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Improving the Robustness of 
Winner-Take- All Cellular Neural Networks 

Lachlan L. 

Abstract-This paper describes two improvements on a re- 
cently proposed winner-take-all (WTA) architecture with linear 
circuit complexity based on the cellular neural network par- 
adigm. The general design technique originally used to select 
parameter values is extended to allow values to be optimized 
for robustness against relative parameter variations as well as 
absolute variations. In addition, a modified architecture, called 
clipped total feedback winner-take-all (CTF-WTA) is proposed. 
This architecture is shown to share most properties of standard 
cellular neural networks, but is shown to be better suited to the 
WTA application. It is shown to be less sensitive to parameter 
variations and under some conditions to converge faster than the 
standard cellular version. In addition, the effect of asymmetry 
between the neurons on the reliability of the circuit is examined, 
and CTF-WTA is found to be superior. 

I. INTRODUCTION 
GENERAL inputless cellular neural network (CNN) [l], 

is governed by equations of the form 

(1) 
dxc(t) 

dt  
T- = -z"(t) + a;yd(t)  + k" 

d E C G  

where f is the output function of each cell, zc and yc,c = 
1, + . . , n, are the state and output variables, respectively, and 
CG is the cell grid defined in [l], which in this case consists 
of all of the neurons. The time constant, T ,  only affects the 
time scale of the solution and it will be assumed that T = 1,  
except in the section on convergence speed. Typically a bipolar 
clipping function is used [l] 

f(.) := +(I2 + 11 - 12 - 11) 
-1 i f z < - 1  
2 if lzl<l . =i  1 i f z 2 1  

It was shown in [3] that a network built up of such 
neurons can perform the winner-take-all (WTA) function. The 
symmetry of the WTA problem allows a very regular network 
to be used. Its parameters are given by 

U; = {  i f c f d  
c r + 6 + 1  i f c = d  

k C = K  
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so the dynamic equation (1) becomes 

d x c ( t )  
dt  

7- -- - ."(t) + ac + (6 + l ) y C ( t )  + K 

CJ := y d ( t ) .  (2)  
dECG 

It is stated in [3] that that such networks are limited to sizes of 
less than 10 neurons if reasonable fabrication tolerances are 
assumed. The major contributions of this work are to show 
two ways of overcoming this limit. First, an extension of the 
design algorithm used in [3] is proposed and shown to provide 
a nominal design whose tolerance decreases linearly with the 
number of nodes, rather than quadratically, as does that of 
[3]. Second, it will be shown that using a unipolar activation 
function and clipping the feedback CJ produces a network 
whose sensitivity to component variation is independent of 
the network size, thus removing entirely the principal factor 
limiting the size of the circuit in [3]. This new circuit will 
be called clipped total feedback winner-take-all (CTF-WTA). 
Furthermore, it is argued that the CTF-WTA architecture will 
converge significantly faster than the system (2). 

The rest of this paper is organized as follows. In Section 
11, improved parameters for the original architecture in [3] 
are derived. Section 111 describes the CTF-WTA architecture, 
and optimal parameters for CTF-WTA and their allowable 
tolerances are derived in Section IV. Section V shows that 
CTF-WTA shares most of the important convergence prop- 
erties of standard CNN's, and in Section VI expressions are 
derived for the amount of asymmetry that is allowable in each 
architecture for WTA functionality to be maintained. 

11. IMPROVED PARAMETER SELECTION 
Seiler and Nossek [3] applied a robust design technique to 

the task of choosing a, 6 and I(. for the WTA system described 
by (2). This design procedure, which is described in detail 
in [4], is summarized below. For notational convenience, let 
p = (6, a,  K )  denote the vector consisting of the parameters 
of the CNN. 

1) Determine a set of N linear inequalities of the form 
w3 + w3 - p > 0, j = 1, . . . , N ,  between the parameters which 
is sufficient for the circuit to be functional. 

2) Re-express these as 

w3 +U,  'P> l lWlII*T (3) 

where 1 1  . denotes the dual of the PDF norm of the 
manufacturing process [5],  and T denotes the permissible 
parameter variation. 
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3) Find nominal parameters j3 which maximize T subject to 
the constraints (3). 

One difficulty with this technique is that if the manufactur- 
ing process allows components to be fabricated with relative 
tolerances, IIwI / I  * is dependent on p ,  so the constraints cease to 
be linear. In [3] it was stated that the use of relative tolerance 
in design required an iterative algorithm, and the results were 
only “a bit” better, and so the design was completed using 
absolute tolerances. In what follows, a simple extension to 
the algorithm will be given which is shown to yield markedly 
better results. 

After step 3 above, add the following stages: 
4) Observe the asymptotic behavior of the parameters with 

network size, n, and define a new weighted nom, 1 1  . /I+. 
Appropriate weights [5] are such that the variance of each 
weighted component of the PDF norm is equal, so the weights 
of the dual norm, / /  . I I +  have the same asymptotic form as the 
components themselves. 

5 )  Recalculate the final @ to maximize T subject to the new 
constraints where llw3 I I +  replaces IIwJ (I* in (3). 

For the WTA circuit, optimal parameters, &,8 and ti, and 
their tolerance, ?) are related by 13, (4.23)-(4.25)] 

which eventually gives asymptotic solutions k = O ( n ) ) &  = 
O(1), and 8 = O(1). 

Thus the weighted dual norm becomes 

Substituting this into (4) gives 

C6b) 6=- Q 
172 - 41 + 3n + 6 - 

~ 

K =  - a! ( 6 ~ )  

J W  - 4) + 3n + 10 

(n - 1)ln - 41 + 3n2 - n - 12 
In - 41 + 3n + 6 

and the permissible ranges become 

s E ( 8  - ? , 8 + ? )  
Q E (& - ? ) &  + ?) 
IF, E ( k  - n?, ti + n?). 

(74 
(7b) 
(7c) 

(Note that the absolute tolerance of K. has been increased by a 
factor of n, so its relative tolerance is comparable with those 
of a: and 6.) 

This produces a useful improvement of 5 fold to 48 neurons 
at 1% tolerance. However the real gains come when the net 
sizes increase, since sensitivity is now linear in n, so at 
0.1%, a 498 neuron net can be implemented, compared to 
31 for absolute tolerances. These gains are achieved with no 
modification to the original cellular architecture, merely by 
choosing appropriate parameters. 

Note that the above are the sizes which are guaranteed to be 
attainable with the stated tolerances. In real implementations, 

I 
Fig. 1. Unipolar clipping functions for CTF-WTA. 

it is likely that many values will be well within tolerance 
and thus larger nets can often be made in practice. (Hardware 
implementations of a similar architecture with 170 neurons 
have akeady been reported [6], with no indication that larger 
networks cannot be made.) Appropriate nominal values, how- 
ever, will always improve yield beyond that obtainable with 
suboptimal nominal values. 

III. CLIPPED TOTAL FEEDBACK 
In this section, a novel WTA architecture based on the 

cellular circuit of [3] will be presented. The new architecture, 
clipped total feedback WTA (CTF-WTA), differs from that 
proposed in [3] in two key aspects. First, neurons are unipolar. 
This means that neurons which have ceased to compete make 
no contribution to the total feedback, 0. Second, the total 
feedback, CT, is clipped to the range [0, 21 (hence the name). 
This means that the control signals used to cause neurons 
to change are bounded by limits independent of the number 
of neurons, n. As will be seen in Section IV, these simple 
changes produce an architecture such that, when optimal 
nominal parameters are used, the precision required to realize 
the parameters is independent of n . 

Define the following unipolar clipping functions (Fig. 1): 

fi(.) := 1 + f(. - 1) 

fl(.) := f2 (2$) /2 .  

The new dynamical equation will be of the form 

7 -  dxc(t) = -zc(t) + a f 2 ( 0 )  + (6 + l)yC(t)  + 6 (8) d t  
c := y q t )  

Y Y t )  := fl(zC(t)). 
d€CG 

N. PARAMETER SELECTION FOR CTF-wTA 
In this section, the algorithm described in section I1 will be 

used to select optimal parameters for the new architecture. For 
ease of description, let a WTA state be a state such that there 
is one neuron, c, such that yc = 1 and yd = 0 for all d # e. 
For a circuit to perform the WTA function, a state must be 
stable if and only if it is a WTA state. 

Stage 1 of the algorithm requires that inequalities be deter- 
mined which are sufficient for correct circuit operation. The 
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first such inequality in this case is the binary output condition 
(section V), which guarantees that all final outputs are either 
0 or 1: 

For the state in which all outputs are zero not to be an 
equilibrium state, it is necessary that the derivative in (8) be 
positive so that one of the outputs can become positive. Now 
in this state yc = 0, f 2 ( 0 )  = 0 and xc 5 0, so this condition 
reduces to 

In any state in which two or more neurons output a 1, at least 
one of these must decrease so that eventually only one neuron 
outputs a 1. This neuron will satisfy xc 2 1 and yc = 1, and 
in this state g 2 2, so f 2 ( 0 )  = 2. Thus from (8) 

dxc(t) I -1 + 2a  + (6 + 1) + K 5 0 
dt 

whence 

Finally, the condition that WTA states must be stable 
follows automatically. The binary output condition guarantees 
that the network will end up in a binary output state. Since 
the only such states which are not forced to be unstable by the 
above inequalities are WTA states, and since all WTA states 
are equivalent by symmetry, all WTA states must be stable. 

Notice that all of these parameter constraints are indepen- 
dent of the number of neurons, n. Following [3], the robustness 
of the system to errors in these parameters is found by fitting a 
maximal norm-body (of radius F) into the polytope formed by 
the above inequalities and the further artificial requirement that 

Thus in stage 3, F must be maximized subject to 

V. CONVERGENCE 

Since the dynamics of the CTF-WTA are not the same as 
the dynamics of standard CN"s, standard convergence results 
must be verified. The results in this section establish that the 
most important properties of CN"s  also apply to CTF-WTA 
networks. 

A. Guarantee of Convergence 
Following [l], convergence will be proved by showing that 

the state variables xc are bounded and thence that the outputs 
yc converge. These proofs will follow those presented in [ l ]  
closely, and so only differences from those proofs will be 
noted. 

Boundedness 
In the notation of this paper, (4a) in [I] can be replaced for 

the CTF-WTA by 
dx" 
dt - = -zC(t) + f ( t )  + K 

where 

- f"(t) = af2(g) + (6 + 1)y". 

This has solution 

x"(t) = z"(O)e-' + e - ( " - " ( f " ( ~ )  + 6) dT. I ' -  
From this it can be shown that, if 0 5 ~ " ( 0 )  5 1, 

lxCI I I ~ " (0 ) l  + m$Ifc(t) + 4) 
giving the bounds 

Convergence of Outputs 

similar to that for the convergence of a standard CNN. 
Convergence of the outputs can then be proved by a proof 

Define the function 
i f x < O  

2 2 - 2  i f x > 2  
(13) 

such that F'(z)  = fi(z). Then the function 
\ 

These are satisfied with equality if is bounded with maxt IE(y(t))l 5 E,,, where 

Since these are all independent of n, the weighting of 11 1 I I +  
in stage 4 will be uniform, and stage 5 will give the same 
results as stage 3, so (12) is the final set of optimal nominal 
parameters for the CTF-WTA. Here P is the tolerance on each 
a,S and K ,  and g is a free parameter. 3 0. 
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Thus E ( y ( t ) )  is a bounded monotonic function of time, 
and hence converges to a limit as t -i 00. The corollary that 
y converges to a constant is also still valid. 

If the piecewise linear output function is replaced with a 
continuous, strictly monotonic function, f, such as is likely 
to be produced by a VLSI implementation, then the function 
may be replaced by 

B. Convergence to Binary Outputs 

An essential element of a WTA network is that the final 
output should consist of binary values (fl or 0, 1); it should 
be clear which node has won and which have not. The 
standard CNN has this property when the magnitude of the 
self feedback of each node is greater than 1 [2, Theorem 21. 
It is easily shown that the CTF-WTA has the same property 
under the same conditions. This can be proved by replacing 
e ( t )  in Theorem 2 of [2] with the function 

1. 

0. 

-0. 

-1. 

Time 

Fig. 2. 
attained when all state vanables, x, are out of the range [-I, I]. 

Convergence of a standard WTA network, T = 1 Convergence is 

1 i 
Time 

and the intervals (-1, +1) and [-F, -11 with (0, $1) and 
J-F, 01, respectively. In the proposed architecture, the self 
feedback is l+a+S, so the binary output condition is a+S > 0, 
as stated in Section IV. 

C. Speed of Convergence 

It has been pointed out [7] that, when the cross-coupling 
between neurons is fixed, the rate of convergence drops 
dramatically as the number of neurons whose activations are 
above the minimum threshold decreases (as it must in a 
functional WTA circuit). The change of convergence rate is 
important since the peak rate of change is often limited by 
supply voltage or current limits in hardware realizations. Thus 
a fast initial response followed by a slower tail would require 
the time constants of the entire circuit to be increased. Yen and 
Chang [7] proposed altering the weights of the cross-coupling 
to ensure a constant convergence rate. Introducing a clipping 
nonlinearity at the output of the global adder, c, in the CTF- 
WTA perfoms this task in an eminently realisable manner. By 
linliting the initial response it allows a small time constant, T ,  

to be used leading to faster overall Convergence. 
Robust design dictates that the system must operate reliably 

for any combination of inputs. Denote the smallest T permis- 
sible in the CTF-WTA by TC and that in the nonclipped WTA 
by T N .  For the original architecture, the worst case, in which 
the fastest rate of change occurs, is when all but one of the 
inputs are $1 and the other xc = -1, giving TN d x c / d t  = 
1 + (n  - 2)a - (6 4 1) + n = (an - 3). using the values of S 
and lc from [3]. In comparison, the worst case in the proposed 
architecture is again for all inputs but one +I, now with the 
other xc = 0, giving TC dz"/dt = 2a + K = 13~x17 for n > 2 .  

Fig. 3. 
attained when all state variables, z, are out of the range [0, 11. 

Convergence of a CTF-WTA network, T = 0.1. Convergence IS 

Equating rates gives I T N I  = 7(2n - 3)lrc(/13 E nlrc). It is 
shown in the appendix that the worst case total convergence 
time for the CTF-WTA is bounded above by 

which is independent of the network size, while that of the 
nonclipped WTA is bounded below by 

tN 2 TN//ai nTC//a/. 

Since r~ must grow linearly with n for a constant initial rate 
of change, the convergence time of the conventional network 
is effectively linear in network size, meaning that the total 
convergence time is much smaller for the proposed architecture 
for substantial networks. 

Figs. 2 and 3 show the convergence behavior of a standard 
WTA network, and a CTF-WTA network, respectively. Each 
has 10 inputs (0.9, 0.89, 0.8, 0.7, . . ., 0.2, 0.1) and is designed 
with optimal parameters (those for the standard network being 
those of [3] rather than Section I1 from this paper) with 
a = -0.35. Time constants have been chosen to correspond to 
an equal worst-case initial rate of change (TN = 1, TC = 0.1). 
Note the difference in scale for the time axes. From this 
it can be seen that the CTF-WTA network converges in 
approximately 1.3 arbitrary units of time, while the standard 
WTA network takes over 13. 
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VI. ASYMMETRY 
In [3] it was shown that the symmetry of the WTA circuit 

preserves the order of the activations of the neurons. However, 
in a VLSI implementation the symmetry will not be exact due 
to component mismatch. Conditions must therefore be found 
under which the standard WTA and CTF-WTA will reliably 
select the largest input as the winner. The smaller the initial 
difference between inputs which can be detected reliably, the 
more robust the network is to asymmetry. 

Consider the case when each parameter has a variation of 
f m / 2 ,  where m is assumed to be much smaller than any of 
the nominal values. Assume without loss of generality that x1 
corresponds to the largest input and x2 to the second largest. 
Define the variable z = 2 1  - 22. Winner take all functionality 
is maintained as long as z increases monotonically (dzldt 2 
0). Let a1,61 and R~ denote the exact parameters for neuron 
1, and a2,62 and /c2 denote those for neuron 2. 

In the case of the standard circuit it is required that 

d z  
d t  
- = (a1 - a& + 61x1 - 62x2 + K1 - K 2  

2 -[mal + (S - m/2)x - mx2 - m 
2 0. 

For this to be true at all times for all initial conditions, this 
requires that -mn + (6 - m / 2 ) z  - 2m 2 0. Thus it is required 

is broken into two parts: the time, T I ,  during which both of 
the two largest neuron activations are in the linear region, and 
the time T2 - TI for the remaining neuron to leave the linear 
region. 

It will be useful to note that while xi and xj are both in the 
linear region, their difference obeys the equation 

d 
dT -(Xi - 2j) = S(2; - Zj) 

which, if 2; > x j ,  has solution 

xi(T) - xj(T) = (xi(0) - xj(0))efiT 2 ~ ( 0 )  - zj(0). (16) 

In the remainder of this section it will be assumed, without 
loss of generality, that the neurons are numbered in decreasing 
order, so that x1 is the largest and zn the smallest. 

A. Convergence Time of CTF-WTA 
In this section an upper bound will be derived for the con- 

vergence time of the CTF-WTA network, using the nominal 
parameters of section IV. Since 1x1 - 221 < 1 while z1 and 22 
are in the linear region, [0, 11, an upper bound on 7'' can be 
found from (16) to be 

that z 2 2m(n + 2)/(26 - m) x m(n + 2)/6, so sensitivity 
increases linearly with network size. There are now two possibilities: either 2 1  has reached 1, or 

x2 has reached 0. If z2(Tl) = 0, then 21 continues according 
to 

For the CTF-WTA, it is required that 

dz  
dt dx 1 - = (a  + S ) X l  + n 

dT  
- = (a1 - az)f2(a) + 6121 - 62x2 + 6 1  - 62 

2 -2m + (6 - m / 2 ) z  - mx2 - m 

2 0  which has solution 

which is satisfied by z 2 8m/(26-m) M 4m/6, so sensitivity X I  = - + S)(T - T I ) )  a+6  is independent of network size. 
This shows that as well as improving the robustness to errors thus reaching 1 at time - 

in the mean value of /c,6 and a,  CTF-WTA also provides 
improved robustness to mismatch between neurons. 

VII. CONCLUSION 

A new WTA architecture called Clipped Total Feedback 
Winner-Take-All (CTF-WTA) has been presented. Its con- 
vergence has been proved and verified by simulation. It has 

by (12) and since xcl(Tl) 2 0. Alternatively, if xl(T1) = 1, 
then 22 continues according to 

(19) 

m i s  is satisfied with equality if z g ( ~ l )  = 0, upper bound 
on convergence time is obtained by solving (19) with equality, 
giving 

dx2 - < (22 + 1)a + 6x2 + K .  been shown using a method due to Seiler and Nossek [3] to 
be totally scalable, in that parameter tolerances and variable 
ranges are independent of the number of neurons, and has been 
shown to converge faster than a ConventiOnal WTA layer and 
be less sensitive to component mismatch. 

dT - 

a 
e x p ( ( a  + S)(T - T I ) )  

-a - /c --> a f S  
x2 = ____ + ( s 2 ( 4 )  + APPENDIX 

a+6  This appendix proves the results used in Section V-C. All 
initial activations will be assumed to be within the linear region 
of the activation function, [- 1, 11 for the standard architecture 
or [0, 11 for CTF-WTA. To simplify notation, much of this 
section will use a normalized time variable, T = t / r .  To 
analyse the time taken for the network to converge, this time 

so, again by (12) md since x2(T1) 5 1, x2 = 0 by time 

(20) 5 Ti + 3/(2l~I).  
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By (17), (18), and (20) the total convergence time for the 
CTF-WTA circuit is 

where rc is the time constant for the CTF-WTA circuit. 

B. Convergence Time of Conventional WTA 

This section presents a lower bound on the worst case 
convergence time of a bipolar lateral inhibition WTA network 
with no feedback clipping. The actual parameters used will be 
those specified in [3] ,  but similar results would be obtained 
with all such networks. 

Let 2 3  reach -1 at time T3. The least upper bound on 
22(T3) is 1 since the greatest lower bound on T3 is 0. After 
T3, there are n - 2 neurons contributing -1 to Q, and y1 
contributes at most 1, so Q 5 3 - n + 2 2 ,  which gives 

(22) 
dx2 - > ( 3  - n + 22)a + 6 2 2  + K dT - 

using 6 = - ( n + 4 ) a / ( n + 2 )  and /c = ( n 2 - 6 ) c r / ( n + 2 )  from 
[3] .  At any time, T ,  2 2  must be greater than another variable, 
z ,  satisfying (22) with equality and which has the same initial 
condition. Such a z satisfies 

and reaches -1 at 

Thus Tz is a lower bound on the worst case time to conver- 
genceTf 2 2 .  But in the case of 22(T3) = 1, 

since (n + 2) log(1 + 4/(n - 2 ) )  > 2 for n > 2. Thus the worst 
case convergence time is bounded below by 

t 2  - > rN/lal (24) 

where TN is the time constant for the nonclipped WTA circuit. 
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