Brief paper

A non-gradient approach to global extremum seeking: An adaptation of the Shubert algorithm

Dragan Nešić, Thang Nguyen, Ying Tan, Chris Manzie

The Department of Electrical & Electronics Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

The Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

Article history:
Received 30 November 2011
Received in revised form 19 June 2012
Accepted 16 October 2012
Available online 18 January 2013

Keywords:
Extremum seeking control
Global optimization
Shubert's algorithm
Lipschitz

Abstract

The main purpose of this paper is to adapt the so-called Shubert algorithm for extremum seeking control of general dynamic plants. This algorithm is a good representative of the “sampling optimization methods” that achieve global extremum seeking on compact sets in the presence of local extrema. The algorithm applies to Lipschitz mappings; the model of the system is assumed unknown but the knowledge of its Lipschitz constant is assumed. The controller depends on a design parameter, the “waiting time”, and tuning guidelines that relate the design parameter and the region of convergence and accuracy of the algorithm are presented. The analysis shows that semi-global practical convergence (in the initial states) to the global extremum can be achieved in presence of local extrema if compact sets of inputs are considered. Numerical simulations for global optimization in the presence of local extrema are provided to demonstrate the proposed approach.

1. Introduction

Most extremum seeking controllers in the literature are based on optimization methods that require the derivatives of an unknown steady-state input–output map to be estimated online, see (Ariyur & Krstić, 2003; Moase, Manzie, & Brear, 2010; Tan, Nešić, & Mareels, 2006; Teel & Popović, 2001); moreover, they typically find local extrema only. On the other hand, optimization methods based on “sampling techniques” may not require the derivatives of the map and they find a global extremum on a compact set even in the case when local extrema exist, see (Hansen, Jaumard, & Lu, 1992a; Shubert, 1972; Strongin & Sergeyev, 2000). We are not aware of any extremum seeking methods based on these sampling techniques. This paper opens opportunities for further research on adapting other sampling techniques in Strongin and Sergeyev (2000) and Hansen et al. (1992a) for extremum seeking control.

The main purpose of this paper is to adapt one such algorithm – the so-called Shubert algorithm – for extremum seeking control of dynamic systems. A periodic sampled-data controller is used in order to apply the discrete-time Shubert algorithm to the continuous-time plant. Similarly to Teel and Popović (2001), the “waiting time” tuning parameter is introduced. It is shown that the closed loop system with the new extremum seeking algorithm can approximately achieve global optimization of the steady-state input–output map in the presence of local extrema. More precisely, we show semi-global practical convergence with respect to the initial state of the dynamic plant. Our proofs can be interpreted as an appropriate robustness analysis of the Shubert algorithm given in Shubert (1972); in particular, a result proved in Shubert (1972) follows directly from our analysis. The paper is organized as follows. Section 2 revisits the Shubert algorithm and in Section 3 we show how it can be adapted for extremum seeking control. The main result is stated in Section 4. A numerical example is provided in Section 5. Conclusions are presented in Section 6.

2. Revision of the Shubert algorithm

First, we present the main assumptions and an algorithm from Shubert (1972) that can be used for global optimization of
single-input–single-output (SISO) static systems. Note that this algorithm does not require the knowledge of the system model to perform the optimization and, hence, it is ideally suited for online optimization such as extremum seeking. Some knowledge of the plant model is assumed; indeed, the algorithm uses the Lipschitz constant of the model and the output measurements to construct a sequence of inputs that converge to the global extremum.

Note that Shubert (1972) considers the problem of finding the maximum of a map \(Q(\cdot) \) on a compact interval \([a, b]\). The problem is viewed as an online optimization (extremum seeking) problem for the discrete-time static SISO system (1) because the main result in the next section generalizes this problem formulation to dynamic plants. The results of Shubert (1972) directly apply to static SISO plants (1) and they are recalled in this section. The main results in the next section demonstrate how the Shubert algorithm can be applied to dynamic plants in an extremum seeking fashion.

Consider the model of a discrete-time static SISO system\(^4\)

\[
y_k = Q(u_k), \quad k = 1, 2, \ldots
\]

where \(y \in \mathbb{R} \) and \(u \in [a, b] \) are respectively the output and input of the system. Consider the system (1) on a compact interval \([a, b]\) with \(a < b \); that is, \(Q : [a, b] \to \mathbb{R} \).

In order to apply the Shubert algorithm, the following assumption is needed.

Assumption 1. The mapping \(Q(\cdot) \) satisfies the Lipschitz condition with a positive constant \(L \):

\[
|Q(u_1) - Q(u_2)| \leq L|u_1 - u_2|, \quad \forall u_1, u_2 \in [a, b].
\]

Moreover, we assume that \(L \) is known and available to the designer whereas \(Q(\cdot) \) is not.

Remark 1. In practice, the Lipschitz constant of \(Q(\cdot) \) may need to be estimated, see for example (Hansen, Jaumard, & Lu, 1992c; Meewella & Marne, 1988; Strongin, 1973). Denote the minimum value of \(L \) that satisfies (2) as \(L_{\text{min}} \). In order to ensure that the Shubert algorithm works, it is necessary that the estimated Lipschitz constant \(\hat{L} \) satisfies \(\hat{L} \geq L_{\text{min}} \). On the other hand, the larger the estimate \(\hat{L} \), the slower the convergence of the algorithm (Shubert, 1972).

Remark 2. For simplicity of presentation, this paper focuses on SISO systems to which the SISO Shubert algorithm can be directly applied. There exist algorithms that extend the Shubert algorithm to multiple inputs, see for example (Meewella & Marne, 1988; Mladineo, 1986, 1991; Pintéř, 1996). All these algorithms require an evaluation of \(2^m \) functions at each iteration, where \(m \) is the number of inputs, and hence they suffer from the curse of dimensionality. While such algorithms can still be implemented in an extremum seeking setting, the notation and derivation would be much more complicated and, hence, these details are omitted for simplicity.

Note that \(Q(\cdot) \) attains a maximum\(^5\) on the compact interval \([a, b]\) since it is Lipschitz and, therefore, continuous. The maximum value of \(Q(\cdot) \) is denoted as

\[
y^* := \max_{u \in [a, b]} Q(u)
\]

and the set of all \(u \) for which the global maximum is attained is defined as

\[
\Phi := \{ u \in [a, b] : Q(u) = y^* \}.
\]

The Shubert algorithm generates a sequence of input points \(u_1, u_2, \ldots \) within a closed interval \([a, b]\) by using measurements \(y_1, y_2, \ldots \) as follows.

Shubert algorithm:

- Arbitrarily choose\(^6\) an initial input \(u_1 \in [a, b] \).
- Find the next \(u_{k+1} \) such that the following equation is satisfied:

\[
F_k(u_{k+1}) = M_k, \quad k = 1, 2, \ldots
\]

where

\[
F_k(u) := \min_{j=1, \ldots, k} \{ y_j + L|u - u_j| \},
\]

\[
M_k := \max_{u \in [a, b]} F_k(u).
\]

The sequence of functions \(F_k(u) \) and numbers \(M_k \) for \(k = 1, 2, \ldots \) possess properties that play a key role in the convergence analysis of the Shubert algorithm, and lead to the following theorem taken from Shubert (1972).

Theorem 1. Suppose that Assumption 1 holds and that the input sequence for system (1) is generated by the Shubert algorithm. Then the following holds:

\[
l \lim_{k \to \infty} y_k = y^*.
\]

Remark 3. It was shown in Shubert (1972) that a good estimate of the maximum \(y^* \) is given by

\[
y_k^* := \max_{j=1, \ldots, k} y_j.
\]

Hence, Theorem 1 implies that \(y_k^* \) also converges to \(y^* \). Moreover, the rate of convergence of \(y^* - y_k^* \) is of order \(O \left(\frac{1}{k} \right) \) for all Lipschitz functions satisfying (2).

Remark 4. Note that the main result in Shubert (1972) also shows that \(\lim_{k \to \infty} M_k = y^* \) and \(\lim_{k \to \infty} |u_k| = 0 \), where \(|u| := \inf_{z \in \Phi} |z - u| \) denotes the distance of the point \(u \) from the set \(\Phi \). For simplicity, we only state the convergence properties of \(y_k \) in Theorem 1 and in our main result (Theorem 2), which ensure an appropriate convergence to the global maximum \(y^* \).

Remark 5. Note that the Shubert algorithm does not require derivatives of the map \(Q(\cdot) \); in fact, \(Q(\cdot) \) does not have to be differentiable everywhere.\(^7\) Moreover, the algorithm finds a global extremum on the compact set \([a, b]\) in the presence of local extrema.

3. Extremum seeking adaptation of Shubert algorithm

The diagram of the closed loop system with the proposed Shubert-based extremum seeking algorithm is shown in Fig. 1. The control objective of the extremum seeking control is to drive the trajectories of the closed loop system in Fig. 1 to eventually converge to a neighborhood of the optimum \(y^* \) without precise knowledge of the system model. Since the plant is dynamic, we will manage to achieve this only from a compact set of the plant initial states, i.e. the domain of attraction. Moreover, by increasing the sampling period \(T \) we will show that the domain of attraction of the closed loop can be made arbitrarily large and the neighborhood

\(^4\) The system is considered for \(k = 1, 2, \ldots \) instead of \(k = 0, 1, 2, \ldots \) as done in Shubert (1972); this is done to have consistent notation with the next section where the former index set more naturally arises when considering dynamic plants.

\(^5\) Without loss of generality we concentrate on finding the maximum of \(Q(\cdot) \); indeed, finding a minimum of a function \(Q(\cdot) \) can be done by defining \(Q(\cdot) := -Q(\cdot) \) and then finding a maximum of \(Q(\cdot) \).

\(^6\) Usually, the initial point is selected as \(u_1 = \frac{a+b}{2} \).

\(^7\) As the function is Lipschitz, it is differentiable almost everywhere according to Rademacher’s Theorem (Clarke, Ledyaev, Stern, & Wolenski, 1998).
of the optimum y^* to which the solutions converge can be made arbitrarily small; in other words, we achieve semi-global practical convergence.

The Shubert algorithm is applied to this dynamical system, but since the algorithm from the previous section is discrete-time and the plant (9) is continuous-time, we need to use certain analog-to-digital and digital-to-analog converters.

Fig. 1. The diagram of the closed loop system.

Remark 6. Note that in (14), (15), we use a different notation $\widetilde{F}_k(u)$ and \widetilde{M}_k as opposed to $F_k(u)$ and M_k used in (6) and (7). This is because in this section y_j is the sampled output measurement of a dynamic system.

The closed loop system consists of the plant (9), (10), the above algorithm and the sampler and zero order hold that are described above. The goal is to show that this closed loop system would achieve global extremum seeking under certain conditions. In order to prove our main results, we will assume that for each constant $u \in [a, b]$ there exists an equilibrium for (9) that is globally asymptotically stable. More precisely, we use the following.

Assumption 2. There exists a locally Lipschitz function $\ell : [a, b] \rightarrow \mathbb{R}^n$ such that
\[f(\ell(u), u) = 0, \quad \forall u \in [a, b]. \]
Moreover, there exists $\beta \in \mathcal{KL}$ such that for any $u \in [a, b]$ and $x_0 \in \mathbb{R}^n$, the following inequality holds:
\[|x(t, x_0) - \ell(u)| \leq \beta(|x_0 - \ell(u)|, t) \quad \forall t \geq 0. \]

Remark 7. Denote $Q(\cdot) := h \circ \ell(\cdot)$ (18) as the steady-state input-to-output map of (9), (10). The same assumptions are used for $Q(\cdot)$ in (18) as in the previous section. Note that the domain of $Q(\cdot)$ is a compact interval $[a, b]$ and, hence, the function $Q(\cdot)$ achieves a maximum on the interval $[a, b]$. Moreover, note that $Q(\cdot)$ is locally Lipschitz since $h(\cdot)$ and $\ell(\cdot)$ are assumed to be locally Lipschitz. Hence, the first part of Assumption 1 holds for $Q(\cdot)$ given by (18). However, as we also need to know the Lipschitz constant L of $Q(\cdot)$, we will still explicitly state that Assumption 1 holds for $Q(\cdot)$ in (18).

Remark 8. It is easy to extend our results to infinite dimensional systems in a manner similar to Teel and Popovic (2001). In this case, we would need to appropriately generalize Assumption 2. This level of generality is not pursued in order to keep the presentation simpler.

Our goal is to show that the algorithm described above can find approximately the global maximum of $Q(\cdot)$ from an arbitrary set of initial conditions and to within an arbitrary prescribed margin if the waiting time T is sufficiently large.

4. Main result

This section contains the main result of this paper (Theorem 2) that shows appropriate semi-global practical convergence of the trajectories of the closed loop system from the previous section. The domain of convergence can be enlarged and the accuracy of the algorithm improved by increasing the waiting time T. To this end, we first state an auxiliary result that will allow us to carry out our analysis in discrete-time; its proof is given in the Appendix.

Proposition 1. Consider the closed loop system consisting of the plant (9), (10), sampler (12), zero order hold (11) and the extremum seeking algorithm. Suppose that Assumption 2 holds. Then, for any strictly positive pair (Δ, υ) there exists $T > 0$ such that for any $|x_0| \leq \Delta$ and any $u \in [a, b]$, $k = 1, \ldots$ have that
\[|x_k| \leq \ell_{max} + 1 \quad \text{for } k = 1, 2, \ldots, \]
\[y_k - Q(u_k) \leq \upsilon / |u_k| \quad \text{for all } k = 1, 2, \ldots, \]
where $\ell_{max} := \max_{u \in [a, b]} |Q(\ell(u))|$. □

8 A function $\beta : \mathbb{R}_{>0} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ is of class \mathcal{KL} if for each fixed $t \geq 0$ the function $\beta(\cdot, t)$ is continuous, zero at zero and strictly increasing and for each $s \geq 0$ the function $\beta(s, \cdot)$ is strictly decreasing to zero.
Remark 9. Note that we cannot claim in Proposition 1 that \(|y_k - \ell (u_k)| \leq \nu \); indeed, the proof uses the stability properties stated in Assumption 2 to bound the solutions after the waiting time \(T \) has elapsed. Hence the name "waiting time".

The main result of this paper is stated next.

Theorem 2. Consider the closed loop system consisting of the plant (9), (10), sampler (12), zero order hold (11) and the extremum seeking algorithm. Suppose Assumptions 1 and 2 hold. Then, for any \(|x_0| \leq \Delta \) and for some \(\nu > 0 \) in Proposition 1; consequently, Theorem 2 is stated with strictly positive \(\nu \). In particular, formally if we let \(T \) be the waiting time. Notethat Theorem 2 establishes semi-global asymptotic stability of the set of minimizers \(\Phi \); note that in principle sampling algorithms, like the Shubert algorithm, could be used within the framework of Teel and Popović (2001) if they satisfy appropriate conditions. Indeed, Theorem 1 states that the Shubert algorithm yields attractivity of \(\Phi \). Our main result (Theorem 2) states that attractivity of \(\Phi \) is robust under perturbations generated by the plant dynamics. Note that Shubert algorithm is not uniformly stable, which is required to use the results in Teel and Popović (2001). Indeed, if we initialize the Shubert algorithm from the set of minimizers \(\Phi \), the algorithm would generate trajectories that exit \(\Phi \) and then take time to converge to it; this behavior is not possible for uniformly stable systems which would have the set \(\Phi \) as their set of equilibria.

Remark 10. The convergence rate of the sampled outputs \(y^* - y_k \) is \(O \left(\frac{1}{k} \right) \), see Remark 3, but the rate of convergence of \(y(t) \) to the \(v \)-neighborhood of the origin is of the order \(T \cdot O \left(\frac{1}{k} \right) \), where \(T \) is the waiting time. Note that Theorem 2 establishes semi-global practical convergence of the closed loop in the parameter \(T \). In particular, the domain of attraction \(|x_0| \leq \Delta \) can be arbitrarily large and the accuracy of the algorithm that is measured by \(\nu \) can be arbitrarily small. However, the waiting time \(T \) is necessarily larger for a larger domain of attraction (larger \(\Delta \)) and/or better accuracy of the algorithm (smaller \(\nu \)) and, hence, the convergence of \(y(t) \) to a neighborhood of the maximum \(y^* \) is slower. This tradeoff was observed in other, e.g. gradient based, extremum seeking schemes, see (Tan et al., 2006).

Remark 11. Note that the domain \([a, b]\) of the map \(Q(\cdot) \) that we are optimizing is compact. Hence, global optimization is with respect to this compact interval.

Remark 12. The proof that we present below is an appropriate generalization of the proof in Shubert (1972). In particular, we will show below that the sampled behavior of the dynamic closed loop system given by (22) is a perturbed version of the algorithm for static plants given by (1). More precisely, we show that the algorithm (1) is robust to small additive perturbations. In particular, formally if we let \(\nu = 0 \) in the conclusion of Theorem 2 we get that

\[
y^* - \nu \leq \liminf_{k \to \infty} y_k \leq \limsup_{k \to \infty} y_k \leq y^* + \nu.
\]

which implies that

\[
\liminf_{k \to \infty} y_k = \limsup_{k \to \infty} y_k = y^*.
\]

Hence, we can recover the result of Theorem 1 if we consider static plants. However, we note that for dynamic plants with finite waiting times it is not reasonable to expect that \(\nu = 0 \) in Proposition 1; consequently, Theorem 2 is stated with strictly positive \(\nu \).

Remark 13. Our results can be easily extended to the case when the measured output is contaminated by measurement noise, which is a more realistic scenario. We note that all our results can be appropriately adjusted in the following manner. Suppose that the measured output is \(y(t) = h(x(t)) + n(t) \), where \(n(t) \) is the noise satisfying

\[
\esssup_{[t_0, t]} |n(t)| \leq \nu_m
\]

for some \(\nu_m > 0 \). Theorem 2 can be rephrased as follows.

Suppose Assumptions 1 and 2 and (19) hold. Then, for any strictly positive \((\Delta, \nu) \), there exist \(T > 0 \) and \(\nu_m > 0 \) such that for any \(|x_0| \leq \Delta \) we have that the following holds for the closed loop system:

\[
y^* - \nu \leq \liminf_{k \to \infty} y_k \leq \limsup_{k \to \infty} y_k \leq y^* + \nu.
\]

The proof of the above fact follows almost the same steps as the proof of Theorem 2 and it is omitted for simplicity.

Remark 14. Our result is somewhat similar to the results in Teel and Popović (2001), where a framework for the extremum seeking control design method was presented for nonlinear programming (NLP) type optimization algorithms. However, the proof of our result is different from that in Teel and Popović (2001).

(1) Note that while the results in Teel and Popović (2001) were motivated by NLP algorithms, they are general enough to apply to any algorithm of the type

\[
u^+ \in F(u, G(u))
\]

that satisfies appropriate Lyapunov conditions for uniform asymptotic stability of the set of minimizers \(\Phi \); note that in principle sampling algorithms, like the Shubert algorithm, could be used within the framework of Teel and Popović (2001) if they satisfy appropriate conditions. Indeed, Theorem 1 states that the Shubert algorithm yields attractivity of \(\Phi \). Our main result (Theorem 2) states that attractivity of \(\Phi \) is robust under perturbations generated by the plant dynamics. Note that Shubert algorithm is not uniformly stable, which is required to use the results in Teel and Popović (2001). Indeed, if we initialize the Shubert algorithm from the set of minimizers \(\Phi \), the algorithm would generate trajectories that exit \(\Phi \) and then take time to converge to it; this behavior is not possible for uniformly stable systems which would have the set \(\Phi \) as their set of equilibria.

(2) Note that in Teel and Popović (2001), the stability properties of the NLP algorithm were shown for any trajectory generated from the NLP algorithm. In the Shubert algorithm, the initial condition of input sequence is usually fixed. Our result (Theorem 2) shows the robustness of the Shubert algorithm with this given initial condition.

(3) We have used an alternative proof technique to Teel and Popović (2001) in order to prove our main results; a subtle difference with Teel and Popović (2001) is that Theorem 2 states (practical) convergence from a compact set \(u_0 \in [a, b] \) whereas the results in Teel and Popović (2001) assume the domain of attraction of (21) to be \(\mathbb{R}^n \) and conclude (practical) convergence from compact subsets \(u_0 \in D \subset \mathbb{R}^n \).

We note that the Shubert algorithm may produce control inputs \(u_k \) that yield undesirable plant transients for some plants since they may be "too aggressive" with large jumps at different consecutive samples. Modifying the algorithm to use "less aggressive" sampling techniques is an interesting topic for further research; however, we believe that this issue is outside the scope of this paper. We present some simulation results in the following to illustrate what the sequence \(u_k \) may look like as an example.

Proof of Theorem 2. Let \((\Delta, \nu) \) be given and let \((\Delta, \frac{\nu}{2}) \) generate \(T > 0 \) via Proposition 1. Consider an arbitrary \(|x_0| \leq \Delta \) and the corresponding sequence of measurements \(y_k \) and control inputs \(u_k \) that result from the closed loop system. Note that for all \(k = 1, 2, \ldots \), we can write

\[
y_k = Q(u_k) + w_k,
\]

where \(w_k := y_k - Q(u_k) \) and \(Q(\cdot) \) comes from (18). The controller in the closed loop system produces a corresponding sequence of inputs \(u_k \) and this results in a sequence of outputs \(y_k \). Note that for every different initial condition \(x_0 \) we obtain different sequences \(u_k, y_k, w_k \); however, since we fixed \(x_0 \), all sequences are fixed.
Moreover, from Proposition 1 we always have that $|u_k| \leq \frac{\epsilon}{3}$ holds for all $k = 1, 2, \ldots$. The first observation is that since we have that $y_k = Q(u_k) + w_k \leq y^* + \frac{\epsilon}{3} \leq y^* + \nu$ for all k, then we have that
\[
limit_{k \to \infty} y_k \leq y^* + \nu.
\] (23)

Hence, the last inequality in Theorem 2 holds. Moreover, by definition we have that $\lim inf_{k \to \infty} y_k \leq \lim sup_{k \to \infty} y_k$ and the only thing left to prove is that
\[
limit_{k \to \infty} y_k \geq y^* - \nu.
\] (24)

Note that since \tilde{M}_k is a nonincreasing sequence that is bounded, it has a limit that is denoted as $\tilde{M} = \lim_{k \to \infty} M_k$. Obviously, we have that
\[
\tilde{M}_k \geq \tilde{M}, \quad \forall k.
\] (25)

Let z be a limit point of u_k: that is, there exists a subsequence u_{n_k} of the sequence u_k that converges to z. Note that if u_k is bounded, by the Bolzano–Weierstrass Theorem (Fitzpatrick, 2006), there exists at least one limit point. Moreover, denote as $Z \subset \mathbb{R}$ the set of all limit points of u_k. Then, since $Q(\cdot)$ is continuous we have that
\[
limit_{k \to \infty} Q(u_k) = \lim_{z \to \tilde{M}} Q(z).
\] (26)

Consider the set $U := \{u \in [a, b] : u = u_k$ for some $k = 1, 2, \ldots \}$ in two different cases.

Case 1: The set U has infinitely many distinct elements.

There is no loss of generality to assume that $u_m \neq u_n$ for all $m \neq n$. In this case, the set U is infinite and since it is bounded it has at least one limit point z. It is shown next that for any limit point $z \in Z$ we have that the following holds:
\[
Q(z) \geq \tilde{M} - \frac{\nu}{3}.
\] (27)

For the purpose of showing contradiction, assume that there exists some arbitrary (small) $\epsilon > 0$ so that
\[
Q(z) \leq \tilde{M} - \frac{\nu}{3} - \epsilon.
\] (28)

Let u_{n_k} be the sequence of points converging to z and let $n(\epsilon)$ be such that
\[
n \geq n(\epsilon) \Rightarrow |u_{n_k} - z| < \frac{\epsilon}{2L}.
\] (29)

Using (2), (28) and (29), we conclude that $n \geq n(\epsilon)$ implies
\[
Q(u_{n_k}) + w_{n_k} \leq L |u_{n_k} - z| + Q(z) + \frac{\nu}{3} < \tilde{M} - \frac{\epsilon}{2}.
\] (30)

Moreover, from (14) we have that for all $k \geq k_{n(\epsilon)}$ the following holds for all $u \in [a, b]$:
\[
\tilde{F}_k(u) \leq \tilde{F}_k(u) \leq L |u - u_{n_k}| + Q(u_{n_k}) + w_{n_k}.
\] (31)

Using (30) and (31) we conclude that for any $n \geq n(\epsilon)$ we have that $k \geq k_{n(\epsilon)}$ and $|u - u_{n_k}| \leq \frac{\epsilon}{2L}$ imply that
\[
\tilde{F}_k(u) \leq L |u - u_{n_k}| + Q(u_{n_k}) + w_{n_k} < \tilde{M}.
\] (32)

This together with (13) and (25) implies that if $k \geq k_0$ then there does not exist $u_{n_k} \in \left[u_{n_k} - \frac{\epsilon}{2L}, u_{n_k} + \frac{\epsilon}{2L}\right]$, which contradicts the fact that z is a limit point. Hence, we conclude that all limit points $z \in Z$ satisfy (27); hence, $\inf_{z \in Z} Q(z) \geq \tilde{M} - \frac{\epsilon}{2}$. Using the fact that $y_k \geq Q(u_k) - \frac{\nu}{3}$ for all k we can write using (27) that
\[
limit_{k \to \infty} y_k \geq \lim_{k \to \infty} Q(u_k) - \frac{\nu}{3} = \lim_{z \to \tilde{M}} Q(z) - \frac{\nu}{3} \geq \tilde{M} - \frac{2\nu}{3}.
\] (33)

Moreover, note that we also have for any $u^* \in \Phi$ that
\[
\tilde{M}_k = \max_{u \in [a, b]} \{y_j + L |u - u_j|\}
\]
\[
\geq \min_{j = 1, \ldots, k} \{Q(u_j) + w_j + L |u^* - u_j|\}
\]
\[
\geq Q(u^*) + \min_{j = 1, \ldots, k} w_j \geq y^* - \frac{\nu}{3}, \quad \forall k.
\] (34)

Hence, the following holds:
\[
\tilde{M} \geq y^* - \frac{\nu}{3}.
\] (35)

and together with (33) the expression (24) holds in this case.

Case 2: The set U has finitely many distinct elements.

In this case, it is clear that there exists $n \geq 0$ such that $u_m = u_n$ for all $m > n$. The proof goes along similar lines to the previous case but now we consider the sequence $u_m = u_n$ for all $m \geq n$. It is first proved that
\[
Q(u_m) \geq \tilde{M} - \frac{\nu}{3} \quad \forall m \geq n.
\] (36)

For the purpose of showing contradiction we assume that there exists an arbitrarily small $\epsilon > 0$ such that
\[
Q(u_m) \leq \tilde{M} - \frac{\nu}{3} - \epsilon \quad \forall m \geq n.
\] (37)

Consider an arbitrary $m \geq n$, and using (37) we conclude that
\[
Q(u_m) + w_m \leq Q(u_m) + \frac{\nu}{3} \leq \tilde{M} - \epsilon < \tilde{M},
\] (38)

but this implies that
\[
\tilde{f}_m(u_{m+1}) = \tilde{f}_m(u_m) \leq \tilde{f}_m(u_n)
\]
\[
\leq L |u_m - u_n| + Q(u_n) + w_n
\]
\[
= Q(u_n) + w_n < \tilde{M},
\] (39)

which contradicts the existence of u_{m+1} satisfying (13). Hence, we have that (36) holds and then this together with (35) implies that for all $m \geq n$ we have
\[
y_m = Q(u_m) + w_m \geq Q(u_m) - \frac{\nu}{3}
\]
\[
\geq \tilde{M} - \frac{2\nu}{3} \geq y^* - \nu.
\] (40)

Hence, (24) holds and this completes the proof. □

5. A numerical example

In order to illustrate the effectiveness of the proposed global extremum seeking algorithm, a simple linear-time-invariant system is considered:
\[
\left[\begin{array}{c}
x_1 \\
x_2
\end{array}\right] = \left[\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right] \left[\begin{array}{c}
x_1 \\
x_2
\end{array}\right] + \left[\begin{array}{c}
0 \\
1
\end{array}\right] u, \quad x_0 = \left[\begin{array}{c}
5 \\
2
\end{array}\right],
\]
\[
y = x_1 - \sin(3x_1) + 1.
\] (41)

A simple calculation yields $\ell(u) = -(A)^{-1}Bu$, where $A := \left[\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right]$ and $B := \left[\begin{array}{c}
0 \\
1
\end{array}\right]$. The input–output map of the system becomes
\[
Q(u) = \frac{u}{6} - \sin \left(\frac{u}{2}\right) + 1.
\]
As shown in Fig. 2, \(Q(\cdot) \) has three maxima with a global maximum \(y^* = 7.82 \) (red dotted line in Figs. 3 and 5) at \(u^* = 35.24 \) when the input \(u \) is in a compact set \([0, 39]\). This \(Q(\cdot) \) comes from Hansen, Jaumard, and Lu (1992b, Problem 19, Table 1).

First, we fix the Lipschitz constant \(L = \frac{7}{3} \) which comes from Hansen et al. (1992b) and compare the performance of global extremum seeking for two different choices of the waiting time. By using MATLAB, the settling time (2%) of this system can be obtained as 2.5 s\(^9\); \(T = 4 \) (larger than the settling time) and \(T = 0.1 \) (much smaller than the settling time) are used.

Fig. 3 clearly shows that the longer the waiting time \(T \), the better the accuracy (smaller \(\nu \)) will be. The longer waiting time also leads to a slow convergence. There is an obvious design trade-off between the accuracy and the convergence speed.

Fig. 4 also shows first 49 inputs obtained from the input sequence computed from the Shubert algorithm for dynamic systems when \(T = 4 \). It indicates that the input sequence converges quickly to a small neighborhood of the optimal input \(u^* = 35.24 \).

Next, we investigate the performance of the global extremum seeking when a conservative estimate of the Lipschitz constant is used, for example \(L = 5 \) (instead of \(\frac{7}{3} \)). For simplicity of presentation, we fix \(T = 4 \) to compare the effect of estimated \(L \). From Fig. 5, it is clearly seen that when a conservative \(L \) is used, the proposed global extremum seeking still works. However, the convergence speed is much slower.

6. Conclusion

This paper proposed a global extremum seeking scheme for nonlinear dynamic systems by combining a “sampling optimization method”, the so-called Shubert algorithm, and dynamic nonlinear plants. Global optimization is proved on compact sets of inputs for static plants and semi-global practical convergence is achieved for dynamic plants where the waiting time \(T \) is the parameter that needs to be adjusted. Numerical simulations are provided to demonstrate the proposed scheme. This work opens new research opportunities for the adaptation of the sampling optimization algorithms in Strongin and Sergeyev (2000) in the context of extremum seeking control.

Appendix

Proof of Proposition 1. Let \(\beta(\cdot, \cdot) \) and \(\ell(\cdot) \) come from Assumption 2. Let \((\Delta, \nu) \) be given. Let \(L_h \geq 0 \) be the Lipschitz constant of \(h(\cdot) \) on the set \(|x| \leq \ell_{max} + 1 \) and let \(T > 0 \) be such that

\[
\beta(\Delta + 2\ell_{max} + 1, T) \leq \min \left\{ \frac{\nu}{L_h(2\ell_{max} + 1)}, 1 \right\}.
\]
Consider an arbitrary $|x_k| \leq \Delta$ and $u_k \in [a, b]$ for all k. Then, from our choice of T, Assumption 2 and the fact that $\beta \in \mathcal{KL}$ we have that

$$|x_1 - \ell(u_1)| \leq \beta(|x_0 - \ell(u_1)|, T) \leq \beta(\Delta + \ell_{\text{max}}, T) \leq 1,$$

which implies $|x_1| \leq \ell_{\text{max}} + 1$; this, in turn, implies $|x_1 - \ell(u_2)| \leq 2\ell_{\text{max}} + 1$. Moreover, by using our choice of T, the time invariance of (9), $\beta \in \mathcal{KL}$ and induction we have that for all $k \geq 2$ the following holds:

$$|x_k - \ell(u_k)| \leq \beta(|x_{k-1} - \ell(u_k)|, T) \leq \beta(\Delta + 2\ell_{\text{max}} + 1, T) \leq 1.$$

(42)

Hence, we have that $|x_k| \leq \ell_{\text{max}} + 1$ for all $k \geq 1$, which proves the first claim. Then, using our choice of T it directly follows that for all $k \geq 1$,

$$|y_k - Q(u_k)| = |h(x_k) - h \circ \ell(u_k)| \leq L_0|x_k - \ell(u_k)| \leq L_0\beta(|x_{k-1} - \ell(u_k)|, T) \leq L_0\beta(\Delta + 2\ell_{\text{max}} + 1, T) \leq v,$$

(43)

which completes the proof. □

References

Dragan Nešić is a Professor in the Department of Electrical and Electronic Engineering (EEE) at The University of Melbourne, Australia. He received his BE degree in Mechanical Engineering from The University of Belgrade, Yugoslavia in 1990, and his Ph.D. degree from Systems Engineering, RSI, Australian National University, Canberra, Australia in 1997. Since February 1999 he has been with The University of Melbourne. His research interests include networked control systems, discrete-time, sampled-data and continuous-time nonlinear control systems, input-to-state stability, extremum seeking control, applications of symbolic computation in control theory, hybrid control systems, and so on. He was awarded a Humboldt Research Fellowship (2003) by the Alexander von Humboldt Foundation, an Australian Professorial Fellowship (2004–2009) and a Future Fellowship (2010–2014) by the Australian Research Council. He is a Fellow of IEEE and a Fellow of IEEAust. He is currently a Distinguished Lecturer of CSS, IEEE (2008 to the present). He has served as an Associate Editor for the journals Automatica, IEEE Transactions on Automatic Control, Systems and Control Letters and European Journal of Control.

Ying Tan received her Bachelor from Tianjin University, China in 1995. In 1998, she joined the National University of Singapore and finished her Ph.D. study in 2002. She joined McMaster University in 2002 as a Postdoctoral Fellow in the Department of Chemical Engineering. She has worked in the Department of Electrical and Electronic Engineering, the University of Melbourne since 2004. Currently Dr. Ying Tan is a Future Fellow (2010–2013), which is a research position funded by the Australian Research Council. Her research interests are in intelligent systems, nonlinear control systems, real time optimization, sampled-data distributed parameter systems and formation control.

Chris Manzie received his B.S. degree in Physics, his B.E. degree (with honors) in Electrical and Electronic Engineering and his Ph.D. degree from the University of Melbourne, Melbourne, Australia, in 1996 and 2001, respectively. Since 2003, he has been affiliated with the Department of Mechanical Engineering, University of Melbourne, where he is currently an Associate Professor and an Australian Research Council Future Fellow. He was a Visiting Scholar with the University of California, San Diego in 2007, and a Visiteur Scientifique at IFP Energies Nouvelles, Paris in 2012. He has industry collaborations with companies including Ford Australia, BAE Systems, ANCA Motion and Virtual Sailing. His research interests lie in applications of model-based and extremum-seeking control in fields including mechatronics and energy systems. Associate Professor Manzie is a member of the IEEE and IFAC Technical Committees on Automotive Control.