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Abstract—The state of charge management of plug in hybrid
vehicles differs from their non-plug in counterparts through
the utilisation of a charge depleting mode of operation. Several
studies have shown that a blended mode of charge depletion
holds fuel economy advantages over a charge depletion and
charge sustaining combination, however these approaches assume
knowledge of the total journey distance. Here, this assumption
is relaxed and the state of charge trajectory recalculated online
using a weaker assumption that only a probability distribution
accumulated over past trips is available. The benefits relative to
other potential strategies are assessed in terms of relative fuel
consumption and tailpipe CO2 emissions.

I. INTRODUCTION

With up-front costs and range anxiety often cited as de-
tractors for fully electric vehicles, plug-in hybrids potentially
offer an alternative for consumers and fleets seeking lower
running costs and tailpipe emissions. Many of the current
plug in hybrid electric vehicle (PHEV) architectures utilise
a parallel powertrain arrangement, and as with parallel hybrid
powertrains, the fuel economy of a plug-in variant is affected
by how the battery and engine are scheduled.

While initial work on PHEVs considered using a charge
depletion-charge sustaining strategy, where the vehicle was run
in EV-mode until some state of charge limit was reached, the
benefits of utilising a blended mode of operation were noted
in [1], [2]. Various heuristic methods have been suggested to
capitalise on the extra degree of freedom offered by plug-in
capability [3], [4].

To ensure optimality of blended mode operation however,
both the distance between recharges and the driving conditions
must be known a priori. Stochastic dynamic programming
using a set of possible drive cycles has been suggested as one
way of coping with unknown drive cycle information [5], but
requires potentially large computation time and the existence
of statistically relevant datasets.

Equivalent charge maintenance strategies (ECMS) using
Pontryagin’s Minimum Principle have been analytically shown
to be fuel optimal for parallel hybrid powertrains (see e.g.
[6]) when state constraints are not active. ECMS was first

demonstrated on plug-in hybrids using large datasets of drive-
cycles in [7]. The exact implementation of ECMS strategies
requires the drive cycle to be known in advance, so that
the fuel-optimal Lagrange parameter (denoting the equivalent
cost ratio of fuel and electricity to ensure the state of charge
endpoint is met) may be calculated.

The fuel performance of ECMS strategies has previously
been shown to be reasonably approximated by adapting the
Lagrange multiplier using feedback on the state of charge [8].
To update in this manner requires a reference state of charge
trajectory, which ideally should estimate the possible future
regeneration capability of the battery. This latter point includes
consideration of vehicle deceleration due to traffic or terrain,
with some small advantage in altitude profile observed in
[9]. Meanwhile, [10] demonstrate an approach for developing
a state of charge reference for use with charge sustaining
operation of parallel hybrids, although extending to PHEVs
still requires knowledge of the trip duration - a common
assumption in PHEV energy management.

In this work the assumption of known trip duration is
partially relaxed. It is assumed that a probability density
function of distance between recharges is available, and this
is used in to develop a state of charge reference trajectory.
Tracking of the reference trajectory using an adaptive ECMS
approach on a comprehensive simulation platform using a
prototype PHEV is undertaken to establish the benefits of the
proposed approach.

II. SIMULATION BACKGROUND

The vehicle used is a prototype developed at IFP Energies
Nouvelles and based on the platform of a Renault Kangoo
van. It is a parallel hybrid with potential plug-in (PHEV)
functionality. The vehicle is equipped with a PSA ET3J4
engine which is a naturally aspirated, 4-cylinder, 1.346 L
gasoline engine producing maximum torque of 120 Nm and
maximum power of 65 kW.

A five speed robotized gear box mediates between the en-
gine and the differential. As well as the 37.7kW, 36Nm Parvex
electric motor having maximum speed of 20000 rev/min, there
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Fig. 1. Drive cycles used. (Top) WLTP cycle (bottom) a repeated modem-
Hyzem base urban cycle

is also a Starter-Generator (SSG) available in the powertrain.
The SSG in the present architecture is only used to start up
the engine and not to supply power to the wheels and it is
powered separately through a lead acid battery. The energy
storage system has a Li-Ion cell based battery of capacity 39Ah
and voltage between 145 V to 216 V.

The vehicle’s electrical and fuel consumption was estimated
over different driving conditions using the Hybrid Opimiza-
tion Tool (HOT), an in-house software developed within IFP
Energies Nouvelles that contains detailed sub-models derived
from experimental data, and used for optimizing energy man-
agement in hybrid vehicle using principles of optimal control.
This software, has previously been used in the development
and optimisation of many hybrid powertrain controllers, see
for example [11]–[13].

As the focus of PHEV usage is in urban environments, two
urban cycles were used as the basis of the simulated drive
cycles. The World Harmonized Light Duty Test Procedure
(WLTP) is mooted to become the regulatory cycle in several
countries [14], while several repetitions of a modem-Hyzem
urban base cycle [15] were also used. Both cycles are illus-
trated in Figure II. The WLTP cycle lasts 1800 seconds and
covers 23.195km, while the iterations of the modem-Hyzem
urban cycle lasts 2800 seconds and covers 17.348km.

These were combined as discussed in the relevant latter sec-
tions of this manuscript to produce cycles of longer durations.

III. PHEV POWERTRAIN CONTROLLER

The powertrain controller used here is an optimal approach
based on initial work in [6]. Although the focus of this work is
on the generation of the battery state of charge reference, the
map-based optimal powertrain controller is summarised here

given it’s relevance. Quasi-steady maps of fuel and charge
consumption, mf and q respectively, are used in a general
Hamiltonian-based controller design for a hybrid powertrain
with control inputs u:

Mf =

∫
f(u, t)dt (1)

Q =

∫
g(u, t)dt (2)

Given the quasi-steady assumption, the control variables
are the engine and motor operating points. In a Pontryagin’s
Minimum Principle-based controller such as described in [6],
the resulting Hamiltonian may then be described as

H(f, g, u, t) = f(u, t) + s(t)g(u, t) (3)

In the map-based implementation utilised here, mutliple
values of the Hamiltonian are obtained from the drive cycle
speed and the torque required to ensure this is followed.
This process involves finding the relevant engine speed for
each gear to meet the drive cycle request. For each gear, the
Hamiltonians are then calculated by sampling the surfaces f
at a range of engine torques, and g for the remaining torque
from the electrical machine required for the vehicle to follow
the drive cycle. Values that result in violation of imposed
constraints are disregarded and the remaining gear ratio and
torque split are compared to determine the combination with
the minimum Hamiltonian, which represents the optimal input
combination, u∗ by Pontryagin’s Minimum Principle.

If the constraint set is represented by Ut, the whole process
is represented by the operation:

u∗(t) = arg min
u∈Ut

H(f, g, u, t) (4)

Note that s is termed the equivalence factor as it represents
the fuel-electricity equivalence, hence any approaches using
a Hamiltonian of the form (3) are termed Equivalent Charge
Management Strategies. If the drive cycle is known a priori,
the optimal value s(t) := s∗ can be determined numerically
as the constant that drives battery state of charge at the end
of the cycle to a desired level.

In practice of course, the full drive cycle is unknown. How-
ever, a close-to-optimal, time varying s(t) can be continually
updated to enforce tracking of a given state of charge reference
trajectory, qref . For non-plug in hybrids, the value of qref is
a constant, as overall charge sustaining operation is sought.
The scheduling of qref for PHEV operation will be dealt
with in subsequent sections, but can be considered as varying
with distance travelled, hence it is more appropriate to now
parameterise the state of charge and Lagrange multipliers in
terms of distance, x, rather than time.

It can be reasoned that the relationship from s to q implicitly
has a type of integral action, and so for relatively slowly
varying reference states arbitrarily close tracking may be
achieved with an update law of the form:

s(x) = s0 +Kp(q(x)− qref (x)) (5)
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Fig. 2. Effect of gain Kp on time varying Lagrange variable

Setting the value of Kp is a tuning exercise, whereby
larger values lead to faster convergence to the optimal value
for the cycle, but may also cause rapid mode shifts as the
ECMS controller reacts to a rapidly changing relative cost.
These mode shifts can induce net fuel penalties when excess
fuel is required for engine start, although these are typically
unmodelled in the literature. The situation is illustrated for
four different values of Kp during the modem-Hyzem base
cycle in Figure 2, where the optimal value of the Lagrange
multiplier may be calculated offline as s∗ = 2.375, but the
initial guess used in (5) is s0 = 2.5. Based on this result,
Kp = 10 is considered a reasonable compromise and used
subsequently throughout this work.

IV. PROPOSED STATE OF CHARGE REFERENCE
GENERATION

In [16], the importance of uncertainty in the fuel maps used
by the Pontryagin’s Minimum Principle-based hybrid con-
troller was assessed. In this work, the uncertainty associated
with vehicle operation is linked with aspects external to the
vehicle and principally focussing on the journey undertaken.
Note that in this work, journey refers to the distance travelled
between grid-based recharging of the battery, and may actually
constitute multiple shorter trips.

Thus while all on-board variables required by the hybrid
powertrain controller (such as the fuel and electrical con-
sumption maps, battery limits etc) are assumed accessible,
only a probability density function of the total trip distance
between recharging, pX(xf ), is available to schedule the state
of charge reference trajectory. Of course, if more detailed
trip information is known, the p.d.f. will collapse to a delta
function and existing approaches may be retrieved.

However, in order to aid in the initial development of the
state of charge reference trajectory, the value of xf is assumed
known and the following cost function relating to the state of

charge as a function of distance, q(x), is introduced:

J :=

∫ xf

0

(
dq(x)

dx

)2

dx (6)

Note that this cost does not apply any penalty on the current
value of q(x), implying that there is only weak influence of
battery state of charge on the overall optimal trajectory. The
following Lemma is used to prescribe a trajectory for the
virtual state of charge from an arbitray initial state, q(0) to
a desired state at the end of the journey, q(xf ).

Lemma 1: If battery efficiency is sufficiently weakly de-
pendant on battery state of charge, a locally optimal (in the
context of (6)) virtual reference trajectory is:

q∗(x) = q(0) +
x

xf
(q(xf )− q(0)) (7)

Proof: Let u(x) = dq(x)
dx have a small linear perturbation

from constant, i.e. u(x) = (ū− δ)+ 2δx
xf

, where |δ| < ū and ū
is chosen to achieve desired qv(xf ). It is readily shown that

dJq
dδ

= −2

3
δxf (8)

It follows that δ = 0 minimises (6) and consequently the
result of the lemma holds.

If the battery efficiency varies significantly with state of
charge, the cost function J may be adjusted to include a state-
dependant term. This leads to an optimal trajectory requiring
the solution of a Riccati-like equation, and the overall problem
with uncertain end distance becomes somewhat analogous
to the problem described in [17]. In essence, the optimal
trajectory will form a slight curve with greater durations spent
in higher efficiency state of charge regions, although the ability
of the controller (5) to track such a curve sufficiently closely
to take advantage of any non-uniformities in battery efficiency
was not observed.

A. Augmentation for uncertainties

The previous section utilised exact knowledge of the final
distance in developing the reference trajectory in the absence
of height and velocity considerations, which may act as
sources of ’virtual’ state of charge courtesy of potential and
kinetic pathways. To account for these factors and incorporate
the estimate of final distance, the reference trajectory (7) is
now modified slightly as follows:

qv(x) = q(0) +
x

x̂f
(q(x̂f )− q(0) + ∆q) (9)

The term ∆q is added to avoid charge sustaining operation
at q = qmin, as the state of charge constraint enforced on the
ECMS controller leads to effectively purely ICE-mode with
significantly reduced efficiency during this operation. If full
drive cycle information were available, the necessary magni-
tude of ∆q to just avoid encountering the battery constraint



can be precisely stated in terms of the velocity and altitude,
i.e.:

∆q =qmin −min
x

[
qref (x)−

ηregen,pmg

Cbatt
(h(x)− h(xf ))− ηregen,k

Cbatt

1

2
mv2(x)

]
(10)

The penultimate and final terms in (10) represent the re-
generation of potential and kinetic energy to state of charge
respectively. The regenerative fractions, ηp,regen and ηk,regen,
can be approximated by constants that are determined by
comparing optimal solutions obtained from offline PMP with
the linear trajectories. It is also clear that the relevance of
the velocity and altitude corecton decreases with increasing
battery capacity, Cbatt.

The incorporation of these influences on the state of charge
trajectory may mean that without the inclusion of ∆q , the
reference may be scheduled below qmin. This invokes the
state constraint on battery state of charge, and hence fuel
optimality is potentially lost. The inclusion of ∆q in (10)
allows the minimum possible state of charge to be obtained by
the battery without encountering the state constraint. However
as in practice full drive cycle is unavailable, bounds δh and
δv may be used used in the following more conservative
approach:

∆q =
ηregenmg

Cbatt
δh +

ηregen
Cbatt

1

2
mδ2v (11)

In essence this represents somewhat of a trade-off, in that
selecting ∆q too low may lead to encountering the state
constraint, while selecting it too high leads to incomplete
utilisation of the battery. The final aspect to consider is the
estimation of the final distance, x̂f . Using the available p.d.f.
of trip duration, a conditional expectation based on the current
distance travelled, x, may be used as follows:

x̂f (x) = E (xf |x)

=

∫∞
x
x̄pX(x̄)dx̄∫∞

x
pX(x̄)dx̄

(12)

Note that x̂f (x) is completely calculable from (12) a
priori, leading to a reference state of charge trajectory (9)
known before the journey begins. This is then used online in
conjunction with the adaptive ECMS strategy (5).

V. RESULTS

To assess the performance of the proposed approach, simu-
lations were conducted on composite cycles with end distances
stochastically determined within the cycle by a specified
probability distribution. No altitude variation was augmented
onto the cycles , however the existence of altitude is en-
compassed by using ∆q = 0.05 in (9). This corresponds to
an altitude difference with the altitude at the end of journey
of approximately 150m - which is approximately the largest
variation within the Rueil Malmaison area where IFP Energies
Nouvelles is based.

To provide a benchmark, other alternative strategies were
considered as described below:

• Charge depleting-charge sustaining (CD-CS) strategy
This involves running in electric-only mode until the
minimum state of charge level is reached, and then
switching to a charge sustaining operation about this
level.

• Shortest journey This assumes the shortest journey
possible from pX(x) is undertaken in all journeys, and
linearly schedules SoC accordingly. If the distance is
surpassed, the strategy switches to charge sustaining.

• Mean journey This assumes the mean journey distance
evaluated before the trip, x̂(0), is undertaken in all jour-
neys. If the distance is surpassed, the strategy switches
to charge sustaining.

• Longest journey This assumes the longest journey dis-
tance is undertaken in all journeys. This strategy never
requires a charge sustaining mode.

The performance of each approach was measured according
to both financial and environmental considerations over the
weighted average of all possible end durations in each cycle.
The financial assumptions used in the performance assess-
ments are the cost of fuel and electricity are 1.4 Euro/litre
and 0.2 Euro/kWh respectively. The emissions intensity of
electricity is assumed to be 94.7gCO2/MJ and 148gCO2/MJ in
Europe and the USA respectively, while gasoline is assumed
to have an emissions intensity of 2.32 kg CO2/litre.

Two types of probability distribution are now considered,
with a bi-delta distribution used to illustrate the approach, and
then a more representative distribution for PHEV operation.

A. Bi-delta distance probability distribution

In the first case study to demonstrate the proposed state
of charge reference generator, a drive cycle composed of two
iterations of the WLTP cycle, followed by two iterations of the
modem-Hyzem base cycle and finished with a further iteration
of the WLTP cycle is considered. The trip duration is assumed
to take a bi-delta distribution, with probability p the vehicle
is recharged after the first two WLTP cycles (46 km) and
probability 1− p the full cycle is undertaken (104km).

The different state of charge reference strategies are de-
picted in Figure 3, for p = 0.2, and encapsulate the tradeoff
facing the approach. In the case of the CD-CS strategy, there
will always be good utilisation of the available battery storage,
but extended operation at the lower state of charge limit and
the associated constrained operation by the ECMS algorithm
during the charge sustaining operation has the potential to
lead to fuel penalties. On the other hand, conservative use
of the battery capacity will lead to higher than desirable fuel
consumption in many cases.

The algorithms were run for both p = 0.2 and 0.8, with the
cumulative performance over all drive cycles for each of the
strategies relative to the proposed one contained in Table I. In
keeping with known results, the CD-CS strategy is shown to
be considerably worse than any of the blended strategies.
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However, amongst the blended strategies the performance
relative to the proposed strategy is much closer. This is
attributable to several factors. Firstly, the short and long
strategies will be fuel-optimal for a proportion of simulations.
When not fuel-optimal, the fuel impact will depend on the
drive cycle itself, the duration spent at the state of charge
limit (for underestimation of journey length) and the proximity
to the state of charge limit (for overestimation of journey
distance). The severity of the controller constraints when
operating at the state of charge limit is partially negated
through the incorporation of the ∆q variable.

TABLE I
WEIGHTED PERFORMANCE DEGRADATION OVER ALL CYCLES RELATIVE

TO PROPOSED STRATEGY

p = 0.8
Strategy Total cost Total CO2 Total CO2

(Europe) (US)
Short 0.2% 0.2% 1.1%
Mean 0.6% 0.6% 0.2 %
Long 4.0% 3.86% 1.6%

CD-CS 11.3% 11.3% 11.6%
p = 0.2

Short 1.1% 1.1% 2.1%
Mean 0.1% 0.1% 0.2%
Long 0.7% 0.8% 1.1%

CD-CS 7.6% 7.6% 8.3%

B. Pseudo-continuous probability distribution

The previous section considered a bi-delta probability dis-
tribution for the purposes of outlining the proposed strategy.
However, the choice of distances is not indicative of the
likely consumer usage of plug-in capability, and so a different
probability distribution is now constructed. The full cycle
considers the modem-Hyzem base cycle, followed by two
iterations of the WLTP, a further two iterations of modem-
Hyzem and then two further iterations of the WLTP. This
construct allows journey terminations at 17km, 40km, 63km,
98km and 144km. Note that the first represents all journeys
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Fig. 4. Discretised probability distribution function of journeys for the cycles
considered in Section V-B

in the electric range (as this vehicle has an all electric range
of approximately 17km).

The probability distribution for journey duration was postu-
lated to decay almost exponentially with distance, as illustrated
in Figure 4. Here the Shortest journey and the CD-CS strate-
gies are equivalent and so are merged together. The cumulative
performance of the remaining state of charge profiles was
assessed using the same metrics and indicators as in the
previous section, with the results relative to the proposed
strategy presented in Table II.

Under these conditions, it appears that there are relative
financial and CO2 advantages to running with either the
proposed or the mean journey state of charge references. The
difference between always assuming the mean journey and
the proposed strategies is only very slight however. This is
attributable largely to the long tail on the probability density
function meaning the two strategies are relatively close, albeit
with the proposed strategy always being above the state
of charge limit. As was seen in the previous section, the
incorporation of ∆q = 0.05 led to only a small penalty for
running at the minimum state of charge, and this accounts for
the small observed difference.

To quantify this effect, the mean strategy was repeated
with ∆q removed, and an increase in fuel consumption up
to 3.2% was observed for the longest possible cycle. Using
the cumulative performance indices relative to the proposed
strategy showed that the mean strategy was 0.9% worse in
terms of fuel consumption and European CO2, and 1.5% worse
in terms of US CO2 emissions levels. This difference is solely
attributable to the reduced degree of freedom available to the
ECMS controller.

TABLE II
WEIGHTED PERFORMANCE DEGRADATION OVER ALL CYCLES RELATIVE

TO PROPOSED STRATEGY

Strategy Total cost Total CO2 Total CO2

(Europe) (US)
Short 2.6 % 2.8% 6.0%
Mean 0.2% 0.2 % 0.9%
Long 10.6% 10.7% 8.0 %



VI. CONCLUSIONS

A novel approach for battery state of charge scheduling for
plug in hybrid electric vehicles was proposed, with the novelty
arising from the removal of the standard assumption that the
distance to recharge is known a priori. Instead the weaker
assumption of a pdf of distances between recharges was made,
which could be developed readily as the vehicle is used by the
owner.

In combination with a map-based ECMS powertrain con-
troller, the proposed strategy was found to offer fuel and
CO2 advantages over both charge depletion and fixed distance
strategies. If a small offset, ∆q , to the state of charge limit
was incorporated in the strategy, only a negligible difference
between the proposed strategy and a mean distance strategy
was observed, and this was attributed to only minor penalties
arising from the PMP-based ECMS controller encountering
reduced degree of freedom operation at the state of charge
minimum limit.

Further research opportunities exist in explicitly accounting
for the engine restart and tailpipe emissions by augmenting
the ECMS-cost function to include variables such as catalyst
temperature and penalties on restart. Furthermore, the explicit
consideration of battery efficiency and lifetime as a function of
state of charge has been largely ignored in this work, although
the presented framework may readily incorporate these factors.
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