

Biogas for Development

Lu Aye

International Technologies Centre (IDTC)

Department of Civil and Environmental Engineering

The University of Melbourne

lua@unimelb.edu.au

Acknowledgements

- Daniel Almagor (Engineers without Borders Australia): invitation to the workshop and discussions about the topic.
- Tim Prohasky (Engineers without Borders Australia): smooth running of the conference and making sure this PowerPoint works.
- Dr Robert J. Fuller (IDTC, The University of Melbourne): suggestions and comments about the first draft.

Presentation Outline

- Workshop objectives
- Background
- Benefits and limitations of biogas digesters
- Reactor types
- BGT diffusion status in developing countries
- Barriers to biogas
- Energy content
- Domestic biogas appliances
- Biological processes
- Reactor analysis
- Reactor sizing
- Estimation of methane production rate
- Life cycle cost
- A demonstration project in West Java

Workshop Objectives

- To be aware of the appropriateness of biogas digesters in developing countries
- To be aware of barriers to biogas in developing countries
- To be able to identify a suitable digester type for a particular application
- To have an overview of biogas technology diffusion in developing countries
- To understand the factors related to system design and operation of biogas digesters
- To be able to size a rector for particular conditions

Developing Countries

- Main energy requirements in the domestic sector for:
 - Cooking,
 - Water heating,
 - Lighting, and
 - Drinking water supply pump operation.
- Decentralised energy sources and systems offer an opportunity to supplement these energy needs.

Benefits of BGT

- Harnesses a renewable energy resource (biomass)
- Environmentally friendly
- No resource depletion involved
- Reduces deforestation and saves fuel wood
- Positive effect on national economy and can be integrated with rural development by providing
 - Cleaner fuel
 - Valued added fertiliser
 - Positive effects on healths (pathogens and parasites are destroyed)
 - Cleaner surroundings
 - Employment

Benefits of BGT (cont'd.)

- Within the capabilities of users.
- Digesters can be constructed with local resources.
- Community scale digesters can provide electricity.
- Can reduce the extension of grids.
- Can contribute at least 10% of national energy requirements and about 50% of rural energy requirements.

Limitations

- Lack of optimum design appropriate for the variety of local conditions.
- Initial costs of biogas systems are high.
- Construction skill needed.
- Operational problems:
 - Pinhole leakages,
 - Water condensation in gas lines,
 - Scum formation,
 - Blockage, and
 - Burner problems.

Limitations (cont'd.)

- Low gas production in winter
- Water requirements
- Assured supply of animal wastes/feed stock
- Sharing benefits and obligations for community biogas plant
- Cultural resistance against the use of some wastes, compounded by resistance to change

Digester Reactor Types

- Floating cover/drum (Indian type)
- Fixed dome (Chinese type)
- Plastic bag reactor
- Prefabricated steel reactor
- Horizontal type

Floating Cover/drum (Indian type)

(http://mnes.nic.in/annualreport/2002_2003_English/ch3_pg4.htm)

(http://teenet.chiangmai.ac.th/btc/introbiogas.php)

An Indian Stamp

(http://www.plantbio.uga.edu/courses/pbio1220/hainesmaterial/Lecture01-18-05_files/image002.jpg)

Fixed Dome (Chinese type)

(Source: http://www.csudh.edu/coe/chaut2005/Image%20Pages/simpleDigister.html)HE UNIVERSITY OF MELBOURNE

A rural biogas plant under construction (Usher & Wang 2002)

(http://www.ashdenawards.org /all_finalists04.html)

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

15 of 54

Plastic Tubular

(http://www.solarengineering.co.za/Update%20-%20Dec%2012,03/gallery_biogas_plastic_htm1.htm) THE UNIVERSITY OF MELBOURNE

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

(http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/Recycle/biodig/manual.htm)

High Yield Bio-reactors

- Relatively cost and energy intensive and complex
- Work on thermophilic phase in additional to mesophilic phase
- Conversion efficiency 50 80 %
- Gas yield per m³ of digester volume > 1 m³/day
- Use of heating, insulation, stirring and pumping auxiliaries
- Suitable for large scale applications
- Short retention time is used (5 25 days)

Low Yield Bio-reactors

- Constant gas volume (FD) or constant gas pressure (FC) or plug flow type.
- Manually operated, unheated and uninsulated
- Work generally in mesophilic phase
- Conversion efficiency 20 35 %
- Simple & mostly used in developing countries.
- Typical yield per m³ of digester volume 0.3 to 0.4 m³/day, with a maximum value of 0.7 m³/day.
- Long retention time is required (30 150 days).

Diffusion Status of BGT in Developing Countries

- Three main designs used in rural area:
 - Fixed dome (FD),
 - Floating cover (FC), and
 - Bag type.
- Three countries have installed a large number of units:
 - China (~7 millions units in 1982, majority 6-10 m³ family size FD design, main feed stock: pig manure)
 - India (~3.5 millions units in 2003, 8-10 m³ and mainly FC design, feed stock: cattle dung)
 - South Korea (~30 thousands units in 1982).

Summary of Major Biogas Programs

Country	Number	Design	Priority	Strengths	Weakness
China	7 x 10 ⁶	FD(95%), FC, Bag	E, N, S	Infra, R&D, Govt., Int.	Lack of materials
India	3.5×10^6	FC(95%), FD	E, N	Govt., Subsidy	Cost, Maintenance
S. Korea	30×10^3	FC	Е	R&D	Temperature
Brazil	2 300	FC(60%), FD(40%)	Е	Infra, Govt., Int, R&D	
Nepal	1 200	FC(75%), FD(25%)	Е	R&D, Comm	Temperature

Source: (Nijaguna 2002)

Barriers to Biogas (Ghana)

- Resource availability: seasonal dung availability and water shortages
- Absence of favourable promotion policies
- Absence of right financing schemes
- High cost
- Lack of market
- Lack of information

Barriers to Biogas (Philippines)

(Source: ARRPEEC 2005)

- Lack of access to information
- High adoption cost/transaction cost
- Lack of local expertise (manufacturing and maintenance)
- Lack of financing/risk coverage mechanism
- Lack of product standards
- Lack of financial/fiscal incentives
- Lack of coordination among government agencies
- Lack of biomass feedstock supply assurance
- Subsidy to fossil fuel

Type	Range	Average		
FC, Indian type	0.3 - 0.5	0.30		
FD, Chinese type	0.1 - 0.3	0.15		
Plastic bag	0.5 - 0.7	0.60		
Prefab. steel	0.5 - 1.3	0.60		
Horizontal	0.2 - 0.4	0.30		
Source: (Nijaguna 2002)				

Typical Composition of Biogas

Compound	% Volume	
CH ₄	40 – 70	
CO_2	30 - 60	
H_2	0-1	
H_2S	0 – 3	
Other (NH ₃)	0-2	
Water vapour not included, Source: (Poulsen 2003)		

Biogas Cleaning

- Raw biogas is a wet gas containing a range of compounds.
- The gas must be cooled to condense the water vapour before the gas can be used.
- The gas transmission pipes should allow for draining.
- CO₂ is not normally removed.
- H₂S and SO₂ should be removed before used in boiler or engines.
- H₂S may be cleaned by adding a small amount of air (2 8 % by volume). Bacteria oxidise H₂S to S, H₂SO₃ or H₂SO₄.

Composition Changes for a Batch Reactor

(http://www.aeat.co.uk/mcpa/areas/software/facsimil/facsapps/app3.htm)

Energy Contents of Fuels

Fuel	LHV (MJ/kg)	(MJ/Litre)	MJ/N-m ³
		Liquid	Gas
Methanol	19.5	24.7	-
Ethanol	27	21	- \
Diesel	43	36	-
Petrol	45	34	
LPG	47	27	94.0
Natural gas	50	21	32.5
Methane	50		35.9
Hydrogen	120	8.5	10.8
Biogas	10 - 23		14.4 – 25.1

Biogas Domestic Appliances

(http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/Recycle/biodig/manual.htm)

(http://www.topsaving.com/en/prod.html)

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

29 of 54

Biomass Feedstock

- Composition of biomass $C_aH_bO_cN_d$
- Which biomass feedstock is more suitable for anaerobic digestion (biogas production)?
 - Materials with high carbon content
 - Materials with high moisture content
 - Materials with high volatile solid
 - Materials with high biodegradable fraction or less lignin

Ultimate Methane Potential

$$C_{a}H_{b}O_{c}N_{d} + \left(\frac{4a - b - 2c + 3d}{4}\right)H_{2}O \rightarrow$$

$$\left(\frac{4a + b - 2c - 3d}{8}\right)CH_{4} + \left(\frac{4a - b + 2c + 3d}{8}\right)CO_{2} + dNH_{3}$$

$$B_{th} = 22.4 \frac{\left(\frac{4a+b-2c-3d}{8}\right)}{12a+b+16c+14d}$$
 (Nm³ CH₄ per kg VS)

Actual Methane Potential

- The actual methane yield from digester is always lower due to:
 - Part of organic input (substrate) is used for generation of bacteria (typical 5 10 % of input Volatile solid) [VS is defined as combustion loss at 550°C].
 - Part of substrate (lignin part of organic matter)
 exits the reactor without being degraded.

Biodegradable Fraction (BF) THE UNIVERSITY OF MELBOURNE

- Chandler *et al.* (1980) formulated a mathematical correction for bioavailability of an organic substrate based on its lignin content.
- The data was collected from the anaerobic degradation of a range of lignocellulosic materials (40 day retention time).

$$BF = 0.83 - 0.28 \cdot PLC$$

PLC = The lignin content as a percentage of VS

Biodegradable Fractions of Various Substrate

Substrate	BF
Food wastes	0.82
Office paper	0.82
Pig manure	0.77
Chicken manure	0.73
Yard wastes	0.72
Cow manure 1	0.60
Water hyacinth	0.59
Bagasse	0.52
Rice straw	0.48
Bamboo	0.27
Newspaper	0.22
Pine wood	0.05

THE UNIVERSITY OF MELBOURNE

Biological Processes

Four phases

- Influencing factors:
 - Substrate properties (C/N-ratio, Particle size, Moisture content,..)
 - Retention time
 - Temperature (Mesophilic: 30-37°C; Thermophilic: 55-60°C)
 - Inhibitors (Fatty acids, Ammonia, CO₂, H₂S, H₂, O₂)

Indicators of Process Performance

- Gas production
- Gas composition
- pH
- Alkalinity
- Total volatile fatty acids (VFA)
- Volatile solids (VS) reduction

Complete Mix Reactor Analysis

$$V\frac{dS}{dt} = Q \cdot S_o - Q \cdot S - K \cdot V \cdot S$$

$$V = \text{Volume} (\text{m}^3)$$

S = Substrate concentration (kg/m³)

$$t = \text{Time (day)}$$

 $Q = \text{Volumetric flow rate (m}^3/\text{day})$

 $K = Degradation constant (day^{-1})$

$$\frac{dS}{dt} = 0 \quad \text{and} \quad \frac{V}{Q} = HRT \implies \frac{S}{S_o} = \frac{1}{1 + K \cdot HRT}$$

$$S_o - S = K \cdot S \cdot HRT$$

Steps for Reactor Sizing

- Determine the degradation constant *K*
- Choose the desired removal efficiency $\eta = (S_o S)/S_o$
- Calculate exit substrate concentration for a given inlet substrate concentration $S = S_o(1-\eta)$
- Calculate the design hydraulic retention time

$$HRT = (S_o - S)/K \cdot S$$

• Calculate the reaction volume $V = HRT \cdot Q$

Volumetric Methane Production Rate

$$B = (B_o S_o / HRT)[1 - K / (HRT \cdot \mu_m - 1 + K)]$$

 $B_o = \text{Ultimate methane yield (m}^3/\text{kg})$

 S_o = Influence volitile solid concentration (kg/m³)

HRT = Hydraulic retention time (day)

 $\mu_m = \text{Maximum specific growth rate (day}^{-1})$

K =Dimensionless kinetic parameters

Reference: (Chen and Hashimoto 1978)

Ultimate Methane Yield m³/kg VS

Source: Chen and Harshimoto 1980

Dairy cattle	0.20 ± 0.05
 Beef cattle manure on grain ration dirt lot 	0.25 ± 0.05
 Beef cattle manure on grain ration concrete lo 	ot 0.37 ± 0.05
Pigs	0.50 ± 0.05

Source: Chen and Harshimoto 1980

$$K = 0.8 + 0.0016 \cdot \exp(0.06 \cdot S_o)$$
 for cattle manure

$$K = 0.5 + 0.0043 \cdot \exp(0.051 \cdot S_o)$$
 for pig manure

Growth Rate

THE UNIVERSITY OF MELBOURNE

(Source: Rifa'i 2002)

Life Cycle Costs

- Initial cost of digester with gas holder
 US \$ 50-60 per m³ of digester volume
- 3 m³ per day biogas = 8.5 m³ digester
- Typical life = 20 years
- Repair & maintenance ~2% of capital cost
- These would lead to a life cycle annual cost of US \$ 50.

Technology Demonstration

- Location: Islamic School and Agriculture College of Darul Fallah (Pesantren Pertanian Darul Fallah), Bogor city, Province of West Java
- Owner: Indonesian Center of Agriculture Engineering Reseach and Development (ICAERD), Ministry of Agriculture, Indonesia
- Engineering team: Teguh W. Widodo, Elita Rahmarestia, Ana Nurhasanah, Ahmad Asari
- Capacity: 2 Nm³/day of biogas production

Feedstock

- Type: A fixed dome digester made from clay bricks constructed under the ground level
- Feed source: 10 dairy cattle (milk producing cows)
- Feed: mixed slurry of cow dung and waste water from cattle cage (Note hot weather conditions made the farmer to shower the cattle three times a day)
- Trial stage, produced biogas and has been used for lighting and cooking
- More test results and seasonal data are expected

Construction

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

Slurry Outlet

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

Biogas Stove

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

Biogas Lamp

Lu Aye, IDTC

EWB Biogas Workshop, 2 December 2005

References

- ARRPEEC 2002. Energy, Environment and Climate Change Issues: Philippines, Asian Regional Research Programme in Energy, Environment and Climate, Bangkok.
- Chandler, JA; Jewell, WJ; Gossett, JM; Van Soest, PJ and Robertson, JB 1980. Predicting methane fermentation biodegradability. *Biotechnology and Bioengineering Symposium* No. 10, pp. 93-107.
- Chen, YR and Hashimoto, AG 1978. Kinetics of methane fermentation, *Biotechnology and Bioengineering Symposium*, 8, pp. 269-78
- Chen, YR and Hashimoto, AG 1980. Substrate utilization kinetic model for biological treatment processes, *Biotechnology and Bioengineering*, XXII, pp. 2081
- Chen, YR, Varel, VH and Hashimoto, AG 1980. 'Effect of temperature on methane fermentation kinetics of beef-cattle manure', *Biotechnology and Bioengineering Symposium*, no. 10, pp. 325-39.
- Nijaguna, BT 2002. Biogas Technology, New Age International Publishers, New Delhi.
- Painuly, JP and Fenhann, JV 2002. *Implementation of Renewable Energy Technologies Opportunities and Barriers, Summary of Country Studies*, UNEP Collaborating Centre on Energy and Environment, Riso National Laboratory, Denmark.
- Poulsen, TG 2003. Solid Waste Management, Aalborg University.
- Rifa'i IR 2002. Dynamic Modelling of Anaerobic Digestion (Cattle Waste), MEngSc thesis, International Technologies Centre (IDTC), The University of Melbourne.
- Richard, T 1996. The Effect of Lignin on Biodegradability, http://compost.css.cornell.edu/calc/lignin.html.
- Usher, E and Wang, X 2002. New clean energy enterprises and sustainable development, *Renewable Energy World*, March-June 2002.

Biogas for Development

Lu Aye

International Technologies Centre (IDTC)

Department of Civil and Environmental Engineering

The University of Melbourne

lua@unimelb.edu.au