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Abstract

The filtered Gibbs sampler (FGS) is a very simple yet effi-
cient method of performance evaluation for a class of com-
munication networks. This paper confirms that the FGS is
considerably more efficient than the standard Gibbs sam-
pler. It also shows that estimates of the accuracy of the
results can be excessively optimistic, and presents a more
conservative estimate.
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1 Introduction

Product form stationary distributions arise in many models
for telecommunications systems, notably truncated mul-
ticlassM/G/∞ queues. They model traditional circuit
switched networks with fixed routing, cellular networks
with frequency-reuse constraints [1–3], packet networks
with fixed routing using effective bandwidth admission
control [4,5] or with marking-based admission control [6],
or intelligent networks in which connections require a par-
ticular set of services for the duration of the call [7]. Many
other applications are listed in [8].

The importance of product form networks has led to
many techniques for analysing them [9]. The primary per-
formance measure for circuit switched models is the block-
ing probability. This may be calculated from the normalis-
ing constant (G of (1)); G may be calculated by convolu-
tional methods [10,11], numerical inversion of generating
functions [12] or by Monte Carlo integration [3, 13].

This paper investigates the performance of Markov
chain Monte Carlo simulation as an alternative means
of estimating blocking probabilities in product form net-
works [14,15] (see also [16]). In addition to blocking anal-
ysis, these algorithms can generate actual samples from the
state distribution, which can be used as is done in [17].

The next section defines the task of estimating block-
ing probabilities, and Section 3 introduces the filtered
Gibbs sampler (FGS). The FGS is numerically tested on
the example networks described in 4, with the results pre-
sented in Sections 5 and 6. Section 7 shows that confidence
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intervals based on standard estimates of variance can be
significantly too small, and proposes a more conservative
variance estimator.

2 Network Model

A truncated multiclassM/G/∞ network has anR-
dimensional state space,S ⊂ NR, with a stationary state
distribution

π(n) =
1
G

R∏
i=1

(
ρni

i

ni!

)
, n = (n1, . . . , nR) ∈ S (1)

whereρi = λi/µ is the load offered to classi, λi is the
arrival rate for classi, 1/µ is the common mean service
time, andG normalisesπ so that

∑
n π(n) = 1.

In circuit switched networks, theR classes are dis-
tinct routes through the network andni is the number
of calls currently using routei. If the network can sup-
port a particular combination of calls, then it can also
support any subset of those calls. Thus for any feasible
n = (n1, . . . , nR) ∈ S, we have{n′ : n′i ≤ ni} ⊆ S.

The form of the feasible region,S is often

S = {n ∈ NR : An ≤ C} (2)

(but [7, 18] give exceptions). HereA = [aji] ∈ {0, 1}L×R

(or more generallyNL×R) specifies the number of channels
required by routei on link j, andC = (Ci) ∈ NL is a
vector of the number of channels available on each link.

Let B be the network blocking probability. A feasible
state,n, is a blocking state for routei if one more call on
routei would lead to an infeasible state. The set of blocking
states for routei, i = 1, . . . , R, is

Bi = {n ∈ S : ∃j, aji + (An)j > Cj} . (3)

Let Bi = P(n ∈ Bi) be the blocking probability of routei.
Writing λ =

∑R
i=1 λi for the total arrival rate gives

B =
R∑

i=1

(
λi

λ

)
Bi. (4)



3 Markov Chain Monte Carlo Simulation

Evaluating blocking probabilities using (1) directly is a
difficult numerical problem for realistic sized networks.
Moreover, in many cases, it is not sufficient to know the
blocking probability, and it is desirable to sample from the
distribution itself (see for example [17]). Monte Carlo tech-
niques, such as the FGS, bridge the gap between exact algo-
rithms [10–12] and approximations [8,19,20]. They allow
a quantifiable tradeoff between computational time and ac-
curacy, while being conceptually simple.

This section presents the construction of a “surrogate”
Markov chain{Xk : k = 1, 2, . . .} with state spaceS
whose steady state probabilities are given exactly byπ in
(1), that is:

∀ n ∈ S lim
k→∞

P(Xk = n) = π(n). (5)

Such methods are called Markov chain Monte Carlo
(MCMC) methods. ThenB can be estimated aŝY (S) =
(1/S)

∑S
i=1 y(xi) for any functiony(·) with E[y(X)] =

B.
A fixed relative accuracy,Var[Ŷ (S)]/B2, can be ob-

tained faster by either decreasing the CPU time required
to evaluatey(X) or by using an estimator ofB with re-
duced variance. This tradeoff is quantified by therelative
efficiencydefined by

Er(Ŷ ) = lim
S→∞

B2

CPU[Ŷ (S)]Var[Ŷ (S)]
,

where CPU[Ŷ (S)] denotes the average CPU time of the
simulation that produces theS samples.

Note that it is not necessary for theS replications to
be independent. However, if there is significant correlation
between them, thenVar[Ŷ (S)] may be very much larger
thanVar[Ŷ (1)]/S, which would have resulted from inde-
pendent samples. Thus, in addition to having the desired
steady state distribution, a good surrogate process will have
a lower correlation between successive states than the sim-
ple arrival/departure process. This can reduce the variance
of the final estimate of the blocking probability by orders
of magnitude.

One good MCMC method is the Gibbs sampler [21].
After describing the standard Gibbs sampler, this section
presents an enhancement called thefilteredGibbs sampler.

3.1 The Standard Gibbs Sampler

The Gibbs sampler applies to multi-dimensional state
spaces. The key principle is that each transition in the sur-
rogate Markov chain updates only one component, but the
transition probabilities are proportional to the (known) sta-
tionary conditional probabilities for that component given
the current values of all other components. This is clearly
ideally suited to product form distributions, where these
conditional probabilities have a very simple form. It is the

ability to make large changes to each component which
reduces the correlation between samples generated by a
Gibbs sampler, and the use of the stationary probabilities
in the updates which results in a high overall efficiency.

In the following, the algorithms for generating state
Xk+1 from Xk require the following notation. ForX ∈
NR, define:

X−j = (X(1), . . . , X(j − 1), X(j + 1), . . . , X(R)),

which is a vector inNR−1, missing componentj. Given
anyx ∈ S and an index1 ≤ j ≤ R, the notationπ(·|x−j)
is used for the conditional probability of thejth component
given all the others:

π(y|x−j) = P(X(j) = y|X−j= x−j) =
π(xy)∑Cj(x)

x(j)=0 π(x)
,

wherexy(i) = x(i) for i 6= j andxy(j) = y, andCj(x) is
the state dependent bound such that all states in the sum in
the denominator lie inS.

Definition 1 AGibbs Updateis a rule for generatingXk+1

fromXk of the form:
1. Selectσk ∈ {1, . . . , R}, independent of the history of
the process.
2. SetXk+1(σk) ∼ π(·|X−σk

k+1 ) and leave all other compo-
nents unchanged.

The key property of Gibbs updates is that ifXk is
distributed according toπ (denotedXk ∼ π) thenXk+1 ∼
π.

Under some technical assumptions, a Markov chain
formed from Gibbs updates is called a Gibbs Sampler. For
example, ifσk are i.i.d. random variables then{Xk} forms
a Markov chain, while ifσk = k(modR), then{(Xk, σk)}
forms a Markov chain, as does everyN th sample,{XNk}.

For (1),π(·|X−σk

k+1 ) is a one dimensional Poisson dis-
tribution truncated by (2). For each1 ≤ j ≤ R, let

Pj(m) =
m∑

n=0

ρn
j

n!
m = 1, . . . , C, (6)

whereC = maxi Ci. Let Zi(X) = Ci −
∑

c∈Li
aicX(c)

be the number of free channels on linki in stateX, where
Li = {j : aij 6= 0} is the set of all routes using theith link.
At every stepk, let j = σk and let

Cj(Xk) = min
i:j∈Li

(Zi(Xk)/aij + Xk(j)) (7)

be the maximum allowable number of connections us-
ing route j given X−j

k . Then the required con-
ditional probability satisfiesP(Xk+1(j) ≤ m) =
Pj(m)/Pj(Cj(Xk)),m = 0, . . . , Cj(Xk).

Since Xk ∼ π, it is possible to estimateBi by
(1/S)

∑S
k=1 1{Xk∈Bi}, where1{A} = 1 if A is true, 0

otherwise. However since updates to componentj only
change1{Xk∈Bi} wheni andj share a link, this involves



significant unnecessary computation. Having evaluated
Cj(Xk) andXk+1, it is easy to calculate1{Xk+1∈Bj} =
1{Xk(j)=Cj(Xk)} for the componentj which is updated at
iterationk. ThusBi be estimated by

Yi(S) =
1

S(i)

S∑
k=1

yi(Xk)1{σk=i} (8)

where yi(Xk) = 1{Xk+1∈Bi}, and S(i) =
∑

1{σk=i}
counts the number of iterations whereσk = i. Theselocal
estimatesconverge toBi at rateO(S−1/2) asS increases.

3.2 Filtered Gibbs Sampler

Consider a Markov chain{Xk} and an estimator of the
form:

X̄S =
1
S

S∑
k=1

f(Xk).

The method offiltered Monte Carlois based on condition-
ing at each stage [21]:

X̄ ′
S =

1
S

S∑
k=1

E[f(Xk+1)|Xk].

This is closely related to “inverse convolution” of [22].
Applying this method to the Gibbs samplers requires

evaluation of the conditional probabilities:

P(Xk+1 ∈ Bj |Xk) =
Pj(Cj(Xk))− Pj(Cj(Xk)− 1))

Pj(Cj(Xk))
≡ g(Cj(Xk); ρj) (9)

wherePj(·) are given in (6) andCj(Xk) is given in (7).
When it is feasible to pre-computeg(·; ·), calculation of
the probabilities is as simple as reading a table. This is the
case when there is a small number of distinct loads,ρj , in
the network.

The FGS combines the filtering with the distribution
of the estimation via the local estimates as follows.

Definition 2 The Filtered Gibbs Sampler(FGS) is con-
structed from the chain{Xk} with Gibbs updates using
σk = k mod(R) + 1, by evaluating the sample average:

Ŷ (S) =
R

S

S∑
k=1

(
λσk

λ

)
yσk,F (Xk), (10)

whereyi,F (x) = g(Ci(x); ρi) = P(Xk+1 ∈ Bi|Xk = x).

Each of the periodic Gibbs samplers embedded in the
computation of (10) is dedicated to estimatingBσk

. Since
S(σk)/S → 1/R asS →∞, it follows that under the FGS,
Ŷ (S) → B [15]. Filtering can be applied analogously for
other sequences,σk.

Unlike most exact techniques whose complexity is
O(C), the complexity per iteration of the FGS isO(1)
as the capacity per link increases. However, its primary
strength is that it isO(R maxi |Li|) as the number of nodes
and links increases. The complexity of all known exact
methods is exponential in the number of links.

4 Test networks

The FGS was tested on two network topologies:
(a) Mesh-torus: a rectangular grid with each node

connected to four neighbours, wrapping at the edges. Com-
ponents of the state vectorn are the numbers of current
calls on a route. In the experiments, the load on all routes
was equal. Static shortest path routing ensured a constant
number of routes used each link.

(b) Cellular: Spatial reuse constraints in cellular net-
works with dynamic channel assignment produce “cliques”
of cells with a maximum aggregate number of calls [1].
These cliques are analogous to links, while cells corre-
spond to routes. The networks considered here employ a
hexagonal grid of cells, and cliques consist of groups of
three mutually adjacent cells.

5 Correlation

For a single random variable,Var[Y ] = Var[E[Y |Z]] +
E[Var[Y |Z]], and conditioning always entails a variance
reduction. However, it is not always the case for Markov
chains thatVar[Ŷ ′

S ] ≤ Var[ŶS ], due to the correlation struc-
ture [21]. Explicitly,

Var[Ŷi(S)] =
1
S

Var[yi(X1)]

+
2
S2

S−1∑
j=1

S−k∑
k=1

Cov[yi(Xj), yi(Xj+k)],

and an increase in the second term may exceed the decrease
in the first term.

The varianceVar[Ŷi(S)] can be estimated using batch
means (grouping runs ofK samples to obtain approxi-
mately independent estimates [23]). The impact of the
correlation can be quantified by the ratio ofVar[Ŷi(S)] to
Var[yi(X1)]/S, the variance estimated by treating individ-
ual samples as independent.

Figure 1 shows the results of using batches of size
K = 3× 106 (10000 for each of the 300 routes) in a5× 5
mesh-torus, for both the FGS and the standard Gibbs sam-
pler. (Note that these only show the impact of correlation,
and do not compare the actual variances of FGS and the
standard Gibbs sampler.) These results show that the co-
variance term has minimal impact except when blocking is
very high. This justifies ignoring its effect in arguing that
filtering should reduce the variance of the estimated block-
ing probability. However, when blocking is high, the vari-
ance of the final blocking estimator using FGS is up to an
order of magnitude higher than would be predicted by treat-
ing samples as independent. Since this does not occur with-
out filtering, the benefit due to filtering would be overesti-
mated in the case of high blocking if batch means were not
used. This effect is greatest for networks with many chan-
nels per link, as they have a higher occupancy per channel
for a given blocking probability, due to increased trunking
efficiency.
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Figure 1. Ratio of variance of a 4-hop route estimated by
batch means,K = 3 × 106, divided byVar[yi(X1)]/S.
5× 5 mesh-torus network, 4 to 4096 channels per link.

Figure 1 suggests that, for high blocking, the true vari-
ance of the standard Gibbs sampler is actually less than
would be predicted by treating samples as independent.
This indicates a negative correlation between samples, but
the reason for this is unclear.

6 Improvement due to filtering

Consider a single link ofC channels, used byN routes of
loadρ each, and assume that the blocking probability,B,
is low. As was demonstrated in Section 5, for low block-
ing the variance of FGS is dominated by the variance of
each update, rather than the covariance introduced by the
Markov structure. We will now quantify the variance re-
duction due to the conditioning. Let

DA =
C∑

j=0

Aj/j!

and note that forB << 1 (smallA or largeC), DA ≈ eA.
Denote the Erlang loss function by

Ek(ρ) =
ρk/k!∑k
j=0 ρj/j!

.

The blocking probability of the link isB = EC(Nρ), and
the variance of the Gibbs sampler estimator isB −B2.

For lowB, the occupancy of theN routes is well ap-
proximated by independent Poisson variables. Each FGS
update will see the link filled with the aggregate of the
N − 1 other routes, which is Poisson with rate(N − 1)ρ.
Thus with probability

((N − 1)ρ)C−j/(C − j)!
D(N−1)ρ

,

the FGS estimate isEj(ρ). Thus

Var[FGS] + B2

=
C∑

j=0

((N − 1)ρ)C−j/(C − j)!
D(N−1)ρ

(
ρj/j!∑j

k=0 ρk/k!

)2

,

and

Var[FGS] + B2

Var[GS] + B2

=
DNρ

D(N−1)ρ

C∑
j=0

C! (N − 1)C−j

(C − j)!j! NC

ρj/j!

(
∑j

k=0 ρk/k!)2

= eρ

(
N − 1

N

)C C∑
j=0

(
C

j

)(
1

N − 1

)j
Ej(ρ)
j∑

k=0

ρk/k!
(11)

→
(

N − 1
N

)C

asρ → 0. (12)

This analysis extends easily to unequal loads.
Figure 2 shows the increase in the relative efficiency

of the FGS compared to a standard Gibbs sampler for5×5
and200 × 200 cellular networks (N = 3) and5 × 5 and
7 × 7 mesh-torus networks (N = 15, 42). The results are
very similar for both cellular networks, while the results
differ for the two mesh-torus networks. This is because
cellular networks haveN = 3 cells per clique, while the
values ofN differ greatly for the mesh-tori.

As indicated by (11), the gain in relative efficiency
due to conditioning increases as the capacity of the of the
links increases. It is a minimum in the range of blocking
probabilities which are of greatest interest, around10−2 to
10−3. However, even in this range the gains are substantial
for networks with many channels per link.

7 Confidence Intervals

In contrast to the Bernoulli outcomes of standard Monte
Carlo, FGS produces samples from an unknown and highly
skewed distribution. This makes it possible to underesti-
mate the variance of the estimator by orders of magnitude if
insufficient samples are taken. Figure 3 shows the estimate
of blocking after each iteration, and also the value (“tradi-
tional upper”) which is usually used as the upper limit of
a confidence interval, i.e., the estimated mean plus twice
the estimated standard deviation. After a small number of
samples, this “2σ” upper limit is below the true value for
much more than 2.5% of the time (which it would be in the
Gaussian case), and is ineffective as a confidence bound.

To see why this occurs, consider the terms in

Bi =
C∑

j=0

g(j; ρi)P(Ci(X) = j). (13)

Without filtering,yj(X) = 1 if Ci(X) = xi and 0 other-
wise. If at least one non-zero sample is generated then the
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Figure 2. Ratio of efficiency of filtered to standard Gibbs
sampler with 4 to 4096 channels per link for (a)5 × 5 and
200×200 cellular (b)5×5 and7×7 mesh-torus networks.

variance estimator will, with high probability, be of the cor-
rect order of magnitude. If all samples are 0, it is clear that
the sample variance (zero) is not a true indication of the er-
ror. However, this is not the case for highly skewed contin-
uous distributions. There are many non-zero terms in (13)
which have a high probability, but make very little contri-
bution to the sum due to small values ofg(j; ρi). Thus if
the sample size is too small, the sample mean and variance
can be very much smaller than the ensemble values, with-
out any tell-tale zeros to indicate their unreliability. For the
FGS to be of practical value, it is necessary to be able to
detect when an estimate is statistically unreliable.

For a better indication of the accuracy of the re-
sult, consider the individual terms (“partial expectations”)
of (13). Figure 4 plots these terms against the cumulative
probability for a 37-cell cellular network with 64 channels
and 12 Erlangs per cell. (AsP(Ci < j) is monotonic inj,
the horizontal axis is simply a non-linear scale forj.)

Since g(j; ρi) is known, it suffices to estimate
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Figure 3. Estimated upper bounds onB: B̂ + 2σ and
the conservative estimator of (14).3 × 3 mesh, 64 chan-
nels per link. (a) 13 Erlangs per route, simple variance
(b) 10 Erlangs per route, batches of 100

0.0e+00

5.0e-07

1.0e-06

1.5e-06

2.0e-06

2.5e-06

3.0e-06

3.5e-06

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

g(
j;ρ

i)P
r(

j)

�

P
r(

j)

�

Pr (Ci < j)

g(j;ρi)Pr(j)
Pr(j)

Figure 4. Comparison of partial expectations and state
probabilities.



P(Ci(X) = j), or those for whichg(j; ρi)P(Ci(X) = j)
is a significant fraction ofB. Because these terms decay
rapidly forj < argmaxj(g(j; ρi)P(j)), as seen in Figure 4,
it is possible to determine by inspection when all “signifi-
cant” terms have been estimated with sufficient confidence.

To quantify this, assume that the sample contains
enough points to capture the peak of the probability distri-
bution, which requires orders of magnitude less data than
capturing the peak of the partial expectation. (Note the dif-
ferent scales in Figure 4.) Letm be the smallest value
such thatP(Ci = m) can be reliably estimated from the
sample, and forj ≥ m, let pj be the sample estimate of
P(Ci = j). For j < m, conservatively approximate the
tail asP(Ci = j) ≈ pj ≡ pm∆j−m, where∆ is fitted to
the sample data. In this paper,

∆ = h

√√√√ ∑h−1
j=0 pm+j∑h−1

j=0 pm+h+j

,

wherem is the smallest value ofCi(X) observed more than
once in the simulation, andh is such thatm + 2h is the
fourth smallest such value.

Ignoring correlations (Section 5), the variances of the
estimatespj based onS samples, andVar[Ŷi(S)] can then
be approximated by

V̂i(j) = pj(1− pj)/S,

V̂i =
C∑

j=0

(g(j; ρi))2V̂i(j). (14)

The curve “conservative” in Figure 3 plotŝB+2
√

V̂ .
It is clearly overly conservative for very small sample sizes,
sincepj , j < m, are very conservative. However, if the
sample is large enough forB to be suitably accurate, then
the bound becomes usably tight.

8 Concluding Remarks

The filtered Gibbs sampler not only outperforms the usual
Gibbs sampler, but its relative efficiency actually grows
with problem size and with increasing load.

The key limitations of the FGS are its relatively poor
performance when the load per channel is low, and the dif-
ficulty in deriving good confidence intervals for its results.
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