, \lambda_j\} \subset \mathbb{R} \) und \(\{\lambda_{j+1}, \ldots, \lambda_n\} \subset \mathbb{C} \setminus \mathbb{R} \) für ein \(j \in \{1, \ldots, n\} \) die reellen bzw. nicht reellen Nullstellen von \(p^2 \). Weiter sei \(\lambda_i = \lambda_{\frac{n}{2} + j} \) für alle \(i \in \left\{ j + 1, \ldots, \frac{n}{2} + j \right\} \). Da \(p \) Hurwitz ist, folgt somit

\[
p_0 = \prod_{i=1}^{n} (-\lambda_i) = \prod_{i=1}^{j} (-\lambda_i) \cdot \prod_{i=j+1}^{n} \left[\frac{\pi i + j}{\pi i} \prod_{i=j+1}^{n} \left(\left(-\Re(\lambda_i) - i\Im(\lambda_i)\right)(-\Re(\lambda_i) + i\Im(\lambda_i)) \right) \right]
\]

\[
= \prod_{i=1}^{j} (-\lambda_i) \cdot \prod_{i=j+1}^{n} \left[\frac{\pi i + j}{\pi i} \prod_{i=j+1}^{n} \left(\left(-\Re(\lambda_i)\right)^2 + \left(\Im(\lambda_i)\right)^2 \right) \right] > 0.
\]

Es gilt \(p_1 = \sum_{i=1}^{n} \prod_{i=1}^{n} (-\lambda_i) \). Für \(l \in \{1, \ldots, j\} \) sind jeweils \(\lambda_i \in \mathbb{C} \setminus \mathbb{R} \), \(i \in \left\{ j + 1, \ldots, \frac{n}{2} + j \right\} \) und die dazugehörige konjugiert komplexe Nullstelle \(\lambda_{\frac{n}{2} + j} \) Faktoren von \(\prod_{i=1}^{n} (-\lambda_i) \). Damit

\[\text{Reelle Polynome besitzen immer eine gerade Anzahl komplexer Nullstellen. Ist } \lambda_i \in \mathbb{C} \setminus \mathbb{R} \text{ Nullstelle von } p, \text{ so ist auch die konjugiert Komplexe zu } \lambda_i \text{ Nullstelle von } p. \text{ Damit ist } n - j \text{ eine gerade Zahl.}\]
ist \(\prod_{i=1 \atop \ell \neq l}^{n} (-\lambda_{i}) > 0 \) für \(l \in \{1, \ldots, j\} \).

Für \(l \in \{j + 1, \ldots, n\} \) fehlt in \(\prod_{i=1 \atop \ell \neq l}^{n} (-\lambda_{i}) \) der Faktor \(-\lambda_{l}\). Da für ein \(\ell \in \{j + 1, \ldots, n\} \) gilt, dass \(\lambda_{\ell} = \overline{\lambda_{l}} \) ist, folgt dann für die Summe der Produkte, in denen der Faktor \(-\lambda_{l}\) bzw. \(-\lambda_{\ell}\) fehlt: \(\prod_{i=1 \atop \ell \neq l}^{n} (-\lambda_{i}) + \prod_{i=1 \atop \ell \neq \ell}^{n} (-\lambda_{i}) > 0 \). Damit folgt

\[
\begin{align*}
\prod_{i=1 \atop \ell \neq l}^{n} (-\lambda_{i}) &= \sum_{l=1}^{n} \prod_{i=1 \atop \ell \neq l}^{n} \left((-\lambda_{i}) \cdot \prod_{i=j+1}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \right) \\
&= \sum_{l=1}^{j} \left(\prod_{i=1 \atop \ell \neq l}^{j} (-\lambda_{i}) \cdot \prod_{i=j+1}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \right) \\
&\quad + \sum_{l=j+1}^{n} \left(\prod_{i=1 \atop \ell \neq l}^{l} (-\lambda_{i}) \cdot \prod_{i=1 \atop \ell \neq \ell}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \cdot \left(\Re(\lambda_{l}) + i\Im(\lambda_{l}) \right) \right) \\
&\quad + \sum_{l=2j+2}^{n} \left(\prod_{i=1 \atop \ell \neq l}^{l} (-\lambda_{i}) \cdot \prod_{i=1 \atop \ell \neq \ell}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \cdot \left(\Re(\lambda_{l}) + i\Im(\lambda_{l}) \right) \right) \\
&= \sum_{l=j+1}^{n} \left(\prod_{i=1 \atop \ell \neq l}^{j} (-\lambda_{i}) \cdot \prod_{i=j+1}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \right) \\
&\quad + \sum_{l=j+1}^{n} \left(\prod_{i=1 \atop \ell \neq l}^{l} (-\lambda_{i}) \cdot \prod_{i=1 \atop \ell \neq \ell}^{n} \left[(\Re(\lambda_{i}))^2 + (\Im(\lambda_{i}))^2 \right] \cdot \left(\Re(\lambda_{l}) + i\Im(\lambda_{l}) \right) \right) \\
&\quad > 0.
\end{align*}
\]
Lemma 1.6. Es sei \(p \in \mathbb{R}[s] \) definiert wie in (8) Hurwitz. Weiter sei \(q \in \mathbb{R}[s] \) definiert wie in (5). Wegen Bemerkung 1.1 ist \(\deg(q) = n - 1 \). Dann ist \(q_{n-1} > 0 \).

Beweis Es ist
\[
q_{n-1} = \begin{cases}
 p_{\frac{n-1}{2}+1} & \text{für } n \text{ ungerade} \\
 p_1p_{\frac{n}{2}} & \text{für } n \text{ gerade}
\end{cases}
\]
Mit Lemma 1.5 folgt dann
\[
q_{n-1} = \begin{cases}
 1 & \text{für } n \text{ ungerade} \\
 p_1 & \text{für } n \text{ gerade}
\end{cases} > 0.
\]
\[\square\]

Lemma 1.7. Gegeben seien Polynome \(p, q \in \mathbb{R}[s] \) mit \(p \) wie in (8) definiert und
\[
q(s) = q_0 + q_1s + q_2s^2 + \cdots + q_{n-1}s^{n-1} = E_1(s^2) + sE_2(s^2).
\]
 Dann sind äquivalent:

(i) \(p \) ist Hurwitz

(ii) \(q \) ist Hurwitz und \(q_{n-1} > 0 \), sowie \(p(0) = p_0 > 0 \).

Beweis Wird entweder (i) oder (ii) vorausgesetzt, so folgt mit Lemma 1.5 und (6) in beiden Fällen, dass \(p_0 > 0 \) und \(p_1 > 0 \) sind. Definiere
\[
q^\alpha \in \mathbb{R}[s], \quad \alpha \in [0, 1] \quad \text{mit} \quad q^\alpha(s) = (1 - \alpha)p(s) + \alpha q(s). \quad (9)
\]
Dann gilt
\[
q^\alpha(s) = (1 - \alpha)\left(E_0(s^2) + sE_1(s^2)\right) + \alpha\left(E_1(s^2) + sE_2(s^2)\right)
\]
\[= (1 - \alpha)\left(E_0(s^2) + sE_1(s^2)\right) + \alpha\left(p_1E_0(s^2) - p_0E_1(s^2)\right) + \alpha s\left(p_1E_0(s^2) - p_0E_1(s^2)\right) + \alpha\left(E_1(s^2) - \alpha E_0(s^2) - \alpha sE_1(s^2) + \alpha E_1(s^2)\right), \quad (10)
\]
für alle \(\alpha \in [0, 1] \).

Wir zeigen:

(a) \(q^\alpha \) hat für jedes \(\alpha \in [0, 1] \) die selben Nullstellen auf der imaginären Achse, i.e. für beliebige \(\alpha, \bar{\alpha} \in [0, 1] \) und \(\omega \in \mathbb{R} \) gilt
\[
q^\alpha(i\omega) = 0 \iff q^\bar{\alpha}(i\omega) = 0. \quad (11)
\]

Beweis Sei \(q^{i\omega}(s) = 0 \) für \(\omega \in \mathbb{R} \).
Wir zeigen, dass \(q^\alpha(0) \neq 0 \), für alle \(\alpha \in [0, 1] \).
Annahme: es gilt \(q^\alpha(0) = 0 \). Dann ist mit (10)
\[
0 = q^\alpha(0) = E_0(0) (1 - \alpha) + E_1(0) \alpha
\]
\[
= p_0 + \alpha(p_1 - p_0).
\]
Falls \(p_1 = p_0 \) ist, do folgt \(p_0 = 0 \) im Widerspruch zu \(p_0 > 0 \). Damit ist dann
\[
\alpha = \frac{p_0}{p_0 - p_1}.
\]
Nach Voraussetzung ist \(p_0 > 0 \) und \(p_1 > 0 \). Wir betrachten zwei Fälle:
1. Es gilt: \(p_0 < p_1 \). Dann folgt \(p_0 - p_1 < 0 \), und damit \(\alpha = \frac{p_0}{p_0 - p_1} < 0 \), ein Widerspruch.
2. Es gilt: \(p_0 > p_1 \). Dann folgt \(0 < p_0 - p_1 < p_0 \), und damit \(\alpha = \frac{p_0}{p_0 - p_1} > 1 \), wiederum ein Widerspruch.
Damit ist gezeigt, dass 0 nicht Nullstelle von \(q^\alpha \) sein kann.

Wir zeigen nun (11) für \(\alpha, \tilde{\alpha} \in [0, 1] \) und \(\omega \in \mathbb{R} \setminus \{0\} \).
Sei \(q^\tilde{\alpha}(i\omega) = 0 \) für ein \(\omega \in \mathbb{R} \setminus \{0\} \). Da \(q^\tilde{\alpha} \) ein reelles Polynom ist, ist auch \(q^\tilde{\alpha}(-i\omega) = 0 \). Mit (10) ist
\[
0 = q^\tilde{\alpha}(i\omega) = E_0(-\omega^2) \left(1 - \tilde{\alpha} + \frac{1}{i\omega} p_1 \right)
\]
\[
+ E_1(-\omega^2) \left(i\omega - \tilde{\alpha}i\omega + \tilde{\alpha} - \frac{1}{i\omega} p_0 \right)
\]
und
\[
0 = q^\tilde{\alpha}(-i\omega) = E_0(-\omega^2) \left(1 - \tilde{\alpha} - \frac{1}{i\omega} p_1 \right)
\]
\[
+ E_1(-\omega^2) \left(-i\omega + \tilde{\alpha}i\omega + \tilde{\alpha} + \frac{1}{i\omega} p_0 \right).
\]
Es sind sowohl Realteil als auch Imaginärteil von \(q^\tilde{\alpha}(i\omega) \) gleich Null, i.e.
\[
0 = \Re \left(q^\tilde{\alpha}(i\omega) \right) = E_0(-\omega^2) (1 - \tilde{\alpha}) + E_1(-\omega^2) \tilde{\alpha}
\] (12)
\[
0 = \Im \left(q^\tilde{\alpha}(i\omega) \right) = i \left[E_0(-\omega^2) (-\tilde{\alpha} p_1 \frac{1}{\omega}) + E_1(-\omega^2) (\omega - \tilde{\alpha} i\omega + \tilde{\alpha} p_0 \frac{1}{\omega}) \right].
\] (13)
Wir unterscheiden drei Fälle:
1. Sei \(\tilde{\alpha} = 1 \). Mit (12) folgt \(E_1(-\omega^2) = 0 \). Mit (13) und \(p_1 > 0 \) folgt \(E_0(-\omega^2) = 0 \).
Es ist
\[
q^\alpha(i\omega) = 0 \left(1 - \alpha + \alpha \frac{1}{i\omega} p_1 \right) + 0 \left(i\omega - \alpha i\omega + \alpha - \frac{1}{i\omega} p_0 \right) = 0,
\]
für alle \(\alpha \in [0, 1] \).
2. Sei \(\tilde{\alpha} = 0 \). Mit (12) folgt \(E_0(-\omega^2) = 0 \). Mit (13) und \(\omega \neq 0 \) folgt \(E_1(-\omega^2) = 0 \).
Es ist wiederum
\[
q^\alpha(i\omega) = 0 \left(1 - \alpha + \alpha \frac{1}{i\omega} p_1 \right) + 0 \left(i\omega - \alpha i\omega + \alpha - \frac{1}{i\omega} p_0 \right) = 0,
\]
für alle \(\alpha \in [0, 1] \).
3. Sei $\tilde{\alpha} \in (0, 1)$.

Annahme: Es ist $E_0(-\omega^2) \neq 0$ (dann ist wegen (12) auch $E_1(-\omega^2) \neq 0$).
Aus (12) folgt dann

$$E_0(-\omega^2)(\tilde{\alpha} - 1) = E_1(-\omega^2)\tilde{\alpha}$$

$$\iff E_0(-\omega^2) = E_1(-\omega^2)\frac{\tilde{\alpha}}{\tilde{\alpha} - 1}.$$

Da $\tilde{\alpha} - 1 < 0$ ist, folgt

$$E_0(-\omega^2)E_1(-\omega^2) < 0.$$ \hfill (14)

Mit (12) folgt

$$\tilde{\alpha} = \frac{E_0(-\omega^2)}{E_1(-\omega^2) - E_0(-\omega^2)},$$
und mit (13) folgt

$$\tilde{\alpha} = \frac{E_1(-\omega^2)}{E_1(-\omega^2) + \frac{1}{\omega^2} [p_1 E_0(-\omega^2) - p_0 E_1(-\omega^2)].}$$

Daraus folgt

$$\frac{E_0(-\omega^2)}{E_0(-\omega^2) - E_1(-\omega^2)} = \frac{E_1(-\omega^2)}{E_1(-\omega^2) + \frac{1}{\omega^2} p_1 E_0(-\omega^2) - \frac{1}{\omega^2} p_0 E_1(-\omega^2)}. $$

Dies ist äquivalent zu

$$E_0(-\omega^2)E_1(-\omega^2) + \frac{1}{\omega^2} p_1 E_0(-\omega^2)^2 - \frac{1}{\omega^2} p_0 E_0(-\omega^2) E_1(-\omega^2)$$

$$= E_1(-\omega^2)E_0(-\omega^2) - E_1(-\omega^2)^2,$$
und

$$0 = E_1(-\omega^2)^2 + \frac{1}{\omega^2} p_1 E_0(-\omega^2)^2 - \frac{1}{\omega^2} p_0 E_0(-\omega^2) E_1(-\omega^2),$$
also $0 > 0$, ein Widerspruch.

Damit ist die Annahme falsch, und es folgt $E_0(-\omega^2) = 0$. Mit (12) folgt auch $E_1(-\omega^2) = 0$.

Dann ist

$$q^\alpha(i\omega) = 0 \left(1 - \alpha + \alpha \frac{1}{i\omega} p_1\right) + 0 \left(i\omega - \alpha i\omega + \alpha - \alpha \frac{1}{i\omega} p_0\right) = 0,$$

für alle $\alpha \in [0, 1]$.

Mit den obigen drei Fällen haben wir die Äquivalenz (11) für beliebige $\alpha, \tilde{\alpha} \in [0, 1]$ und alle $\omega \in \mathbb{R} \setminus \{0\}$ gezeigt.
Mit (α) und (β) folgt (11) für beliebige $\alpha, \tilde{\alpha} \in [0, 1]$ und alle $\omega \in \mathbb{R}$, i.e. q_α hat für alle $\alpha \in [0, 1]$ die selben Nullstellen auf der imaginären Achse.

(b) Wir zeigen: $(i) \Rightarrow (ii)$.

Mit (9) folgt, dass $q^0 = p$ und $q^1 = q$ sind. Nach Voraussetzung $(p$ ist Hurwitz$)$ folgt $\{q^0(s) = p(s) = 0 \mid s \in i\mathbb{R}\} = \emptyset$. Mit (a) folgt dann, dass

\[\{q^\alpha(s) = 0 \mid s \in i\mathbb{R}\} = \emptyset \quad \forall \alpha \in [0, 1]. \tag{15} \]

Da die Nullstellen von q^α stetig von α abhängen, $q^0 = p$ Hurwitz ist und $\deg(q^\alpha) \leq \deg(p)$, für alle $\alpha \in [0, 1]$, folgt mit (15), dass

\[q^\alpha(s) \neq 0 \quad \forall s \in \mathbb{C} \cup i\mathbb{R} \quad \forall \alpha \in [0, 1], \]

ist, d.h. q^α ist Hurwitz, für alle $\alpha \in [0, 1]$, und insbesondere ist $q^1 = q$ Hurwitz.

Da p Hurwitz ist, folgt mit Lemma 1.6, dass $q_{n-1} > 0$ ist, und mit Lemma 1.5 schließlich $p_0 > 0$.

(c) Wir zeigen: $(ii) \Rightarrow (i)$.

Nach Voraussetzung ist $q = q^1$ Hurwitz, $q_{n-1} > 0$ und $p_0 > 0$. Außerdem ist $p_n = 1$ vorausgesetzt. Damit folgt $\{q^1(s) = q(s) = 0 \mid s \in i\mathbb{R}\} = \emptyset$. Mit (a) und da die Nullstellen von q^α stetig von α abhängen, sind mindestens $n - 1$ Nullstellen $\{\lambda_1, \ldots, \lambda_{n-1}\}$ von q^n in \mathbb{C}_- für alle $\alpha \in [0, 1]$.

Es bleibt zu zeigen, dass die n-te Nullstelle λ_n ebenfalls in \mathbb{C}_- liegt. Es gilt

\[p(s) = q^0(s) = p_0 + \cdots + 1s^n = \left(\prod_{i=1}^{n-1} (s - \lambda_i)\right) (s - \lambda_n). \]

Wegen $p_0 > 0$ ist dann

\[p_0 = \prod_{i=1}^{n} (-\lambda_i) = \left(\prod_{i=1}^{n-1} (-\Re(\lambda_i) - i\Im(\lambda_i))\right) (-\Re(\lambda_n) - i\Im(\lambda_n)) > 0. \tag{16} \]

Wir unterscheiden zwei Fälle:

1. Sei $\Im(\lambda_n) \neq 0$. Da p ein reelles Polynom ist, existiert ein $k \in \{1, \ldots, n - 1\}$ mit $\lambda_k = \overline{\lambda_n}$. Somit ist $\lambda_n \in \mathbb{C}_-$.

2. Sei $\Im(\lambda_n) = 0$. Wegen $\{\lambda_1, \ldots, \lambda_{n-1}\} \subset \mathbb{C}_-$ ist das Polynom $\left(s \mapsto \prod_{i=1}^{n-1} (s - \lambda_i)\right)$ Hurwitz. Mit Lemma 1.5 folgt

\[\prod_{i=1}^{n-1} (-\lambda_i) > 0, \]

und mit (16) folgt

\[-\lambda_n = \frac{p_0}{\prod_{i=1}^{n-1} (-\lambda_i)} > 0, \]

also $\lambda_n \in \mathbb{C}_-$. Somit ist p Hurwitz.

Mit (b) und (c) ist die Äquivalenz der Aussagen (i) und (ii) gezeigt.
Definition 1.8. Sei $p \in \mathbb{R}[s]$ wie in (1) definiert.

(i) Definiere die Hurwitz-Matrix $H_p \in \mathbb{R}^{n \times n}$ zu p wie folgt:

$$H_p = \begin{bmatrix}
p_1 & p_0 & 0 & \ldots & 0 \\
p_3 & p_2 & p_1 & p_0 & 0 & \ldots & 0 \\
p_5 & p_4 & p_3 & p_2 & p_1 & p_0 & \ldots & 0 \\
\vdots & \ddots \\
0 & \ldots & 0 & p_n & \cdots & p_i & \cdots & p_0 & 0 & \ldots \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
\end{bmatrix}. \tag{17}$$

(ii) Definiere die Hurwitz-Determinanten $\Delta_{p,j} \in \mathbb{R}$, $j \in \{1, \ldots, n\}$, zu p durch

$$\Delta_{p,j} = \det \begin{bmatrix}
p_1 & p_0 & 0 & \ldots & 0 \\
p_3 & p_2 & p_1 & \cdots & \vdots \\
0 & \ldots & 0 & p_n & \cdots & p_i & \cdots & p_0 & 0 & \ldots \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
0 & \ldots & 0 & p_n & p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} \\
\end{bmatrix} \quad j \in \{1, \ldots, n\}. \tag{18}$$

Bemerkung 1.9. Es gilt

$$\Delta_{p,1} = p_1$$
$$\Delta_{p,2} = \det \begin{bmatrix} p_1 & p_0 \\
p_3 & p_2 \end{bmatrix} = p_1p_2 - p_0p_3$$
$$\Delta_{p,3} = \det \begin{bmatrix} p_1 & p_0 & 0 \\
p_3 & p_2 & p_1 \\
p_5 & p_4 & p_3 \end{bmatrix} = (p_1p_2 - p_0p_3)p_3 - (p_1p_4 - p_0p_5)p_1.$$

Die Hurwitz-Determinante $\Delta_{p,j}$, $j \in \{1, \ldots, n\}$ ist gleich dem jeweiligen j-ten Hauptminor von H_p (i.e. die Determinante der Teilmatrix von H_p, die aus den ersten j Zeilen und Spalten entsteht).
Theorem 1.10. (Routh-Hurwitz-Theorem)
Sei \(p \in \mathbb{R}[s] \) gegeben wie in (8), i.e. \(p(s) = p_0 + p_1 s + \cdots + p_n s^n \) mit \(p_n = 1 \). Dann ist \(p \) genau dann Hurwitz, wenn \(\Delta_{p,j} > 0 \) für alle \(j \in \{1, \ldots, n\} \) und \(p_0 > 0 \).

Beweis Sei \(q \in \mathbb{R}[s] \) definiert wie in (5), i.e.

\[
q(s) = q_0 + q_1 s + q_2 s^2 + \cdots + q_{n-1}s^{n-1} = E_1(s^2) + sE_2(s) = p_0 + p_1 s + \cdots + p_n s^n
\]

mit \(p_n = 1 \). Dann ist \(p \) genau dann Hurwitz, wenn

\[
\Delta_{p,j} > 0 \quad \text{für alle} \quad j \in \{1, \ldots, n\} \quad \text{und} \quad p_0 > 0.
\]

Beweis: Sei \(q \in \mathbb{R}[s] \) definiert wie in (5), i.e.

\[
q(s) = p_1 + (p_1 p_2 - p_0 p_3) s + p_3 s^2 + (p_1 p_4 - p_0 p_5) s^3 + \cdots + (p_1 p_{n-2} - p_0 p_{n-1}) s^{n-3} + p_{n-1} s^{n-2} + p_1 s^{n-1}
\]

für \(n \) gerade \quad (19)

\[
q(s) = p_1 + (p_1 p_2 - p_0 p_3) s + p_3 s^2 + (p_1 p_4 - p_0 p_5) s^3 + \cdots + (p_1 p_{n-2} - p_0 p_{n-1}) s^{n-3} + p_{n-1} s^{n-2} + s^{n-1}
\]

für \(n \) ungerade.

Es gilt \(\deg(q) = n - 1 \). Sei \(H_p \in \mathbb{R}^{n \times n} \) die Hurwitz-Matrix zu \(p \) und \(H_q \in \mathbb{R}^{(n-1) \times (n-1)} \) die Hurwitz-Matrix zu \(q \). Wir definieren

\[
P = \begin{bmatrix}
1 & -p_0 & 0 & 0 & \cdots \\
0 & p_1 & 0 & 0 & \cdots \\
0 & 0 & 1 & -p_0 & \cdots \\
0 & 0 & 0 & p_1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix} \in \mathbb{R}^{n \times n}. \quad (20)
\]

(i) Wir zeigen: mit \(P \in \mathbb{R}^{n \times n} \), definiert wie in (20), folgt

\[
H_p P = \begin{bmatrix}
p_1 & 0 & \cdots & 0 \\
p_3 & \cdots & 0 \\
\vdots & \ddots & H_q \\
0 & \cdots & 0
\end{bmatrix}.
\]

Beweis: Es gilt

\[
H_p P = \begin{bmatrix}
p_1 & p_0 & 0 & \cdots & 0 \\
p_3 & p_2 & p_1 & \cdots & 0 \\
\cdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 1 & p_{n-1} & p_{n-2} \\
0 & \cdots & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & -p_0 & 0 & \cdots & 0 \\
0 & p_1 & 0 & \cdots & 0 \\
0 & 0 & 1 & -p_0 & \cdots \\
0 & 0 & 0 & p_1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]
Mit (19) folgt

\[
H_p P = \begin{bmatrix}
 p_1 & -p_1 p_0 + p_0 p_1 & 0 & \cdots & 0 \\
 p_3 & -p_3 p_0 + p_2 p_1 & p_1 & -p_1 p_0 + p_0 p_1 & \cdots & 0 \\
 p_5 & -p_5 p_0 + p_4 p_1 & p_3 & -p_3 p_0 + p_2 p_1 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots \\
 0 & \cdots & 0 & p_1 & \cdots & 0 \\
 & & & & & p_1 \frac{n-2(-1)^{[\frac{n}{2}]}+1}{2} = q_n-1
\end{bmatrix}
\]

was zu zeigen war.

(ii) Wir zeigen: für die Hurwitz-Determinanten \(\Delta_{p,i}, i \in \{1, \ldots, n\} \), und \(\Delta_{q,j}, j \in \{1, \ldots, n-1\} \), gilt die Beziehung

\[
p_1^{[\frac{k+1}{2}]-1} \Delta_{p,k+1} = \Delta_{q,k} \quad \forall \ k \in \{1, \ldots, n-1\}.
\]

\textbf{Beweis:} Mit (i) folgt

\[
\Delta_{q,k} = \det \begin{bmatrix}
 q_1 & q_0 & \cdots & 0 \\
 q_3 & q_2 & \cdots & \ddots \\
 \vdots & \vdots & \ddots & \vdots \\
 \cdots & q_{k+1} & q_k & \ddots \\
\end{bmatrix} = \frac{1}{p_1} \det \begin{bmatrix}
 p_1 & 0 & \cdots & 0 \\
 p_3 & q_1 & q_0 & \cdots \\
 p_5 & q_3 & q_2 & \cdots \\
 \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]

\[
= \frac{1}{p_1} \det \begin{bmatrix}
 p_1 & p_0 & \cdots & 0 \\
 p_3 & p_1 & \cdots & \ddots \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{k+2} & p_{k+1} & \cdots & \ddots \\
\end{bmatrix} \det \begin{bmatrix}
 1 & -p_0 & 0 & \cdots \\
 0 & p_1 & 0 & \cdots \\
 0 & 0 & 1 & \cdots \\
 \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\in \mathbb{R}^{(k+1) \times (k+1)}
\]

\[
= p_1^{[\frac{k+1}{2}]-1} \Delta_{p,k+1} \quad \forall \ k \in \{1, \ldots, n-1\}.
\]

Damit ist die Behauptung gezeigt.
(iii) Sei \(p \in \mathbb{R}[s] \) mit \(p(s) = p_0 + p_1 s + \cdots + s^n \) gegeben. Seien \(E_0^p := E_0, E_1^p := E_1 \in \mathbb{R}[s] \) gegeben wie in (2) und (3) sowie \(E_k^p := E_k \in \mathbb{R}[s] \) für \(k \in \{2, \ldots, n\} \) gegeben wie in (4). Es gilt \(p(s) = E_0^p(s^2) + s E_1^p(s^2) \) und \(p^1(s) := q(s) = E_1^p(s^2) + s E_2^p(s^2) \). Weiter seien
\[
\left(s \mapsto p^k(s) = E_k^p(s^2) + s E_{k+1}^p(s^2) \right) \in \mathbb{R}[s] \quad \text{für } k \in \{2, \ldots, n-1\}
\]
definiert.
Mit (4) folgt
\[
p^{k-1}(s) = E_{k-1}^p(s^2) + s E_k^p(s^2)
\]
und
\[
p^k(s) = E_k^p(s^2) + s E_{k+1}^p(s^2),
\]
für alle \(k \in \{2, \ldots, n-1\} \). Damit ist
\[
p^{k-1}_1 = E_{k-1}^p(0)
\]
und
\[
p^k_0 = E_k^p(0)
\]
also
\[
p^{k}_0 = p^{k-1}_1, \quad \forall k \in \{2, \ldots, n-1\}. \tag{21}
\]
Betrachte \(p^1(s) = p_0^1 + \cdots + p_{n-1}^1 s^{n-1} = E_0^p(s^2) + s E_2^p(s^2) \). Definiere \(E_0^{p^1}, E_1^{p^1} \in \mathbb{R}[s] \) und \(E_k^{p^1} \in \mathbb{R}[s] \) für \(k \in \{2, \ldots, n-1\} \) bezüglich \(p^1 \) wie in (2), (3) bzw. (4). Dann gilt
\[
E_k^{p^1} = E_k^p \quad \forall k \in \{0, \ldots, n-1\}
\]
und damit
\[
p^1(s) = E_0^{p^1}(s^2) + s E_1^{p^1}(s^2)
\]
\[
p^k(s) = E_{k-1}^p(s^2) + s E_k^p(s^2) \quad \forall k \in \{2, \ldots, n-1\}.
\]
Definiere induktiv weitere \(E_0^{p^k}, E_1^{p^k}, E_j^{p^k} \in \mathbb{R}[s] \) für \(k \in \{2, \ldots, n-1\} \) und \(j \in \{2, \ldots, n-k\} \). Dann folgt
\[
p^k(s) = E_0^{p^k}(s^2) + s E_1^{p^k}(s^2) \quad \forall k \in \{2, \ldots, n-1\}.
\]
Wir beweisen nun die Äquivalenz: \(p \) ist genau dann Hurwitz, wenn \(\Delta_{p,j} > 0 \) für alle \(j \in \{1, \ldots, n\} \) und \(p_0 > 0 \).

(\(\Rightarrow \)) Sei \(p \in \mathbb{R}[s] \) Hurwitz. Mit Lemma 1.7 folgt, dass \(p^1 \) Hurwitz ist, und dass \(p_{n-1}^1 > 0 \) sowie \(p_0^1 > 0 \) gilt.
Betrachte nun die Polynome \(p^1 \in \mathbb{R}[s] \) und \(p^2 \in \mathbb{R}[s] \). Da \(p^1 \) Hurwitz ist, folgt mit Lemma 1.7, dass \(p^2 \) Hurwitz ist. Weiter folgt mit Lemma 1.7 und Bemerkung 1.1, dass \(p_{n-2}^0 > 0 \) sowie \(\Delta_{p,1} = p_1^1 = p_0^1 > 0 \) gilt.
Betrachte nun die Polynome \(p^2 \in \mathbb{R}[s] \) und \(p^3 \in \mathbb{R}[s] \). Da \(p^2 \) Hurwitz ist, folgt mit Lemma 1.7, dass \(p^3 \) Hurwitz ist. Weiter folgt mit Lemma 1.7, Bemerkung 1.1 sowie (ii), dass \(p_{n-2}^2 > 0 \) und \(\Delta_{p,2} = \frac{1}{p_1^2} \Delta_{p,1} = \Delta_{p,1} = p_1^1 = p_0^2 > 0 \) gilt.
Induktiv folgt mit Lemma 1.7, dass \(p^k \) Hurwitz ist, und mit Bemerkung 1.1 sowie (ii), dass \(p_{n-k}^k > 0 \) und \(\Delta_{p,k-1} = p_{k-1}^k > 0 \) ist, für ein beliebiges \(k \in \{1, \ldots, n-2\} \).
Damit ist gezeigt, dass $p_0 > 0$ und $\Delta_{p,k} > 0$ für alle $k \in \{1, \ldots, n-2\}$ gilt.
Es bleibt zu zeigen, dass $\Delta_{p,n-1} > 0$ und $\Delta_{p,n} > 0$.

Mit $\deg(p) = n$ und Bemerkung 1.1 folgt $\deg(p^k) = n - k$. Also ist $\deg(p^{n-1}) = n - (n-1) = 1$. Da $p^{n-1}(s) = E_{n-1}^p(s^2) + s E_{n}^p(s^2)$ gilt, folgt $\deg(E_{n-1}^p) = \deg(E_n^p) = 0$, i.e.

$$E_{n-1}^p = \kappa_1, \quad E_n^p = \kappa_2 \quad \text{für } \kappa_1, \kappa_2 \in \mathbb{R}. \quad (22)$$

Definiere $E_{n+1}^p : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ mit

$$s \mapsto E_{n+1}^p(s) = \frac{1}{s} \left(E_n^p(0) E_{n-1}^p(s) - E_{n-1}^p(0) E_n^p(s) \right) = \frac{1}{s} \left(\kappa_2 \kappa_1 - \kappa_1 \kappa_2 \right).$$

Dann ist $E_{n+1}^p \equiv 0$. Definiere weiter $p^n \in \mathbb{R}[s]$ mit

$$s \mapsto p^n(s) = E_n^p(s^2) + s E_{n+1}^p(s^2) = E_n^p(s^2).$$

Mit (22) folgt $p^n = \kappa_2$. Da wir gezeigt haben, dass p^{n-1} Hurwitz und $p_{n-(n-1)}^{n-1} = p_1^{n-1} > 0$ ist, folgt mit Lemma 1.7, Bemerkung 1.1 sowie (ii), dass $\Delta_{p,n-1} = p_0^n > 0$.
Mit $p_n = 1$ folgt $\Delta_{p,n} = \det(H_p) = 1 \cdot \Delta_{p,n-1} > 0$.

Somit haben wir bewiesen: ist p Hurwitz, dann folgt $\Delta_{p,k} > 0$ für alle $k \in \{1, \ldots, n\}$ sowie $p_0 > 0$.

(\Leftarrow) Für $p \in \mathbb{R}[s]$ gegeben, seien nun $\Delta_{p,j} > 0$ für alle $j \in \{1, \ldots, n\}$ sowie $p_0 > 0$.
Mit $p_1 = \Delta_{p,1} > 0$ und (ii) folgt

$$\Delta_{p^1,j} = p_1^j \Delta_{p,j+1} > 0 \quad \forall \ j \in \{1, \ldots, n-1\},$$

und insbesondere $p_1^1 = \Delta_{p^1,1} > 0$. Mit (21) folgt $p_0^1 = p_1 = \Delta_{p,1} > 0$.
Wendet man nun (ii) auf die Polynome p^1 und p^2 an, so ist

$$\Delta_{p^2,j} = (p_1^j \Delta_{p^1,j+1} > 0 \quad \forall \ j \in \{1, \ldots, n-2\},$$

und mit (21) folgt $p_0^2 = p_1^1 = \Delta_{p^1,1} > 0$.
Unter Verwendung von (ii) folgt nun induktiv

$$\Delta_{p^k,j} = (p_1^{k-1} \Delta_{p^{k-1},j+1} > 0 \quad \forall \ j \in \{1, \ldots, n-k\} \quad \text{und} \quad \forall \ k \in \{2, \ldots, n-1\}. \quad (23)$$

Mit (21) folgt

$$p_0^k = p_1^{k-1} = \Delta_{p^{k-1},1} > 0 \quad \forall \ k \in \{2, \ldots, n-1\}. \quad (24)$$
F"ur $k = n - 1$ ist (23) dann

$$\Delta_{p_{n-1},j} = (p_{n-2}^1)^{\lfloor \frac{t}{2} \rfloor - 1} \Delta_{p_{n-2},j+1} > 0 \quad \forall j \in \{1\},$$

und (24) ist $p_{0}^{n-1} = p_{1}^{n-2} = \Delta_{p_{n-1},1} > 0$. Damit ist

$$p^{n-1}(s) = p_{0}^{n-1} + p_{1}^{n-1}s \quad \text{mit } p_{0}^{n-1}, p_{1}^{n-1} > 0.$$

Also folgt mit Bemerkung 1.3, dass p^{n-1} ein Hurwitz-Polynom ist. Wegen (24) ist $p_{0}^{n-2} > 0$. Da wir gezeigt haben, dass $p_{n-(n-1)}^{n-1} = p_{1}^{n-1} > 0$, und p^{n-1} Hurwitz ist, folgt mit Lemma 1.7, dass p^{n-2} Hurwitz und $p_{n-(n-2)}^{n-2} = p_{2}^{n-2} > 0$ ist.

Induktiv folgt mit Lemma 1.7, dass p^k Hurwitz und $p_{n-k}^{k} > 0$ sind, f"ur alle $k \in \{1, \ldots, n-2\}$.

Damit ist insbesondere $q = p^1$ Hurwitz sowie $q_{n-1} = p_{n-1}^{1} > 0$. Da $q_0 = p_1 = \Delta_{p,1} > 0$ ist, folgt schließlich mit Lemma 1.7, dass p ein Hurwitz-Polynom ist.

\[\square\]
2 Systemklasse

Wir betrachten die folgende Klasse von Systemen:

\[p \left(\frac{d}{dt} \right) y(t) = q \left(\frac{d}{dt} \right) u(t), \quad t \geq 0 \] \hspace{1cm} (25)

mit skalaren Input \(u(\cdot) : \mathbb{R}_{\geq 0} \to \mathbb{R} \) und Output \(y(\cdot) : \mathbb{R}_{\geq 0} \to \mathbb{R} \),
den Anfangsbedingungen

\[\begin{pmatrix} y(0), \dot{y}(0), \ldots, y^{(n-1)}(0) \end{pmatrix}^T = (\bar{y}^0, \ldots, \bar{y}^{n-1})^T \in \mathbb{R}^n \] \hspace{1cm} (26)

und den Polynomen

\[\begin{align*}
(s & \mapsto p(s) = s^n + p_{n-1}s^{n-1} + \cdots + p_1s + p_0) \in \mathbb{R}[s] \\
(s & \mapsto q(s) = q_{n-d}s^{n-d} + \cdots + q_1s + q_0) \in \mathbb{R}[s]
\end{align*} \] \hspace{1cm} (27, 28)

mit \(d \in \{1, \ldots, n-1\} \) und \(q_{n-d} > 0 \). Damit ist \(n - (n - d) = d \) der Relativgrad des Systems (25).

3 Hurwitz-Lemma für Relativgrad 1

Lemma 3.1. Sei \(\rho \in \mathbb{R}[k] \) mit \(\rho(k) = \rho_m k^m + \rho_{m-1} k^{m-1} + \cdots + \rho_1 k + \rho_0 \). Sei \(\rho_m > 0 \). Dann existiert ein \(k^* > 0 \), so dass \(\rho(k) > 0 \) für alle \(k > k^* \).

Beweis Sei \(k \geq 1 \). Dann gilt

\[\rho(k) = \rho_m k^m + \rho_{m-1} k^{m-1} + \cdots + \rho_1 k + \rho_0 \]
\[\geq \rho_m k^m - |\rho_{m-1} k^{m-1} + \cdots + \rho_1 k + \rho_0| \]
\[\geq \rho_m k^m - (|\rho_{m-1} k^{m-1} + \cdots + |\rho_1| k + |\rho_0|) \]
\[\geq \rho_m k^m - \left(\max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\} k^{m-1} + \cdots + \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\} k^{m-1} \right) \]
\[\geq \rho_m k^m - m \cdot \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\} k^{m-1} \]
\[\geq k^{m-1} \left(\rho_m k - m \cdot \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\} \right). \]

Wir setzen

\[k^* := \max \left\{ \frac{m \cdot \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|, 1\}}{\rho_m} , 1 \right\}. \]
Mit $\rho_m > 0$ folgt dann
\[
\rho(k) \geq k^{n-1}\left(\rho_mk - m \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\}\right) - k^{m-1} - \left(\rho_mk - m \max_{i \in \{0, \ldots, m-1\}} \{|\rho_i|\}\right) > 0 \quad \forall \ k > k^*.
\]

Lemma 3.2. Der Relativgrad von (25) sei $d = 1$. Die Polynome $p(\cdot)$ und $q(\cdot)$ seien gegeben wie in (27) und (28). $q(\cdot)$ sei Hurwitz. Dann gilt:
Es existiert ein $k_0 > 0$, so dass $p(\cdot) + kq(\cdot)$ Hurwitz ist für alle $k > k_0$.

Beweis Um zu zeigen, dass
\[
\left(s \mapsto p(s) + kq(s) = \sum_{i=1}^{n} p_i s^{n-i} + (p_{n-1} + kq_{n-1}) s^{n-1} + \cdots + (p_0 + kq_0)\right) \in \mathbb{R}[s]
\]
Hurwitz ist, muss nach Theorem 1.10 gezeigt werden, dass $\Delta_{p+kq_j}(k) > 0$ für alle $j \in \{1, \ldots, n\}$ gilt, und $(p + kq_0) = p_0 + kq_0 > 0$ ist.

(i) Da $q(\cdot)$ Hurwitz, $q_{n-d} > 0$ und somit $q_0 > 0$ ist, folgt für $k^* := \max\left\{\frac{|p_0|}{q_0}, 1\right\} > 0$
\[
p_0 + kq_0 > 0 \quad \forall \ k > k^*.
\]

(ii) Es bleibt zu zeigen, dass ein $k_0 > k^*$ existiert, so dass $\Delta_{p+kq_j}(k) > 0$ für alle $j \in \{1, \ldots, n\}$ und für alle $k > k_0$ gilt.

Betrachte die Hurwitz-Matrix von $p + kq$, i.e.
\[
H_{p+kq} = \begin{bmatrix}
p_1 + kq_1 & p_0 + kq_0 & 0 & \cdots & 0 \\
p_3 + kq_3 & p_2 + kq_2 & p_1 + kq_1 & p_0 + kq_0 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \ddots & \ddots \\
0 & \cdots & 0 & 1 & p_{n-1} + kq_{n-1} & p_{n-2} + kq_{n-2} \\
0 & \cdots & \cdots & \cdots \cdots & \cdots & 0 & 1
\end{bmatrix}
\]

Betrachte des weiteren die Hurwitz-Determinanten als Polynome in k, i.e. $(k \mapsto \Delta_{p+kq_j}(k)) \in \mathbb{R}[k]$, für $j \in \{1, \ldots, n\}$. Setze
\[
\Delta_{p+kq_j}(k) = \det\begin{bmatrix}
p_1 + kq_1 & p_0 + kq_0 & 0 & \cdots & 0 \\
p_3 + kq_3 & p_2 + kq_2 & p_1 + kq_1 & \cdots & 0 \\
0 & \cdots & \cdots & \ddots & \ddots \\
0 & \cdots & 0 & 1 & p_{j-1} + kq_{j-1} & p_{j-2} + kq_{j-2} \\
0 & \cdots & \cdots & \cdots \cdots & \cdots & 0 & 1
\end{bmatrix}
=: \xi_j^j k^j + \xi_{j-1}^j k^{j-1} + \cdots + \xi_1^j k + \xi_0^j \quad \text{für} \quad j \in \{1, \ldots, n\},
\]

16
mit $\xi_i^j \in \mathbb{R}$ für $i \in \{0, \ldots, j\}$ und für $j \in \{1, \ldots, n\}$.

Es gilt: ξ_j^j hängt nur von den Koeffizienten von q, i.e. q_i für $i \in \{0, \ldots, n-1\}$ ab. Es ist

$$\xi_j^j = \det \begin{bmatrix} q_1 & q_0 & 0 & \cdots & 0 \\ q_3 & q_2 & kq_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & q_{j-1} & q_{j-2} \\ \vdots & \vdots & \ddots & q_{j+1} & q_j \end{bmatrix} = \Delta_{q,j}$$

und damit folgt

$$\Delta_{p+kq,j}(k) = \xi_j^j k_j^j + \xi_{j-1}^j k_j^{j-1} + \cdots + \xi_1^j k + \xi_0^j$$

$$\Delta_{q,j} k^j + \xi_{j-1}^j k^{j-1} + \cdots + \xi_1^j k + \xi_0^j \quad \text{für } j \in \{1, \ldots, n\}.$$

Wir zeigen nun: für alle $j \in \{1, \ldots, n\}$ existiert ein $k_j > 0$, so dass $\Delta_{p+kq,j} > 0$ für alle $k > k_j$.

Da q Hurwitz vorausgesetzt ist, ist $\Delta_{q,j} > 0$ für alle $j \in \{1, \ldots, n-1\}$. Mit Lemma 3.1 folgt nun

$$k_j = \max \left\{ \frac{j \cdot \max_{i \in \{0, \ldots, j-1\}} \{|\xi_i^j|\}}{\Delta_{q,j}}, 1 \right\} \quad \text{für } j \in \{1, \ldots, n-1\},$$

und

$$\Delta_{p+kq,j}(k) > 0 \quad \forall k > k_j \quad \forall j \in \{1, \ldots, n\}.$$

(iii) Setze nun

$$k_0 := \max_{j \in \{1, \ldots, n-1\}} \{k_j, k^*\}.$$

Mit (i) und (ii) folgt dann $\Delta_{p+kq,j}(k) > 0$, für alle $j \in \{1, \ldots, n\}$ und für alle $k > k_0$, sowie $p_0 + kq_0 > 0$, für alle $k > k_0$.

□
4 Hurwitz-Lemma für beliebigen Relativgrad

Lemma 4.1. Für $i \in \{0, \ldots, d\}$ seien Polynome $p_i \in \mathbb{R}[s]$ wie folgt definiert:

$$s \mapsto p_i(s) = p_{i,n-i} s^{n-i} + p_{i,n-i-1} s^{n-i-1} + \cdots + p_{i,1} s + p_{i,0}, \quad i \in \{0, \ldots, d\},$$

mit

$$p_{i,j} \in \mathbb{R} \quad \text{für} \quad i \in \{0, \ldots, d\}, \ j \in \{0, \ldots, d\},$$

$$p_{0,n} = 1 \quad \text{und} \quad p_{d,n-d} > 0.$$

Weiter seien p_d und das Polynom

$$\left(s \mapsto \hat{p}(s) = p_{0,n} s^d + p_{1,n-1} s^{d-1} + \cdots + p_{d-1,n-d+1} s + p_{d,n-d} \right) \in \mathbb{R}[s]$$

Hurwitz. Dann existiert ein $k_0 > 0$, so dass

$$\left(s \mapsto p^k(s) = p_0(s) + kp_1(s) + \cdots + k^{d-1} p_{d-1}(s) + k^d p_d(s) \right) \in \mathbb{R}[s]$$

Hurwitz ist für alle $k > k_0$.

Beweis. Nach Theorem 1.10 muss gezeigt werden, dass ein $k_0 > 0$ existiert, so dass

$$(p^k)_0 = p_{0,0} + kp_{1,0} + k^2 p_{2,0} + \cdots + k^{d-1} p_{d-1,0} + k^d p_{d,0} > 0$$

und

$$\Delta_{p^k,j}(k) > 0 \quad \text{für alle} \ j \in \{1, \ldots, n\}$$

gilt, für alle $k > k_0$.

(i) Wir zeigen, dass ein $k^* > 0$ existiert, so dass $(p^k)_0 > 0$, für alle $k > k^*$.

Da p_d ein Hurwitz-Polynom ist, folgt mit Lemma 1.5, dass $p_{d,0} > 0$ ist. Mit Lemma 3.1 folgt nun

$$k^* = \max \left\{ \frac{d \cdot \max_{i \in \{0, \ldots, d-1\}} \{|p_{i,0}|\}}{p_{d,0}}, 1 \right\}$$

und

$$(p^k)_0 > 0 \quad \forall \ k > k^*.$$
Wir zeigen, dass
\[\Delta \text{ für } p \]

Für \(H_{p^k} = \begin{bmatrix} p_{0,1} + \cdots + k^d p_{d,1} & p_{0,0} + \cdots + k^d p_{d,0} & 0 & \cdots & 0 \\ p_{0,3} + \cdots + k^d p_{d,3} & p_{0,2} + \cdots + k^d p_{d,2} & p_{0,1} + \cdots + k^d p_{d,1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & p_{0,n-1} + kp_{1,n-1} \\ 0 & \cdots & 0 & 0 & 1 \end{bmatrix}. \]

Für \(j \in \{1, \ldots, n-d\} \) folgt dann
\[\Delta_{p^k,j}(k) = \det \begin{bmatrix} p_{0,1} + \cdots + k^d p_{d,1} & p_{0,0} + \cdots + k^d p_{d,0} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{0,j} + \cdots + k^d p_{d,j} & 0 & \cdots & 0 \\ \end{bmatrix}, \]
falls \(p_{d,j+1} \) existiert, d.h. falls \(j + 1 \leq n - d \). Ist \(j + 1 > n - d \), so ist \(p_{d,j+1} := 0 \).

Für \(i \in \{1, \ldots d - 1\} \) sei \(j = n - d + i \in \{n - d + 1, \ldots, n - 1\} \). Dann folgt
\[\Delta_{p^k,j}(k) = \det \begin{bmatrix} p_{0,1} + \cdots + k^d p_{d,1} & p_{0,0} + \cdots + k^d p_{d,0} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{0,j} + \cdots + k^d p_{d,j} & 0 & \cdots & 0 \\ \end{bmatrix}, \]
für \(j \in \{n - d + 1, \ldots, n - 1\} \) und \(i \in \{1, \ldots d - 1\} \).

(a) Wir zeigen, dass \(k_j > 0 \) für \(j \in \{1, \ldots, n - d\} \) existieren, so dass \(\Delta_{p^k,j}(k) > 0 \) für alle \(k > k_j \), für \(j \in \{1, \ldots, n - d\} \).

Definiere die Koeffizienten \(\xi^j_i \in \mathbb{R} \) durch
\[\Delta_{p^k,j}(k) := \xi^j_{j - d} k^{j-d} + \xi^j_{j - d - 1} k^{j-d-1} + \cdots + \xi^j_0, \]
für alle \(j \in \{1, \ldots, n - d\} \). Für \(\xi^j_{j - d} \), d.h. den Koeffizienten vor der höchsten Potenz von \(k \), gilt
\[\xi^j_{j - d} k^{j-d} = \det \begin{bmatrix} k^d p_{d,1} & k^d p_{d,0} & 0 & \cdots & 0 \\ k^d p_{d,3} & k^d p_{d,2} & k^d p_{d,1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & k^d p_{d,j+1} \end{bmatrix} = \Delta_{p^k,j} k^{j-d}. \]
Damit folgt $\Delta_{p^k,j}(k) = \Delta_{p^d,j}k^d + \xi_j^i k^{d-1} + \ldots + \xi_0^i$ für alle $j \in \{1, \ldots, n - d\}$.
Da p_d Hurwitz ist, folgt mit Theorem 1.10, dass $\Delta_{p^d,j} > 0$ für alle $j \in \{1, \ldots, n - d\}$.
Mit Lemma 3.1 folgt

$$k_j = \max \left\{ \frac{j d \cdot \max_{l \in \{0, \ldots, j d - 1\}} \left\{ |\xi^i_j| \right\}}{\Delta_{p^d,j}}, 1 \right\} \quad \text{für} \ j \in \{1, \ldots, n - d\}$$

und

$$\Delta_{p^k,j}(k) > 0 \quad \forall \ k > k_j \quad \forall \ j \in \{1, \ldots, n - d\}.$$

(b) Definiere die k-wertige Matrix

$$M_i(k) := \begin{bmatrix}
p_{d-1}, n-d+1 k^{d-1} & \cdots & p_{d}, n-d k^{d} & p_{d}, n-d-1 k^{d} & \cdots \\
p_{d-3}, n-d+3 k^{d-3} & \cdots & p_{d-2}, n-d+2 k^{d-2} & p_{d-1}, n-d+1 k^{d-1} & \cdots \\
\vdots & \ddots & \vdots & \vdots & \ddots \\
p_{d-2i+1}, n-d+2i-1 k^{d-2i+1} & \cdots & p_{d-i}, n-d+i k^{d-i} & \cdots & \end{bmatrix},$$

für $i \in \{1, \ldots, d - 1\}$ und definiere die koeffizienten $\chi_i^j \in \mathbb{R}$ durch

$$\det(M_i(k)) = \chi_i^j k^{d-i} \frac{(-1)^{i+1}}{2} + \ldots + \chi_i^j k + \chi_0^i,$$

für alle $i \in \{1, \ldots, d - 1\}$. Dann ist

$$\det(M_i(k)) = \sum_{(j_1, \ldots, j_i)} \sgn(j_1, \ldots, j_i)$$

$$\cdot \left[p_{\min\{d,d-2j_1+1\}, n-d+2j_1-1} k^{\min\{d,d-2j_1+1\}} \\
+ p_{\min\{d,d-2j_2+2\}, n-d+2j_2-2} k^{\min\{d,d-2j_2+2\}} \\
+ p_{\min\{d,d-2j_3+3\}, n-d+2j_3-3} k^{\min\{d,d-2j_3+3\}} \\
+ \ldots \\
+ p_{\min\{d,d-2j_i+i\}, n-d+2j_i-i} k^{\min\{d,d-2j_i+i\}} \right]$$

$$= \sum_{(j_1, \ldots, j_i)} \sgn(j_1, \ldots, j_i)$$

$$\cdot \left[p_{\min\{d,d-2j_1+1\}, n-d+2j_1-1} k^{d-2j_1+\min\{2j_1,1\}} \\
+ p_{\min\{d,d-2j_2+2\}, n-d+2j_2-2} k^{d-2j_2+\min\{2j_2,2\}} \\
+ p_{\min\{d,d-2j_3+3\}, n-d+2j_3-3} k^{d-2j_3+\min\{2j_3,3\}} \\
+ \ldots \\
+ p_{\min\{d,d-2j_i+i\}, n-d+2j_i-i} k^{d-2j_i+\min\{2j_i,i\}} \right]$$

$$= \sum_{(j_1, \ldots, j_i)} \sgn(j_1, \ldots, j_i) \prod_{l=1}^{i} \left(p_{\min\{d,d-2j_l+l\}, n-d+2j_l-l} \right)$$

$$\cdot \left[k^{d-2j_l+\frac{(l+1)}{2} + \sum_{i=1}^{l} \min\{2j_l,i\}} \right].$$

20
Es gilt: ist für eine Permutation \((j_1, \ldots, j_{l_0}, \ldots, j_i)\)

\[
\min \{d, d - 2j_{l_0} + l_0\} = d - 2j_{l_0} + \min \{2j_{l_0}, l_0\} = d - 2j_{l_0} + 2j_{l_0} = d < d - 2j_{l_0} + l_0,
\]

für ein \(l_0 \in \{1, \ldots, i\}\), dann gilt für den zu dieser Permutation zugehörigen Exponenten von \(k\):

\[
i \cdot d - 2 \frac{i(i + 1)}{2} + \sum_{l=1}^{i} \min \{2j_l, l\} = i \cdot d - 2 \frac{i(i + 1)}{2} + \sum_{l=1}^{i} \min \{2j_l, l\} + \min \{2j_{l_0}, l_0\} = i \cdot d - 2 \frac{i(i + 1)}{2} + \sum_{l=1}^{i} \min \{2j_l, l\} + 2j_{l_0} \leq i \cdot d - \frac{i(i + 1)}{2} - (l_0 + 2j_{l_0}) < i \cdot d - \frac{i(i + 1)}{2}.
\]

Betrachte nun

\[
\Delta_{\hat{p},i} = \det \begin{bmatrix}
p_{d-1, n-d+1} & p_{d, n-d} & 0 & \cdots \\
p_{d-3, n-d+3} & p_{d-2, n-d+2} & p_{d-1, n-d+1} & \cdots \\
p_{d-2i+1, n-d+2i-1} & \cdots & p_{d-i, n-d+i}
\end{bmatrix},
\]
sowie die dazu assozierte Matrix \(M_{\Delta_{\hat{p},i}}\) für \(i \in \{1, \ldots, d - 1\}\).

Dann gilt für die Einträge der Matrix \(M_{\Delta_{\hat{p},i}}\)

\[
(M_{\Delta_{\hat{p},i}})_{l,j_l} = \begin{cases} 0 & \text{falls } \min \{d, d - 2j_l + l\} < d - 2j_l + l \\
(M_{i(k)})_{l,j_l} & \text{falls } \min \{d, d - 2j_l + l\} = d - 2j_l + l
\end{cases}.
\]

Damit folgt

\[
\chi^i_{d-i(\frac{i(i+1)}{2})} = \sum_{\{j_1, \ldots, j_{l_0}\} \text{ mit } \min \{d, d - 2j_{l_0} + l\} = d - 2j_{l_0} + l} \prod_{l=1}^{i} \text{sgn}(j_1, \ldots, j_l) \cdot (p_{d-2j_l+l, n-d+2j_l-l}) = \Delta_{\hat{p},i},
\]

21
Betrachte nun Δ für alle Faktoren aus der linken unteren Matrix M, für alle $i \in \{1, \ldots, d-1\}$ und schließlich

$$\det (M_i(k)) = \chi^i_{i,d-\frac{(i+1)}{2}} k^{i-d-\frac{(i+1)}{2}} + \ldots + \chi^i_1 k + \chi^0$$

für all $i \in \{1, \ldots, d-1\}$.

(c) Betrachte nun $\Delta_{p^k,j}(k)$ für $j \in \{n-d+1, \ldots, n-1\}$. Es gilt: die Einträge von $M_i(k)$ entsprechen den Einträgen der zu $\Delta_{p^k,j}(k) = \Delta_{p^k,n-d+1}(k)$ assoziierten Matrix, für alle $i \in \{1, \ldots, d-1\}$ und damit für alle $j \in \{n-d+1, \ldots, n-1\}$, wobei für $M_i(k)$ nur die jeweils höchste Potenz von k beachtet wird. Es ist also

$$\Delta_{p^k,j}(k) = \det \left[\begin{array}{cccc} p_{0,1} + \ldots + k^dp_{d,1} & \ldots & \ldots & \ldots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \end{array} \right] + \text{Rest} \cdot k^{<\frac{i-d-\frac{(i+1)}{2}}{1}}$$

für $j \in \{n-d+1, \ldots, n-1\}$ und $i \in \{1, \ldots d-1\}$. Entwickelt man die Determinante $\Delta_{p^k,j}(k)$ nach der letzten Zeile, dann gilt für die Summanden, die einen Eintrag der letzten Zeile von $M_i(k)$ haben, d.h. die Entwicklung startet in den ersten $n-d$ Spalten in der letzten Zeile; der größte Exponent α_j von k ist

$$\alpha_j \leq \frac{(n-d) \cdot d}{\text{ersten } n-d-1 \text{ Spalten und Zeilen}} + \frac{(i-1) \cdot d - \frac{(i-1)i}{2} + (i-1)}{\text{größter Exponent von } k \text{ in der Determinante von } M_i(k) \text{ ohne die erste Spalte und ohne die letzte Zeile}} + \frac{(d-2i)}{\text{n-te Zeile}}$$

$$= (n-d) \cdot d + i \cdot d - \frac{(i-1)i}{2} + (i-1) - 2i$$

$$= (n-d) \cdot d + i \cdot d - \frac{(i)(i+1)}{2} - 1$$

$$< (n-d) \cdot d + i \cdot d - \frac{(i)(i+1)}{2}.$$

Dies folgt induktiv für alle Summanden von $\Delta_{p^k,j}(k)$, die bei der Berechnung Faktoren aus der linken unteren $(n-d) \times (n-i)$-Teilmatrix enthalten.

Definiere nun Koeffizienten $\xi^j_i \in \mathbb{R}$ durch

$$\Delta_{p^k,j}(k) = \xi^j_{(n-d)+i} k^{(n-d+i) - \frac{(i)(i+1)}{2}} + \ldots + \xi^j_1 k + \xi^j_0,$$ \hspace{1cm} (32)
für \(j \in \{n - d + 1, \ldots, n - 1\} \) und \(i \in \{1, \ldots, d - 1\} \), wobei \(n + d + i = j \) sei. Dann folgt mit (a):

\[
\xi_j^{(n-d+i) \cdot d - \frac{(i)(i+1)}{2}} = \Delta_{p_d,n-d} \cdot \Delta_{\hat{p},i},
\]

(33)

für \(j \in \{n - d + 1, \ldots, n - 1\} \) und \(i \in \{1, \ldots, d - 1\} \).

(d) Wir zeigen nun noch, dass \(k_j > 0 \) für \(j \in \{n - d + 1, \ldots, n - 1\} \) existieren, so dass \(\Delta_{p^k,j}(k) > 0 \), für alle \(k > k_j \) für \(j \in \{n - d + 1, \ldots, n - 1\} \). Da \(p_d \) und \(\hat{p} \) Hurwitz sind, folgt mit Theorem 1.10, dass \(\Delta_{p_d,n-d} \cdot \Delta_{\hat{p},i} > 0 \) für alle \(i \in \{1, \ldots, d - 1\} \). Mit Lemma 3.1 und (33) folgt

\[
k_j = \max \left\{ \frac{\left(j \cdot d - \frac{(i)(i+1)}{2} \right)}{\Delta_{p_d,n-d} \cdot \Delta_{\hat{p},i}}, 1 \right\}
\]

für \(j = n - d + i \) für \(i \in \{1, \ldots, d - 1\} \).

und schließlich

\[
\Delta_{p^k,j}(k) > 0 \quad \forall \ k > k_j \quad \text{für} \quad j = n - d + i \quad \forall \ i \in \{1, \ldots, d - 1\}.
\]

(iii) Setze nun

\[
k_0 := \max_{j \in \{1, \ldots, n-1\}} \{k^*, k_j\}.
\]

Dann folgt mit (i), dass \((p^k)_0 > 0 \) ist, für alle \(k > k_0 \). Weiter folgt mit (ii)(a) und (ii)(d), dass \(\Delta_{p^k,j}(k) > 0 \) ist, für alle \(k > k_0 \) und für alle \(j \in \{1, \ldots, n\} \), was zu zeigen war.

\(\square\)
Literatur

