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Outline

• Introduction: Distributed generation (DG)
• Cogeneration
• Microturbines (MT)
• Photovoltaics (PV)
• Gas Engines
• Greenhouse gas emissions benefits
• Conclusion
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Distributed Generation (DG)

• DG is a any small-scale (< 10 MWe) electrical power 
generation technology that provide electric power at or 
near the load site; it is either interconnected to the 
distribution system, directly to the costomer’s facilities, 
or both (Borbely & Kreider 2001).

• Terms like distributed power, distributed energy, 
distributed energy resources, embedded generation, 
decentralized power, dispersed generation, and onsite 
generation can also be found in the literature. Although 
some of those terms may be used with a different 
meaning, typically they de facto refer to distributed 
generation (Wikipedia 2006).
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Problems with electricity

• The rate of production must balance the rate 
with which it is consumed at all times.

• Demand for electricity does not remain 
constant and fluctuations in load occur:
– at different times of the day,
– on different times of the week,
– in different months of the year.

• Sufficient ‘generation capacity’ must be 
constructed to meet demand at its highest 
point.
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Average life cycle cost of electricity in Australia 
(Australian cents/kWhe)

40 – 80Photovoltaic
(Source: Fung et al. 2002)

5.5 – 10Wind
5 – 15Biomass
22 – 50Diesel
3.8 – 6.5Natural gas
2.8 – 3.5Coal
c/kWheEnergy source
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Conventional generation
(Typical Australian data)

(Source: ACA 1997)

Type Overall efficiency 

(%) 

Net CO2 

(t/MWh) 

Hydropower 40 - 70 0.00 

Combined Cycle Gas Turbine 48 0.39 

Thermal - Natural Gas 38 0.49 

Thermal - Black Coal 35 0.93 

Thermal - Brown Coal 29 1.23 
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Potential benefits of DG

• Less or no distribution losses (typical distribution 
losses 4 to 9%)

• Better power quality and consistent power 
supplies (i.e. no voltage dips, interruptions, 
transients, and network disturbances from other 
loads)

• Enable on-site waste heat recovery (i.e. 
cogeneration)

• Reduce grid demand during peak
• Can provide emergency power
• Can increase diversity of energy sources
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DG technologies

• Internal combustion reciprocating engines (ICRE) 
and generators

• Small combustion turbine generators (including 
microturbines)

• Photovoltaic (PV) modules
• Fuel cells
• Solar thermal conversion
• Stirling engines
• Biomass conversion
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Status of DG technologies

Commercial 
scale demos

CommercialCommercial in 
large sizes

CommercialTechnology status

* O&M costs do not include fuel.
(Source: Adapted from Borbely & Kreider 2001)

0.170.10 – 0.400.50 – 0.651.00O&M cost* (¢/kWh)

3750 – 50006000 – 10000 450 – 1000200 – 350Capital cost ($/kW)

40 – 57 %6 – 19 %29 – 42 %25 – 45 %Efficiency

200 kW – 2 MW1 kW – 1 MW25 kW – 25 MW50 kW – 5 MWCapacity
Fuel CellsPVsTurbinesIC Engine
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Definition of “Cogeneration”

• Cogeneration is the sequential production of 
thermal and electric energy from a single fuel 
source.

• Heat is recovered that would normally be lost in 
the production of one form of energy.

• That heat is then used to generate the second form 
of energy.

• The overall fuel utilisation efficiency is typically 
70-80% versus 30-40% for electric power plant.
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Traditional industrial energy supply
(Source: Cogen3 2004)
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Cogen industrial energy supply
(Source: Cogen3 2004)
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Components

• Prime mover produces mechanical energy 
through combustion.

• Generator converts the mechanical energy to 
electrical energy.

• Waste heat recovery system captures exhaust 
heat or engine coolant heat and converts that heat 
to a useful form.

• Operating control systems insure that the 
individual system components function together.
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Types of prime mover

• Steam turbine systems
– Consist of a boiler and turbine
– Boiler can be fired by a variety of fuels (oil, natural gas, 

coal, wood, MSW, etc.)
• Combustion gas turbine systems

– Made up of one or more gas turbines and a waste heat 
recovery unit

– Fuelled by natural gas or light petroleum products
• Internal Combustion Engine systems

– Utilise one or more reciprocating engines together with a 
waste heat recovery system

– Fuelled by natural gas or distillate oils (petrol & diesel)
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Energy balance of a typical power plant

33%

30%

30%

7%

Electrical output
Condenser losses
Exhaust stack losses
Radiation losses
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Potential heat recovery

• 100 % of Condenser/cooling losses
• 40% of Exhaust stack losses
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Topping cycle (Brayton & Rankine)
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Bottoming cycle
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Combined cycle

• Rankine cycle on the “topping” portion and 
Brayton cycle on the “bottoming” portion of the 
combination.

• Ideal mix of power delivered from Brayton and 
Rankine portions: 70 % and 30 %.

• There are many variations and options available.
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Combined cycle variations

• Gas turbine exhaust is used to produce low 
pressure steam (200 kPa) for steam turbine with 
no additional fuel burnt.

• Gas turbine exhaust is used directly for a boiler 
(1.5-18 MPa).

• Gas turbine exhaust is fired in the duct with 
additional fuel for a steam turbine (6-9 MPa).
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Cogeneration technologies
(Source: Cogen3 2004)

Gas turbines Engines (N. gas, Diesel)
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Steam turbines

Combined cycles
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Cogeneration fuels
(Source: Cogen3 2004)

• Cogeneration can be done from a variety of fuels – also Municipal 
Solid Waste (MSW)

• Installations may be designed to accept more than one fuel
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Prime mover selection criteria

• Hours of operation
– Continuous: steam turbine (ST) & gas turbine (GT)
– Intermittent: reciprocating engines (RE)

• Maintenance requirements
– RE: highest maintenance requirement; GT: require less 

frequent maintenance; ST: require less maintenance than 
gas turbines

• Fuel requirements
– RE: fix fuel quality required, GT: fuel may be switched, 

ST: limited only by the fuel for their steam source
• Capacity limits

– RE: 40 kW-3 MW, GT: 0.5-30 MW, ST: >1 MW
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Typical energy production (%)
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Environmental advantages & disadvantages

• Better fuel utilisation efficiency: 70-80% versus 
30-40% for conventional electric power plant

• Need to look at from fuel life cycle point of view
• Depend on the nature of the fuel used

– Impacts on global air pollutants
– Impacts on local air pollutants
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Microturbines

• One of the best short-term DG options
– because of their simplicity and
– because no major technological breakthroughs are 

required for their deployment.
• Capacity: 25 – 500 kWe power output
• Single-stage compressor and single-stage turbine
• Pressure ratio: 3 – 4 (Conventional: 13 – 15)
• Rotor: short drive shaft with generator on one end 

with a bearing in the middle  
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Discussion

• Roles of cogeneration
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Capestone microturbine
(Source: Gillette 2006)
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Example microturbine specifications

No1745116Elliott
(Source: Rodgers et al. 2001)

Yes307575Honeywell
Yes289630Capstone

Recuperated
Efficiency

%(LHV basis)
Power
kWe

N
krev/minManufacturer
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Recuperated microturbine
(Source: http://www.grc.nasa.gov/WWW/RT2002/5000/5960weaver.html)
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MT overview

0.5 – 1.6O & M costs (¢/kWh)
700 – 1100 (+ 75 – 350 with heat recovery)Cost ($/kW)

(Source: CEC 2006)

Small volume production,
commercial prototypes now

Commercial status
Cogen (50 – 80°C water)Other features

< 9 – 50 ppmNOx

15 % (unrecuperated)
20 – 30% (recuperated)

up to 85 % (with heat recovery)

Efficiency
Natural gas, hydrogen, propane, dieselFuel
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PV background

• Photovoltaics generate electricity without no 
moving parts from the renewable source of 
sunlight.

• Can be installed on or at the building.
• PV modules are well proven with an expected 

service life of at least 30 years.
• It is a modular technology, viable and cost 

effective option in many stand alone applications.
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Typical cell, module & array

• A typical crystalline silicon solar cell is 100 cm2 and 
produces about 1.75 peak watts (Wp) at 0.5V & 3.5A 
under full sun at standard test conditions                    
(STC: AM 1.5, 1 kW/m2 and 25ºC cell temperature).

• Modules are typically available in ratings from less 
than 50 Wp to greater than 250 Wp.

• Crystalline silicon modules deliver approximately 
100-120 W/m2 at STC.

• Amorphous silicon (a-Si) thin-film modules deliver 
40-50 W/m2 at STC.
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Efficiency records

31

27

29

Theo
(%)

10.7 ± 0.5

15.3 ± 0.4

22.7 ± 0.6

Module
(%)

16.5 ± 0.5CdTe
NREL, on glass (9/01)

19.8 ± 0.5Si (multicrystalline)
UNSW/Eurosolare (2/98)

24.7 ± 0.5Si (crystalline)
UNSW PERL (3/99)

Cell
(%) 

Classification

Source: Green et al. 2003, Prog. Photovolt: Res. Appl. 11:347-52
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Typical I-V and P-V curves
(Source: Duffie & Beckman 1991)
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Effect of solar radiation level
(Source: Duffie & Beckman 1991)
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Effect of temperature
(Source: Duffie & Beckman 1991)
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Life cycle emission factors (g/kWh)

25.30.0070.020Photovoltaic
(Source: NREL 2001)

47.80.0030.030Nuclear
6178.00.9000.001Natural Gas

18258.50.8801.700Oil

12322.81.8003.400Coal

Energy input
(kWh/W installed)

CO2NOxSOxEnergy Source
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Gas engines overview

250 – 500NOx (mg/Nm3)
(Source: Hüchtebrock, B 2003)

30 – 90
Landfill to natural gas

Methane content (%)

37 – 58 NMHC (mg/Nm3)
25 – 45CO (mg/Nm3)
37 – 40 Efficiency (%)
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Status of DG technologies

Commercial 
scale demos

CommercialCommercial in 
large sizes

CommercialTechnology status

* O&M costs do not include fuel.
(Source: Adapted from Borbely & Kreider 2001)

0.170.10 – 0.400.50 – 0.651.00O&M cost* (¢/kWh)

3750 – 50006000 – 10000 450 – 1000200 – 350Capital cost ($/kW)

40 – 57 %6 – 19 %29 – 42 %25 – 45 %Efficiency

200 kW – 2 MW1 kW – 1 MW25 kW – 25 MW50 kW – 5 MWCapacity
Fuel CellsPVsTurbinesIC Engine
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Discussion

• Roles of DG technologies
– Gas engines
– Microturbines
– PV
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Conclusion

• MT: fuel, ambient condition, load
• PV: solar radiation, cell temperature
• GE: fuel, load 
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Thank you!
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