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Abstract

The IEEE 802.16 standard is a promising technology for the fourth-generation mobile networks

and is being actively promoted by the WiMAX Forum, an industry-led consortium. Among the various

service classes supported in the standard, best-effort service is expected to be the major service class

subscribed by users due to its operation simplicity and lower charging rate compared with other service

classes. In this paper, we investigate the throughput and packet access delay performance of the best-

effort service using contention-based bandwidth request mechanism in a saturated 802.16 network. In

particular, we develop a simple fixed point analysis to approximate the failure probability of a bandwidth

request and derive analytical expressions for network throughput and packet access delay. Furthermore,

the uniqueness of the fixed point is established. The accuracy of the analytical model is validated by

comparing with simulation over a wide range of operating conditions. The implication of various different

parameter configurations on the system performance is investigated using the analytical model. The utility

of the model is further demonstrated by finding the maximum achievable throughput and obtaining its

corresponding optimal initial contention window.
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I. INTRODUCTION

WiMAX (Worldwide Interoperability for Microwave Access) was first developed for wireless broad-

band access and has evolved to become one of the candidate technologies for fourth-generation mobile

communication networks. Based on the IEEE 802.16-2004 Air Interface standard [1] and the IEEE

802.16e amendment [2], WiMAX can support: 1) A very high capacity; for example, a theoretical

peak data rate of 60 Mb/s for a total downlink operation (without uplink) and 28 Mb/s for a total

uplink operation can be achieved with the use of two antennas at 10-MHz channel bandwidth. 2) Wide

area mobility, a speed of up to 120 km/h with handoff. 3) Multimedia services with different traffic

characteristics and various quality of service (QoS) requirements.

To support multimedia services, the IEEE 802.16 defines five service classes referred to as scheduling

services, viz.: unsolicited grant service (UGS), extended real time polling service (ertPS), real-time

polling service (rtPS), non-real-time polling service (nrtPS), and best effort service (BE) [3]. The main

characteristics of these scheduling services are:

• UGS is designed for constant bit rate (CBR) real-time traffic such as E1/T1 circuit emulation and

VoIP without silence suppression. The main QoS parameters are maximum sustained rate (MSR),

maximum latency and tolerated jitter.

• ertPS is designed to support VoIP with silence suppression. It has the same QoS parameters as

UGS. However, it is allocated the maximum sustained rate only during active periods, and is not

allocated any bandwidth during silent periods.

• rtPS is designed to support real-time applications with variable bit rates, such as MPEG videos.

Other than the MSR, its QoS parameters also include the minimum reserved rate.

• nrtPS is designed for applications without any specific delay requirement but with the need for a

minimum amount of bandwidth, such as File Transfer Protocol (FTP).

• BE is designed for applications that are delay-tolerable and do not require a minimum bandwidth.

Bandwidth will be granted to this service class if and only if there is a left-over bandwidth from

other classes.

The basic operating mode of WiMAX is the point-to-multipoint (PMP) mode, where a base station (BS)
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serves a set of subscriber stations (SSs) within the same antenna sector in a time-division-multiplexed

fashion. In the downlink direction, BS is the only sender. It has full control of using which time slot

to send data to which SS, and data are broadcast to all SSs. In the uplink direction in which SSs send

data to the BS, SSs share the common channel. In order to avoid collision, only one SS should be

permitted to transmit at any time slot. According to the 802.16 standard, such an exclusive access is

achieved by requiring each SS to have granted time slots before it can transmit. For this purpose, several

request/grant mechanisms at the MAC layer have been specified for various scheduling services [4].

They are unsolicited granting, unicast polling and broadcast polling. Among these bandwidth reservation

mechanisms, the broadcast polling mechanism is contention based and requires SSs to use the binary

exponential backoff (BEB) algorithm [5] for contention resolution. It is typically used by BE connections.

BE service is relatively simple to provision because it does not involve QoS negotiation and enforcement

of traffic parameters. Moreover, since BE service offers no QoS guarantees, its service charge is expected

to be cheaper than other scheduling services. As a result, it would be a major scheduling service subscribed

by WiMAX users. Therefore, it is important to understand the network performance when delivering BE

service.

However, recent research on MAC layer performance in WiMAX networks just focus on the perfor-

mance of bandwidth request mechanisms. In [6], the delay performance of the contention-free unicast

polling request mechanism is studied analytically. The cases in which nodes are polled sequentially at

the beginning or end of each uplink subframe are both modelled. In [7], the delay performance under

broadcast polling is investigated. An analytical model based on Markov chain is used to evaluate the

average delay of a transmission request for saturated networks. An alternate modelling approach is also

proposed in [8]. The model in [7] is later extended to investigate the case with Bernoulli request arrival

[9]. In [10], the capacity of the contention slots in delivering bandwidth requests and average access

delay are derived, taking into account the response time for a bandwidth assignment and the possible

timeouts for lost messages. However, the work in [7], [8], [9] and [10] do not take into account the

delay incurred by data packet transmission after a request is successfully transmitted. Also, the delay is

measured in terms of transmission frame, instead of measuring the time between the first attempt of a

request and the completion of the packet transmission. In [11], the performance of bandwidth request

based on piggyback and broadcast polling are compared by simulation.

The first major contribution in this paper is an accurate analytical model for evaluating the network

throughput and packet access delay of BE service. To this end, we study the performance of BE service

based on broadcast polling in a saturated WiMAX network. Here, a saturated network means that each
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SS always has a packet to send. Considering such a condition allows us to obtain the upper bound of

network performance. Our analytical model is based on a set of fixed point equations which calculates the

unsuccessful probability of a bandwidth request in broadcast polling as a function of system parameters.

Furthermore, we show that these fixed point equations have a unique solution. Based on the obtained

unsuccessful probability of a bandwidth request, the network throughput and packet access delay are then

derived.

Our second major contribution is to show the utility of the proposed analytical model in designing

a better network. In particular, we use the model to investigate the optimal achievable throughput

under different parameter settings at the MAC layer. This leads us to develop a mechanism to adjust

the initial contention window according to system parameters to achieve this optimality. This work

provides operators analytical tools to evaluate network performances and to gain insights into the optimal

configuration of system parameters.

The rest of the paper is organized as follows. Section II describes the details of the broadcast polling

mechanism. Section III presents our analytical model. Section IV validates the model by comprehen-

sive comparisons with simulation results, and evaluates the performance of BE service under different

configurations of system parameters. Section V investigates how the optimal throughput depends on

various system parameters and presents a mechanism for achieving optimal throughput adaptively. Finally,

conclusions are drawn in Section VI.

II. BROADCAST POLLING

The MAC frame structure defined by the IEEE 802.16 standard for time division duplexing (TDD)

in PMP mode is shown in Fig. 1. In this mode, the channel is time slotted into fixed-length frames;

each consists of a downlink and uplink subframe. The duration of the downlink and uplink subframes

is dynamically controlled by the BS via broadcasting the so-called downlink map (DL Map) and uplink

map (UL Map) messages at the beginning of each frame (as indicated in Fig. 1). The UL Map contains

data or information element that informs the SSs about transmission opportunities for bandwidth requests

and data packets. Consider a frame i, when an SS has a data packet to send, it first sends a bandwidth

request for transmitting its data in one of the transmission opportunities within the request interval of the

uplink subframe. Upon receiving the bandwidth requests, the BS then allocates bandwidth or data slots

for data transmission in the uplink data interval of frame i + 1 based on its scheduler.

In the following, we consider a scenario where broadcast polling is used by the BS with m (fixed)

transmission opportunities for bandwidth requests which are referred to as request slots. In this case, if
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Fig. 1. IEEE 802.16 MAC frame structure with times division duplexing (TDD).

there is only one request submitted to a request slot, the request is successful. On the other hand, if there

are two or more SSs submitting their requests in the same request slot, collision occurs and the truncated

BEB is used to resolve the contention. In particular, when sending a request at backoff state i, i ≥ 0,

an SS must carry out the backoff process by randomly selecting a backoff time in the range [0,W i − 1],

where Wi is the contention window for backoff state i. Here the backoff time represents the number of

request slots that must pass before the request can be submitted. At backoff state 0 (which is the first

attempt), W0 is set equal to W , the initial contention window. If the request is unsuccessful, then the

contention window size is multiplied by α = 2, and another backoff period is initiated. The process of

doubling the contention window continues until the maximum possible value, CWmax = αrW , r ≥ 1,

is reached. Here, r is referred to as the truncation value. If the request is unsuccessful after r reattempts,

the contention window is not expanded anymore, but maintained at CWmax for the remaining attempts

until either the request is successful, or the maximum allowable number of attempts, R ≥ r + 1, have

been made. If the request is still unsuccessful after R attempts, the packet is discarded. In summary, W i

is given by:

Wi =

⎧⎨
⎩ αiW, 0 ≤ i ≤ r,

αrW, r < i < R.
(1)

In this paper the SSs are only allowed to request bandwidth to transmit one packet per request, and

all packets are assumed to have the same length. Let t be the length of a request (or backoff) slot.

Furthermore, we assume that the BS always allocates the same amount of uplink capacity consisting of

d ≤ m data slots in every uplink subframe for uplink traffic. Each data slot is of length T (T � t) which

is the transmission time of a packet. As the standard does not define scheduling algorithms for both BS
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and SSs, we assume here that the BS uplink scheduler will uniformly allocate bandwidth to SSs whose

bandwidth request is successful in the previous frame. Let j be the number of requests which do not

collide. If j < d then in the next frame there will be (d − j) > 0 data slots which remain unused and

are wasted. However, if j > d then j − d > 0 requests must be declined because there are only d slots

available in the next frame; these j − d requests are also considered unsuccessful.

III. ANALYTICAL MODEL

Consider an IEEE 802.16 network consisting of N saturated SSs operating in the PMP mode. Our

objective is first to develop a fixed point approximation to compute the probability that a request is

unsuccessful. The expressions for network performance metrics such as the network throughput and

packet delay will then follow.

A. Unsuccessful Request Probability

Let p be the probability that a request sent by an SS is unsuccessful. As in [8], a request is regarded

as unsuccessful either when the request experiences collision during transmission (with probability p c)

or when the request is successfully transmitted but the BS could not allocate bandwidth to it due to

insufficient data slots (with probability pd). For simplicity, we model these two events as independent.

Then p can be expressed as

p = 1 − (1 − pc)(1 − pd), (2)

Since both pc and pd can in turn be expressed as a function of the probability p, fixed point equations

can be established to calculate the individual probabilities. The fixed point analysis is detailed as follows.

A request is successful on the first attempt with probability 1−p. Recall that the contention window is

initially set to W , the average number of elapsed backoff slots before such a request is m
2 +(W−1)/2. The

first term is due to the fact that an SS cannot start a new backoff period for its next request immediately

after the previous one in the same frame but has to wait until the next frame; because requests slots are

uniformly chosen among the m request opportunities in each frame, the average number of backoff slots

wasted until the next frame is m
2 . The second term represents the average number of backoff slots an SS

has to wait before attempting to send request based on the contention resolution mechanism described

in Section II.

If its first attempt fails, a request is successful on the second attempt with probability p(1 − p). The

average number of elapsed backoff slots in this case is m
2 + (αW − 1)/2. Continuing this argument
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until the Rth attempt yields the average number of elapsed backoff slots (Bavg) before the request is

successful. We have

Bavg =
m

2
+ η

r−1∑
i=0

pi(
αiW − 1

2
) + η(

αrW − 1
2

)
R−1∑
i=r

pi

=
m

2
+

ηW (1 − (αp)r)
2(1 − αp)

− 1 − pr

2(1 − pR)
+

(αrW − 1)(pr − pR)
2(1 − pR)

, (3)

where η = (1 − p)(1 − pR)−1, and (1 − pR) is a normalisation factor.

Note that Bavg is the average number of backoff slots an SS has to wait before sending requests, i.e.,

it is an average inter-arrival time of requests in this system. And therefore the probability that an SS

attempts to send the request in a slot is given by

τ = 1/(Bavg + 1). (4)

Given that there are N saturated SSs, the probability pc that a request sent by an SS collides with

other requests can be expressed as

pc = 1 − (1 − τ)N−1. (5)

Let ξ be the probability that a collision-free request is made in a given slot, given that there are

N SSs each attempting to send requests with probability τ . Under the approximation that requests are

independent, we have

ξ = Nτ(1 − τ)N−1. (6)

The probability that there are j, 0 ≤ j ≤ k = min(m,N), collision-free requests among m request

slots is then given by a truncated binomial distribution

Q(j) =

(m
j

)
ξj(1 − ξ)m−j

k∑
i=0

(
m

i

)
ξi(1 − ξ)m−i

. (7)

The probability that a collision-free request is unsuccessful due to lack of bandwidth in the subsequent

frame can then be expressed as

pd =

k∑
j=d+1

(j − d)Q(j)

k∑
j=0

jQ(j)

. (8)

Equations (2) to (8) create a fixed point formulation from which p can be computed numerically. The

existence and uniqueness of a solution for the above formulation are provided in the next theorem, proved

in Appendix I.
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Theorem 1: Let g(τ(p(pc, pd))) : [0, 1] → [0, 1] be defined by the right-hand side of (8), and let

f(τ, pc, pd) = g(τ(p(pc, pd))) − pd.

For m ≤ N ,

1) for a given pd, 0 ≤ pd ≤ 1, the function τ(p(pc, pd)) : [0, 1] → [0, 1] defined in (4) and pc defined

in (5), have a unique fixed point solution,

2) the equations f(τ, pc, pd) = 0, (4) and (5) have a unique fixed point solution.

B. Throughput Analysis

From (7), the probability that there are j collision-free requests in each uplink subframe is given

by Q(j). If j ≤ d, each request is allocated a data slot and thus j packets will be transmitted in the

subsequent uplink subframe. On the other hand, if j > d, only d requests are allocated data slots. As a

result, only d packets will be transmitted in the subsequent uplink subframe. Therefore, the normalized

throughput Γ is given by

Γ =

d∑
j=1

jQ(j) +
k∑

j=d+1

dQ(j)

d
. (9)

C. Delay Analysis

The delay of a packet is defined as the time duration from its first bandwidth request until the packet

transmission is completed. Note that if the bandwidth reservation of a packet is successful, the packet

will be removed from the head of the queue into a transmission queue waiting for its transmission in the

coming uplink subframe. Under the saturation condition, an SS will then start a new backoff process for

its next packet (which is now at the head of the queue) in the subsequent frame.

Referring to Fig. 1, for any data packet of a tagged SS, the time epoch at the end of the request

interval in which its first request is sent is denoted as τu, and the time epoch at the beginning of the

uplink data interval in which the data packet is sent is denoted as τv. Let U and V be the random

variables (RVs) representing the time durations from the time of sending the first request until τu, and

from τv until the packet has been transmitted, respectively. The duration of the uplink subframe is given

by TUL = TRE + TDA, where TRE = mt and TDA = dT are the length of the request interval and the

uplink data interval, respectively.
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Given that the tagged SS is successful in its first attempt of sending a bandwidth request, the packet

delay X(0) is therefore given by

X(0) = U + Δ + V, (10)

where Δ is the duration of an IEEE 802.16 frame (including both downlink (TDL), uplink subframes

(TUL) and their guard times). Note that the backoff period of this first attempt is not included as part

of the delay due to the way we have defined the packet delay period, which starts from the time epoch

when the first request is sent.

For the case when the tagged SS is not successful in its first attempt but is successful in the second

attempt of sending bandwidth request, the packet delay can be expressed as

X(1) = U + Y (1) + V,

where Y (1) is the random time that a packet has to wait between the epochs τu and τv due to the first

and second request attempt, and is given by

Y (1) =
1∑

i=0

K(i)Δ,

where K(i) is the number of frames delayed in the attempt i. Using this notation, we can rewrite (10) as

X(0) = U + Y (0) + V,

where, by definition, Y (0) = K(0)Δ and K(0) is always equal to one. In the second request attempt,

the SS will choose its backoff uniformly in [0,W1 − 1]; W1 = αW and thus K (1) is a discrete random

variable with the following probability mass function (pmf)

K(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 w.p. m/W1,

2 w.p. m/W1,

...
...

A1 − 1 w.p. m/W1,

A1 w.p. 1 − (A1−1)m
W1

,

(11)

where A1 is the smallest integer which is larger than W1/m, and w.p. stands for “with probability”.

In general, for a packet transmission requiring i request attempts, the packet delay X (i) is given by

X(i) = U + Y (i) + V, 0 ≤ i < R, (12)
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with

Y (i) =
i∑

j=0

K(j)Δ,

and K(i), 0 < i < R, has the following probability mass function

K(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 w.p. m/Wi,

2 w.p. m/Wi,

...

Ai − 1 w.p. m/Wi,

Ai w.p. 1 − (Ai−1)m
Wi

,

(13)

where Ai = �Wi/m�, and �x� gives a minimum integer value that is greater or equal to x. Note that if

Ai = 1, i.e. m ≥ Wi, then K(i) = 1 with probability one.

Overall, the packet delay X can be expressed as

X = X(i) w.p. ηpi, 0 ≤ i < R. (14)

To complete the expression of X, we now determine the pmf of the U, V RVs. As the tagged SS

uniformly chooses the backoff before sending request, the pmf of the RV U can be approximated as

below

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt w.p. 1/m,

(m − 1)t w.p. 1/m,

...

t w.p. 1/m.

(15)

Equation (15) assumes that an SS always sends its request at the beginning of the chosen slot.

As the BS uniformly allocates data slots among successful requests, the pmf of the V can be expressed

as

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T w.p.
k′−1∑
j=0

1
j + 1

q(j),

2T w.p.
k′−1∑
j=1

1
j + 1

q(j),

...

k′T w.p. 1
k′ q(k′ − 1),

(16)
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where k′ = min{k, d}, and q(j) is the probability that there are j ≥ 0 successful requests other than the

tagged SS in a frame. The probability q(j) follows a truncated binomial distribution

q(j) = Q(j + 1)/(1 − Q(0)), 0 ≤ j ≤ k − 1, (17)

where Q(j) is given in (7).

From (14), we obtain

E[X] = η

R−1∑
i=0

pi E[X(i)], (18)

Var[X] = η

R−1∑
i=0

pi(Var[X(i)] + (E[X(i)] − E[X])2).

The mean and variance of X (i) are derived from (12)

E[X(i)] = E[U ] + E[Y (i)] + E[V ], (19)

Var[X(i)] = Var[U ] + Var[Y (i)] + Var[V ],

where

E[Y (i)] = Δ
i∑

j=0

E[K(j)],

Var[Y (i)] = Δ2
i∑

j=0

Var[K(j)].

From (13), it can be shown that

E[K(j)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = 0,

Aj − Aj(Aj − 1) m
2αjW j = 1, .., r − 1,

Aj − Aj(Aj − 1) m
2αrW j = r, .., R − 1,

(20)

and

Var[K(j)] = K(j)2 − (E[K(j)])2,

where K(j)2 is the second moment of K (j) and is given by

K(j)2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = 0,

A2
j − Aj(Aj − 1)(1 + 4Aj) m

6αjW j = 1, .., r − 1,

A2
j − Aj(Aj − 1)(1 + 4Aj) m

6αrW j = r, .., R − 1.
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It remains to determine E[U ], Var[U ], E[V ] and Var[V ] from (15) and (16), which can be expressed

as

E[U ] = (m + 1)t/2, (21)

Var[U ] = U2 − (E[U ])2, where

U2 = (m + 1)(2m + 1)t2/6, and

E[V ] = T

k−1∑
j=0

q(j)
j∑

i=0

i + 1
j + 1

,

Var[V ] = V 2 − (E[V ])2, where

V 2 = T 2
k−1∑
j=0

q(j)
j∑

i=0

(i + 1)2

j + 1
,

and q(j) is given in (17).

The delay and variance of packet delay are then calculated by substituting (19), (20), (21) into (18).

IV. MODEL VALIDATION AND PERFORMANCE ANALYSIS

In this section we verify our analytical model using simulation and study in detail the network

performance including throughput, mean and standard deviation of delay, as functions of N,m, d, r,R

and W . To this end, we have developed a simulator [12] to simulate the broadcast polling with the BEB

contention resolution mechanism as described in Section II. The simulator is event-driven and developed

using C++. The duration of each simulation run is 3,000 seconds, with a warm-up period of 300 seconds.

The MAC and physical layer parameters were configured in accordance with default parameters taken

from the standard [1]. In particular, the frame duration is 1 ms consisting of 5000 physical slots or 2500

mini slots each of 0.4 μs length. The data rate is 120 Mb/s employing 64-QAM modulation at 25 MHz.

Each bandwidth request consists of 6 mini slots including 3 mini slots for subscriber station transition

gap (SSTG), 2 mini slots for preamble and one mini slot for a bandwidth request message of 48 bits. The

length of a data slot including the preamble and transition gap is 37.6μs (i.e. 94 mini slots) which allows

the transmission of an approximately 0.5 kB packet per data slot. Using this simulator, we have validated

our analytical model with different sets of typical system parameters. As shown by the results presented

below, the model accurately predicts the performance of the contention-based best-effort service of 802.16

and is therefore suitable for studying the impact of different parameters on overall system performance.
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We first validate our model for the probability of unsuccessful REQ (p) using the above simulation.

We set r = 3, R = 5 and m = d = 10, and obtain p for different numbers of SSs with W = 8, 16, 32, 64,

respectively. The results are shown in Fig. 2. As expected, larger N leads to more request contention and

thus larger p. While other system parameters are fixed, p decreases as W increases. This is because when

W increases, there are more choices of a request slot in each backoff stage. As a result, the probability

that an SS transmits a request in a request slot (τ ) becomes smaller. Hence, pc and p decrease. We now

set W = 16, r = 3, R = 5, m = 10, and obtain p for different number of SSs with d = 4, 6, 8 and 10.

As can be seen from Fig. 3, the curves for d = 6, 8 and 10 essentially overlap with other, while the curve

for d = 4 exhibits higher p. This is because, given m available request slots, the average number of

successful requests is less than m. In this example case, d = 6 is quite sufficient to serve the successful

requests, therefore increasing d does not change p significantly. However, when d becomes too small,

say d = 4, there are not enough data slots available in the subsequent subframe which then results in

a larger p. Next, we set W = 16, r = 3, R = 5,m = d, and obtain p for different number of SSs with

m = 10, 15, 20, respectively. The results are shown in Fig. 4. It can be seen that p increases when m

decreases as smaller m causes higher contention probability in each request slot and hence higher p.

We now investigate the throughput performance under different system parameters. Firstly, we set r =

3, R = 5 and m = d = 10, and plot throughput against different number of SSs with W = 8, 16, 32, 64,

respectively, in Fig. 5. It can be seen that, for a given W , throughput varies with N such that there

exists an optimal N which maximizes the throughput. The reason is that when N is small, the demand

for data slots is low and hence the throughput is low. As N gradually increases, the throughput also

increases. However, increasing N further will also cause more contentions which at some point results

in fewer successful requests and lower throughput. Thus there exists an N value where the throughput

is maximized. Alternatively, for a fixed N , say at N = 40, throughput increases and then decreases

when W varies from 8 to 64, which indicates that there also exists an optimal W at which throughput

is maximized. Also, it is interesting to see from the plot that the maximum throughput value is more or

less the same, irrespective of the N and W values.

Next, we set W = 16, r = 3, R = 5,m = 10, and obtain the throughput for different number of SSs

with d = 6, 8, 10, respectively. The results are shown in Fig. 6. As d decreases, the throughput increases.

Recall that the throughput is also a measure of the efficiency of the data slots in each uplink subframe,

since the average number of collision-free requests in a request interval is smaller than m (from (7)),

a smaller d gives a higher efficiency. In fact, noticing from Fig. 5 that the throughput does not exceed

37.5%, we then investigate the throughput when d is set to be 40% of m. The result is shown in Fig. 7,
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with W = 16, N = 40, and m varying between 5 and 30. It can be seen that a throughput of at least

80% can be achieved with a relatively small pd. However, it should be noted that if d becomes even

smaller, pd and thus packet delay will increase despite the high throughput value.

Finally, we investigate the delay performance under different system parameters. Firstly, we set r =

3, R = 5 and m = d = 10, and plot mean packet delay against different number of SSs with W =

8, 16, 32, 64, respectively, in Fig. 8. Again, as expected, for a given W , larger N incurs larger delay,

because p is larger and each request would need more attempts before being successful. For a fixed

N , when W increases, the average window size in each backoff stage increases and hence the mean

packet delay increases. Also, as W increases, a larger range of request slots across several subframes is

available to be chosen resulting in larger standard deviation of packet delay as shown in Fig. 9. Although

increase in W leads to the increase in mean and standard deviation of packet delay, it also means that

more requests are successful and thus the probability of packet loss due to exceeding maximum allowable

number of attempts decreases as shown in Fig. 10. Here the probability of packet loss is expressed as

pR where p is given in (2) and R is the maximum allowable number of attempts per packet. Note from

Fig. 10 that by doubling W from 8 to 16, or from 16 to 32, the probability of packet loss is reduced

significantly.

Next, setting r = 3, R = 5, W = 16 and m = d, we plot the mean and standard deviation of packet

delay against different number of SSs with m = 10, 15, 20, respectively, in Figs. 11 and 12. For a fixed

N , when m increases, it is more likely to have a successful request, hence both mean and standard

deviation of packet delay decrease. When r = 3, R = 5, W = 16, m = 10 and d = 6, 8, 10, we can see

from Fig. 13 that the mean packet delay does not vary much. This is consistent with the result in Fig. 3

that p is more or less the same over this range of d. But for d = 4, p is larger, and so as the delay.

V. THROUGHPUT OPTIMIZATION

From the results shown in Fig. 5, we have observed that for fixed N , m, d, r and R, when W is

varied, there exists an optimal value such that throughput is maximized. This observation has motivated

us to find the optimal W and the corresponding optimal throughput for a given set of system parameters.

In Appendix II, the optimal W is derived and given by (35). In the special case, where r = R− 1 and

N is large, the optimal W becomes

Wopt =
(N − m/2)(1 − pR)(1 − αp)

(1 − p)(1 − (αp)R)
. (22)
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Note that for large R, i.e. R → ∞, the asymptotic value of Wopt in (22) is

W R→∞
opt = (N − m/2)

(1 − αp)
(1 − p)

.

In the following, we will investigate how the system parameters affect the optimal W and throughput

values.

Figure 14 shows the size of the optimal W versus the number of SSs in the system. It can be seen

that for a given number of request slots (m), a larger W is required for the throughput to be maximized

with increasing number of subscribers. However, the opposite trend is observed for a fixed number of

subscribers but with increasing m. It is because for the same number of subscribers but with larger

number of request slots, the attempt probability per request slot should increase to fully utilize all the

available request slots. Thus maximum throughput will mean smaller W in this case.

The impact of the truncation value (r) defining CWmax and the maximum allowable attempts (R)

on the optimal W is shown in Fig. 15. Observe that for the same number of subscribers and request

slots, smaller (r,R) pair requires larger W to maximize the throughput. This is because the optimal

attempt probability that maximizes the throughput would be the same for any (r,R) values provided that

the number of subscribers and request slots are fixed. Since smaller (r,R) would yield smaller average

backoff window which would then result in a greater attempt probability, a larger W is required in order

to maximize the throughput as compared to that of larger (r,R).

The impact of various system parameters on the optimal W and the resulting network performances

is illustrated in Table I. It is clear that the optimal throughput only depends on the ratio d/m, but

independent of N . However, the corresponding optimal W increases with N . Therefore, for a given

d/m, when N is known, W can be adjusted to the optimal value to achieve the optimal throughput.

Since the optimal W increases with N , the resulting delay also increases. On the other hand, as also

shown in the table, when N and m are fixed, d can be set smaller than m to achieve higher optimal

throughput without affecting much the packet delay and loss probability. Finally, the effect of d/m on

the optimal throughput is depicted in Fig. 16.

For a given number of SSs (N ), a simple algorithm is developed in Algorithm 1 to optimize the system

performance. In particular, the algorithm adjusts the number of available data slots in the uplink sub-frame

in a small step size δ during its iterations and is terminated after the packet loss probability (pR) exceeds

a certain threshold (ε). The loss threshold ε is a design parameter and can be set according to the actual

applications’ requirements. Finally the algorithm outputs the optimal initial contention window and the

corresponding maximum throughput. Similar algorithm can be developed where the delay is considered
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as a design parameter. It is because, while achieving the optimal throughput, packets may experience

different delays using different (r,R) parameter pairs as described earlier. Note that in both cases (i.e.

loss vs. delay), the objective is to adjust the system parameters so that the system performance (e.g.

throughput) is optimized based on results of the derivation in this section.

Algorithm 1 Algorithm for finding Wopt and maximizing throughput

Require: N,m, (r,R) and ε

1: d = m, δ = 1 // Initialization

2: Set τ = 1/N

3: Set p = 1 − (1 − pc)(1 − pd), where pc, pd are in (4) and (7)

4: while pR ≤ ε do

5: Set d = d − δ

6: Update p according to (2)

7: end while

8: Calculate Wopt according to (21)

9: Calculate Γ according to (8) // maximum throughput

VI. CONCLUSIONS

In this paper, we have developed an analytical model to evaluate the performance of best-effort

service in a saturated IEEE 802.16 network. Explicit expressions for network throughput, mean and

standard deviation of the packet delay are derived. Comparison with simulation confirms the accuracy

of our analytical model over a wide range of operating conditions. Using the proposed model, we have

studied the impact of various parameters on the overall network performance such as throughput and

packet access delay. We showed that the initial contention window of the broadcast polling mechanism

can be suitably chosen to maximize the network throughput. A simple asymptotic value for this optimal

window is then provided assuming the number of allowable retransmissions is large. Furthermore, the

maximum achievable throughput is found to be only dependent on the ratio between the number of

data slots available on the uplink subframe and the number of request slots for bandwidth requests. We

have also provided a mechanism which dynamically adjusts the initial contention window to achieve the

optimal performance. Further work will be carried out to extend our model to consider the unsaturated

case.
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APPENDIX I

UNIQUENESS OF THE FIXED POINT

The proof of the uniqueness of the fixed point uses the following lemma.

Lemma 1: Let Q(j; ξ) be given by (7), and let

H(ξ;n) =
n∑

j=1

jQ(j; ξ) +
m∑

j=n+1

nQ(j; ξ).

Then, for ξ ∈ [0, 1], and d = 1, . . . ,m − 1,

1) H(ξ; d) is increasing in ξ

2) H(ξ; d)/H(ξ;m) is decreasing in ξ.

Proof: The proof will make repeated use of the fact that, for a, b,X,X ′, Y, Y ′ > 0,

X

X ′ <
Y

Y ′ ⇔
X

X ′ <
aX + bY

aX ′ + bY ′ ⇔
aX + bY

aX ′ + bY ′ <
Y

Y ′ . (23)

To show monotonicity, we will perturb ξ by some amount δ ∈ (0, 1− ξ]. We use the notation “↑ in (·)”
to indicate that a function is increasing in a specified argument.

Let

F̄ (j; ξ) =
m∑

i=j

Q(i; ξ)

be the complementary cumulative distribution function (ccdf) corresponding to probabilities Q. Then

H(ξ;n) =
n∑

j=1

F̄ (j; ξ). (24)

We first claim that
F̄ (j; ξ + δ)

F̄ (j; ξ)
↑ in j. (25)

To see this, first note that
(ξ + δ)j(1 − (ξ + δ))m−j

(ξ)j(1 − ξ)m−j
↑ in j. (26)

This implies
Q(j; ξ + δ)

Q(j; ξ)
<

F̄ (j + 1; ξ + δ)
F̄ (j + 1; ξ)

by backward induction on (23) from j = m−1. Applying (23) to the fact that F̄ (j; ξ) = Q(j; ξ) + F̄ (j + 1; ξ)

gives
F̄ (j; ξ + δ)

F̄ (j; ξ)
<

F̄ (j + 1; ξ + δ)
F̄ (j + 1; ξ)

.

This implies (25) and establishes the claim.
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We can now prove the first part of the lemma. Note that F̄ (0; ξ + δ) = F̄ (0; ξ) = 1. By the foregoing

claim
F̄ (j; ξ + δ)

F̄ (j; ξ)
>

F̄ (0; ξ + δ)
F̄ (0; ξ)

= 1,

thus for all j > 0, F̄ (j; ξ + δ) > F̄ (j; ξ). By (24), this implies that H(ξ; d) ↑ in ξ, as required.

To prove the second part of the lemma, it is sufficient to show that

H(ξ;m)
H(ξ; d)

= 1 +

∑m
j=d+1 F̄ (j; ξ)∑d

j=1 F̄ (j; ξ)
↑ in ξ (27)

Let

A(ξ) =
d∑

j=1

F̄ (j; ξ)

B(ξ) =
m∑

j=d+1

F̄ (j; ξ).

Then the foregoing claim and (23) together imply that

A(ξ + δ)
A(ξ)

≤ F̄ (d; ξ + δ)
F̄ (d; ξ)

<
B(ξ + δ)

B(ξ)
,

which establishes (27) and hence the lemma.

We are now ready to prove the uniqueness of the fixed point.

Proof: (Theorem 1)

Since m ≤ N , k = m in the following proof. To prove the first part of Theorem 1, invert (5) to give

τ̂(pc, pd) = 1 − (1 − pc)1/(N−1). (28)

For any given pd, this is continuous on the domain pc ∈ [0, 1], and since

∂τ̂

∂pc
=

1
N − 1

(1 − pc)1/(N−1)−1 > 0,

(28) is monotonic and increases from τ̂(0, pd) = 0 to τ̂(1, pd) = 1. On the other hand, τ(p(pc, pd))

defined in (4) is continuous on pc ∈ [0, 1], and will now be shown to be monotonic non-increasing.

Rewrite (4) as

τ(p(pc, pd)) =

(
m + 1

2
+

W

2

∑r−1
i=0 (αp)i + αr

∑R−1
i=r pi∑R−1

i=0 pi

)−1

(29)

=

(
m + 1

2
+

W

2

∑R−1
i=0 pi

∏i
j=1 βj∑R−1

i=0 pi

)−1

,
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where βj = α if j ≤ r, and 1 otherwise. It suffices to show that h(p) :=
∑R−1

i=0 pi
∏i

j=1 βj/
∑R−1

i=0 pi is

non-decreasing in p ∈ [0, 1]. Let

Ak =
k−1∑
i=0

pi
R−k+i∏

j=R−k+1

βj

Bk =
k−1∑
i=0

pi.

The monotonicity of h will be shown by induction on the statements (i) Ak/Bk is non-decreasing in

p, (ii) Ak − Bk is non-decreasing in p and (iii) Ak ≥ Bk. The base case k = 1 is immediate. For the

inductive step, assume the statement is true for some k ≥ 1, and note that Bk is increasing in p. Then,

since βR−k ≥ 1, Ak+1 − Bk+1 = (1 + βR−kpAk)− (1 + pBk) > 0 is increasing in p, which establishes

(ii) and (iii) for k + 1. Moreover,

Ak+1

Bk+1
=

1 + βR−kpAk

1 + pBk
= β − (β − 1) − βp(Ak − Bk)

1 + pBk
,

which is increasing in p by (ii) and (iii). This proves (i) and completes the induction. The monotonicity

of h is implied by the case k = R.

Uniqueness of the solution is proven by noting that τ(p(pc, pd)) in (29) decreases continuously

and monotonically from τ(p(0, pd)) =
(

m+1
2 + W

2

PR−1
i=0 (βpd)i

P
R−1
i=0 pi

d

)−1
> τ̂(0, pd) = 0 to τ(p(1, pd)) =(

m+1
2 + W

2

PR−1
i=0 βi

R

)−1
< τ̂(1, pd) = 1.

To prove the second part of Theorem 1, note that for any given pd ∈ [0, 1], the previous nonlinear

equations (28) and (29) give a unique solution for the two unknowns τ and p c. Denote this solution by

〈τ∗(pd); p∗c(pd)〉. Observe that both τ ∗(pd) and p∗c(pd) are monotone decreasing functions of pd ∈ [0, 1]

since τ(p(pc, pd)) > τ(p(pc, pd + δ)) > τ̂ (0, pd) for sufficiently small δ > 0.

It remains to prove that, for a given d < m, there is a unique solution to f(τ, pc, pd) := g(τ(p(pc, pd)))−
pd = 0, where g(τ(p(pc, pd))) : [0, 1] → [0, 1] is defined by the right-hand side of (8). Our task is to

prove f(τ, pc, pd) = 0 has a unique solution where the function g(τ(p(pc, pd))) is calculated based on

the solution 〈τ ∗(pd); p∗c(pd)〉 which is unique for each pd value.

To establish the existence of a solution, observe that f(τ, pc, pd) is continuous and f(τ, pc, 0) > 0.

This is because g(p(pc, 0)) > 0 due to the fact that 0 ≤ d < m and 〈τ ∗(0); p∗c(0)〉 �= 〈0; 0〉. On the other

hand, f(τ, pc, 1) < 0 since g(p(pc, 1)) < 1 for any 0 ≤ d < m. The intermediate value theorem now

guarantees a solution. Denote this solution by 〈p∗
d(d); τ∗(pd); p∗c(pd)〉 for a given 0 ≤ d < m.

To prove the uniqueness of the solution 〈p∗
d(d); τ∗(pd); p∗c(pd)〉, suppose f(τ ∗(1), p∗(1)c , p

∗(1)
d ) =

f(τ∗(2), p∗(2)c , p
∗(2)
d ) = 0 for p

∗(2)
d > p

∗(1)
d , where the corresponding solutions are 〈p∗(1)

d ; τ∗(1); p∗(1)c 〉
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and 〈p∗(2)d ; τ∗(2); p∗(2)c 〉, respectively. Because τ ∗(pd) is a monotone decreasing function in pd we have

τ∗(1) > τ∗(2). However, observe that p in (2) is a function of τ and can be written using (5) and (8) as

p = 1 − (1 − τ)N−1

∑d
j=0 jQ(j) +

∑k
j=d+1 dQ(j)∑k

j=0 jQ(j))
(30)

= 1 − H(ξ; d)
mNτ

, (31)

where H is defined in Lemma 1, and H(ξ;m) = mξ is the mean of the bionomial distribution. To see

that p is increasing in τ , consider first the case that τ < 1/N , in which case dξ/dτ > 0. By the second

part of Lemma 1, the final factor in (30) is decreasing in ξ, and hence decreasing in τ , whence p is

increasing in τ . Conversely, if τ ≥ 1/N then dξ/dτ ≤ 0, whence, by the first part of Lemma 1, H(ξ; d)

is decreasing in τ , and p is again increasing in τ .

Thus, τ ∗(2) < τ∗(1) should correspond to p∗(2) < p∗(1) which is a contradiction because function τ(p)

in (29) is a monotone increasing function. Therefore, 〈p∗(1)
d ; τ∗(1); p∗(1)c 〉 = 〈p∗(2)d ; τ∗(2); p∗(2)c 〉.

APPENDIX II

DERIVATION OF OPTIMAL W AND THROUGHPUT

In the following, we derive the optimal W value that maximizes the throughput in (9). Using results

from Lemma 1 we know that H(ξ; d) is increasing in ξ, thus maximizing (9) is equivalent to maximizing

ξ given in (6). To find the maximum ξ, we set

∂ξ

∂τ
= N(1 − τ)N−1 − Nτ(N − 1)(1 − τ)N−2 = 0. (32)

Solving (32) we obtain the optimal τ , τopt, as

1 − τopt = τopt(N − 1) ⇒ τopt =
1
N

.

Using the relationship τ = 1/(Bavg + 1), we can obtain the optimal W , Wopt, from (3):

1
τopt

− 1 =
m

2
+ η

r−1∑
i=0

pi(
αiWopt − 1

2
)

+η(
αrWopt − 1

2
)

R−1∑
i=r

pi. (33)
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For large W , W − 1 ≈ W , then (33) becomes

1
τopt

− 1 =
m

2
+ η

r−1∑
i=0

piαiWopt

2
+ η

αrWopt

2

R−1∑
i=r

pi

=
m

2
+

ηWopt

2

[
r−1∑
i=0

(αp)i + αr
R−1∑
i=r

pi

]
. (34)

Therefore, Wopt is given by

Wopt =
2
η

1/τopt − 1 − m/2∑r−1
i=0 (αp)i + αr

∑R−1
i=r pi

=
2
η

1/τopt − 1 − m/2
1−(αp)r

1−αp + αr(pr−pR)
1−p

, (35)

where p is obtained from (2), (5) and (8) using τ = τopt. By substituting τopt into (35) we obtain (22).

Finally, we can obtain the optimal throughput by using (6), (7) and (9).
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Fig. 2. Unsuccessful request probabilities (r = 3, R = 5, m = 10, d = 10).
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Fig. 3. Unsuccessful request probabilities (r = 3, R = 5, W = 16, m = 10).
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Fig. 4. Unsuccessful request probabilities (r = 3, R = 5, W = 16, d = m).
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Fig. 5. Normalized throughput (r = 3, R = 5, m = 10, d = 10).
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Fig. 6. Normalized throughput (r = 3, R = 5, W = 16, m = 10).
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Fig. 8. Mean packet delay (r = 3, R = 5, m = 10, d = 10).
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Fig. 9. Standard deviation of packet delay (r = 3, R = 5, m = 10, d = 10).
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Fig. 10. Probability of packet loss (r = 3, R = 5, m = 10, d = 10).
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Fig. 11. Mean packet delay (r = 3, R = 5, W = 16).
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Fig. 12. Standard deviation of packet delay (r = 3, R = 5, W = 16).
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Fig. 13. Mean packet delay (r = 3, R = 5, W = 16).



25

40 45 50 55 60 65 70 75 80
0

10

20

30

40

50

60

N

op
tim

al
 W

 

 
m=d=10
m=d=15
m=d=20

Fig. 14. The optimal W against N , with different m (r = 3, R = 5).
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Fig. 15. The optimal W against N , with different r,R (m = d = 10).
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N m d optimal W optimal throughput mean delay (ms) std dev of delay (ms) packet loss prob

40 10 6 23 0.6133 6.8110 8.5172 0.1049

8 23 0.4655 6.7703 8.4848 0.1025

10 23 0.3725 6.7695 8.4841 0.1025

20 12 20 0.6179 3.9424 3.9719 0.0998

16 20 0.4657 3.9400 3.9693 0.0994

20 20 0.3725 3.9400 3.9693 0.0994

50 10 6 30 0.6119 8.4076 11.1435 0.1035

8 30 0.4644 8.2607 10.8496 0.1012

10 30 0.3716 8.2596 10.8487 0.1011

20 12 27 0.6181 4.7299 5.1985 0.0991

16 27 0.4645 4.7266 5.1952 0.0987

20 27 0.3716 4.7266 5.1952 0.0987

60 10 6 37 0.6109 9.8459 13.2976 0.1026

8 37 0.4636 9.7832 13.2476 0.1003

10 37 0.3710 9.7819 13.2465 0.1003

20 12 34 0.6171 5.4802 6.3861 0.0987

16 34 0.4637 5.4761 6.3821 0.0983

20 34 0.3710 5.4761 6.3821 0.0983

TABLE I

OPTIMAL W AND NETWORK PERFORMANCES UNDER VARIOUS SYSTEM PARAMETERS.
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Fig. 16. The optimal throughput against d/m (N=50, m=10, r=3, R=5).


