
JMLR: Workshop and Conference Proceedings vol 30 (2013) 1–23

A Tale of Two Metrics:
Simultaneous Bounds on Competitiveness and Regret

Lachlan L. H. Andrew landrew@swin.edu.au
Swinburne University of Technology

Siddharth Barman barman@caltech.edu
Katrina Ligett katrina@caltech.edu
Minghong Lin mhlin@caltech.edu
Caltech

Adam Meyerson awmeyerson@gmail.com
Google

Alan Roytman alanr@cs.ucla.edu
University of California, Los Angeles

Adam Wierman adamw@caltech.edu

Caltech

Abstract

We consider algorithms for “smoothed online convex optimization” problems, a variant of
the class of online convex optimization problems that is strongly related to metrical task
systems. Prior literature on these problems has focused on two performance metrics: regret
and the competitive ratio. There exist known algorithms with sublinear regret and known
algorithms with constant competitive ratios; however, no known algorithm achieves both
simultaneously. We show that this is due to a fundamental incompatibility between these
two metrics – no algorithm (deterministic or randomized) can achieve sublinear regret and
a constant competitive ratio, even in the case when the objective functions are linear. How-
ever, we also exhibit an algorithm that, for the important special case of one dimensional
decision spaces, provides sublinear regret while maintaining a competitive ratio that grows
arbitrarily slowly.

1. Introduction

In an online convex optimization (OCO) problem, a learner interacts with an environment
in a sequence of rounds. During each round t: (i) the learner must choose an action xt

from a convex decision space F ; (ii) the environment then reveals a cost convex function ct,
and (iii) the learner experiences cost ct(xt). The goal is to design learning algorithms that
minimize the cost experienced over a (long) horizon of T rounds.

In this paper, we study a generalization of online convex optimization that we term
smoothed online convex optimization (SOCO). The only change in SOCO compared to
OCO is that the cost experienced by the learner each round is now ct(xt) + ‖xt − xt−1‖,

c© 2013 L.L.H. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman & A. Wierman.

Andrew Barman Ligett Lin Meyerson Roytman Wierman

where ‖·‖ is a seminorm.1 That is, the learner experiences a “smoothing cost” or “switching
cost” associated with changing the action, in addition to the “operating cost” c(·).

Many applications typically modeled using online convex optimization have, in reality,
some cost associated with a change of action. For example, switching costs in the k-armed
bandit setting have received considerable attention (Asawa and Teneketzis, 1996; Guha and
Munagala, 2009). Additionally, a strong motivation for studying SOCO comes from the
recent developments in dynamic capacity provisioning algorithms for data centers (Kusic
and Kandasamy, 2007; Lin et al., 2011, 2012; Urgaonkar et al., 2011; Lu et al., 2012; Zhang
et al., 2012; Yang et al., 2012), where the goal is to dynamically control the number and
placement of active servers (xt) in order to minimize a combination of the delay and energy
costs (captured by ct) and the switching costs involved in cycling servers into power saving
modes and migrating data (‖xt− xt−1‖). Further, SOCO has applications even in contexts
where there are no costs associated with switching actions. For example, if there is concept
drift in a penalized estimation problem, it is natural to make use of a regularizer (switching
cost) term in order to control the speed of the drift of the estimator.

Two communities, two performance metrics. Though the precise formulation of
SOCO does not appear to have been studied previously, there are two large bodies of
literature on closely related problems: (i) the online convex optimization (OCO) literature
within the machine learning community, e.g., Zinkevich (2003); Hazan et al. (2007), and (ii)
the metrical task system (MTS) literature within the algorithms community, e.g., Borodin
et al. (1992); Manasse et al. (1988). We discuss these literatures in detail in Section 3. While
there are several differences between the formulations in the two communities, a notable
difference is that they focus on different performance metrics.

In the OCO literature, the goal is typically to minimize the regret, which is the difference
between the cost of the algorithm and the cost of the offline optimal static solution. In this
context, a number of algorithms have been shown to provide sub-linear regret (also called
“no regret”). For example, online gradient descent can achieve O(

√
T)-regret (Zinkevich,

2003). Though such guarantees are proven only in the absence of switching costs, we show
in Section 3.1 that the same regret bound also holds for SOCO.

In the MTS literature, the goal is typically to minimize the competitive ratio, which
is the maximum ratio between the cost of the algorithm and the cost of the offline optimal
(dynamic) solution. In this setting, most results tend to be “negative,” e.g., when ct are
arbitrary, for any metric space the competitive ratio of an MTS algorithm with states chosen
from that space grows without bound as the number of states grows (Borodin et al., 1992;
Blum et al., 1992). However, these results still yield competitive ratios that do not increase
with the number of tasks, i.e., with time. Throughout, we will neglect dependence of the
competitive ratio on the number of states, and describe the competitive ratio as “constant”
if it does not grow with time. Note also that positive results have emerged when the cost
function and decision space are convex (Lin et al., 2011).

Interestingly, the focus on different performance metrics in the OCO and MTS commu-
nities has led the communities to develop quite different styles of algorithms. The differences
between the algorithms is highlighted by the fact that all algorithms developed in the OCO

1. Recall that a seminorm satisfies the axioms of a norm except that ‖x‖ = 0 does not imply x = 0.

2

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

community have poor competitive ratio and all algorithms developed in the MTS community
have poor regret.

However, it is natural to seek algorithms with both low regret and low competitive ratio.
In learning theory, doing well for both corresponds to being able to learn both static and
dynamic concepts well. In the design of a dynamic controller, low regret shows that the
control is not more risky than static control, whereas low competitive ratio shows that the
control is nearly as good as the best dynamic controller.

The first to connect the two metrics were Blum and Burch (2000), who treat the special
case where the switching costs are a fixed constant, instead of a norm. In this context,
they show how to translate bounds on regret to bounds on the competitive ratio, and vice
versa. A recent breakthrough was made by Buchbinder et al. (2012) who use a primal-dual
approach to develop an algorithm that performs well for the “α-unfair competitive ratio,”
which is a hybrid of the competitive ratio and regret that provides comparison to the
dynamic optimal when α = 1 and to the static optimal when α =∞ (see Section 2). Their
algorithm was not shown to perform well simultaneously for regret and the competitive
ratio, but the result highlights the feasibility of unified approaches for algorithm design
across competitive ratio and regret.2

Summary of contributions. This paper explores the relationship between minimizing
regret and minimizing the competitive ratio. To this end, we seek to answer the following
question: “Can an algorithm simultaneously achieve both a constant competitive ratio and
a sub-linear regret?”

To answer this question, we show that there is a fundamental incompatibility between
regret and competitive ratio — no algorithm can maintain both sublinear regret and a
constant competitive ratio (Theorems 2, 3, and 4). This “incompatibility” does not stem
from a pathological example: it holds even for the simple case when ct is linear and xt is
scalar. Further, it holds for both deterministic and randomized algorithms and also when
the α-unfair competitive ratio is considered.

Though providing both sub-linear regret and a constant competitive ratio is impossible,
we show that it is possible to “nearly” achieve this goal. We present an algorithm, “Ran-
domly Biased Greedy” (RBG), which achieves a competitive ratio of (1+γ) while maintain-
ing O(max{T/γ, γ}) regret for γ ≥ 1 on one-dimensional action spaces. If γ can be chosen
as a function of T , then this algorithm can balance between regret and the competitive ra-
tio. For example, it can achieve sub-linear regret while having an arbitrarily slowly growing
competitive ratio, or it can achieve O(

√
T) regret while maintaining an O(

√
T) competitive

ratio. Note that, unlike the scheme of Buchbinder et al. (2012), this algorithm has a finite
competitive ratio on continuous action spaces and provides a simultaneous guarantee on
both regret and the competitive ratio.

2. There is also work on achieving simultaneous guarantees with respect to the static and dynamic optima
in other settings, e.g., decision making on lists and trees (Blum et al., 2002), and there have been
applications of algorithmic approaches from machine learning to MTS (Blum et al., 1999; Abernethy
et al., 2010).

3

Andrew Barman Ligett Lin Meyerson Roytman Wierman

2. Problem formulation

An instance of smoothed online convex optimization (SOCO) consists of a convex decision/
action space F ⊆ (R+)n and a sequence of cost functions {c1, c2, . . . }, where each ct :
F → R+. At each time t, a learner/algorithm chooses an action vector xt ∈ F and the
environment chooses a cost function ct. Define the α-penalized cost with lookahead i for the
sequence . . . , xt, ct, xt+1, ct+1, . . . to be

Cαi (A, T) = E

[
T∑
t=1

ct(xt+i) + α‖xt+i − xt+i−1‖

]
,

where x1, . . . , xT are the decisions of algorithm A, the initial action is xi = 0 without loss
of generality, the expectation is over randomness in the algorithm, and ‖ · ‖ is a seminorm
on Rn. The parameter T will usually be suppressed.

In the OCO and MTS literatures the learners pay different special cases of this cost. In
OCO the algorithm “plays first” giving a 0-step lookahead and switching costs are ignored,
yielding C0

0 . In MTS the environment plays first giving the algorithm 1-step lookahead
(i = 1), and uses α = 1, yielding C1

1 . Note that we sometimes omit the superscript when
α = 1, and the subscript when i = 0.

One can relate the MTS and OCO costs by relating Cαi to Cαi−1, as done by Blum and
Burch (2000) and Buchbinder et al. (2012). The penalty due to not having lookahead is

ct(xt)− ct(xt+1) ≤ Oct(xt)(xt − xt+1) ≤ ‖Oct(xt)‖2 · ‖xt − xt+1‖2, (1)

where ‖·‖2 is the Euclidean norm. We adopt the assumption, common in the OCO literature,
that ‖Oct(·)‖2 are bounded on a given instance; which thus bounds the difference between
the costs of MTS and OCO (with switching cost), C1 and C0.

Performance metrics. The performance of a SOCO algorithm is typically evaluated by
comparing its cost to that of an offline “optimal” solution, but the communities differ in
their choice of benchmark, and whether to compare additively or multiplicatively.

The OCO literature typically compares against the optimal offline static action, i.e.,

OPTs = min
x∈F

T∑
t=1

ct(x),

and evaluates the regret , defined as the (additive) difference between the algorithm’s cost
and that of the optimal static action vector. Specifically, the regret Ri(A) of Algorithm
A with lookahead i on instances C, is less than ρ(T) if for any sequence of cost functions
(c1, . . . , cT) ∈ CT ,

C0
i (A)−OPTs ≤ ρ(T). (2)

Note that for any problem and any i ≥ 1 there exists an algorithm A for which Ri(A) is
non-positive; however, an algorithm that is not designed specifically to minimize regret may
have Ri(A) > 0.

This traditional definition of regret omits switching costs and lookahead (i.e., R0(A)).
One can generalize regret to define R′i(A), by replacing C0

i (A) with C1
i (A) in (2). Specifi-

cally, R′i(A) is less than ρ(T) if for any sequence of cost functions (c1, . . . , cT) ∈ CT ,

C1
i (A)−OPTs ≤ ρ(T). (3)

4

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

Except where noted, we use the set C1 of sequences of convex functions mapping (R+)n to
R+ with (sub)gradient uniformly bounded over the sequence. Note that we do not require
differentiability; throughout this paper, references to gradients can be read as references to
subgradients.

The MTS literature typically compares against the optimal offline (dynamic) solution,

OPTd = min
x∈FT

T∑
t=1

ct(xt) + ‖xt − xt−1‖,

and evaluates the competitive ratio. The cost most commonly considered is C1. More
generally, we say the competitive ratio with lookahead i, denoted by CRi(A), is ρ(T) if for
any sequence of cost functions (c1, . . . , cT) ∈ CT

Ci(A) ≤ ρ(T)OPTd +O(1). (4)

Bridging competitiveness and regret. Many hybrid benchmarks have been proposed
to bridge static and dynamic comparisons. For example, Adaptive-Regret (Hazan and
Seshadhri, 2009) is the maximum regret over any interval, where the “static” optimum can
differ for different intervals, and internal regret (Blum and Mansour, 2005) compares the
online policy against a simple perturbation of that policy. We adopt the static-dynamic
hybrid proposed in the most closely related literature (Blum et al., 1992; Blum and Burch,
2000; Buchbinder et al., 2012), the α-unfair competitive ratio, which we denote by
CRαi (A) for lookahead i. For α ≥ 1, CRαi (A) is ρ(T) if (4) holds with OPTd replaced by

OPTαd = min
x∈FT

T∑
t=1

ct(xt) + α‖xt − xt−1‖.

Specifically, the α-unfair competitive ratio with lookahead i, CRαi (A), is ρ(T) if for any
sequence of cost functions (c1, . . . , cT) ∈ CT

Ci(A) ≤ ρ(T)OPTαd +O(1). (5)

For α = 1, OPTαd is the dynamic optimum; as α → ∞, OPTαd approaches the static
optimum.

To bridge the additive versus multiplicative comparisons used in the two literatures, we
define the competitive difference . The α-unfair competitive difference with lookahead i
on instances C, CDα

i (A), is ρ(T) if for any sequence of cost functions (c1, . . . , cT) ∈ CT ,

Ci(A)−OPTαd ≤ ρ(T). (6)

This measure allows for a smooth transition between regret (when α is large enough) and
an additive version of the competitive ratio when α = 1.

3. Background

In the following, we briefly discuss related work on both online convex optimization and
metrical task systems, to provide context for the results in the current paper.

5

Andrew Barman Ligett Lin Meyerson Roytman Wierman

3.1. Online convex optimization

The OCO problem has a rich history and a wide range of important applications. In
computer science, OCO is perhaps most associated with the k-experts problem (Herbster
and Warmuth, 1998; Littlestone and Warmuth, 1994), a discrete-action version of online
optimization wherein at each round t the learning algorithm must choose a number between
1 and k, which can be viewed as following the advice of one of k “experts.” However, OCO
also has a long history in other areas, such as portfolio management (Cover, 1991; Calafiore,
2008).

The identifying features of the OCO formulation are that (i) the typical performance
metric considered is regret, (ii) switching costs are not considered, and (iii) the learner must
act before the environment reveals the cost function. In our notation, the cost function in
the OCO literature is C0(A) and the performance metric is R0(A). Following Zinkevich
(2003) and Hazan et al. (2007), the typical assumptions are that the decision space F is
non-empty, bounded and closed, and that the Euclidean norms of gradients ‖Oct(·)‖2 are
also bounded.

In this setting, a number of algorithms have been shown to achieve “no regret”, i.e.,
sublinear regret, R0(A) = o(T). An important example is online gradient descent (OGD),
which is parameterized by learning rates ηt. OGD works as follows.

Algorithm 1 (Online Gradient Descent, OGD) Select arbitrary x1 ∈ F . In time step
t ≥ 1, select xt+1 = P (xt − ηtOct(xt)), where P (y) = arg minx∈F ‖x− y‖2 is the projection
under the Euclidean norm.

With appropriate learning rates ηt, OGD achieves sub-linear regret for OCO. In particular,
the variant of Zinkevich (2003) uses ηt = Θ(1/

√
t) and obtains O(

√
T)-regret. Tighter

bounds are possible in restricted settings. Hazan et al. (2007) achieves O(log T) regret by
choosing ηt = 1/(γt) for settings when the cost function additionally is twice differentiable
and has minimal curvature, i.e., O2ct(x)− γIn is positive semidefinite for all x and t, where
In is the identity matrix of size n. In addition to algorithms based on gradient descent,
more recent algorithms such as Online Newton Step and Follow the Approximate Leader
(Hazan et al., 2007) also attain O(log T)-regret bounds for a class of cost functions.

None of the work discussed above considers switching costs. To extend the literature
discussed above from OCO to SOCO, we need to track the switching costs incurred by the
algorithms. This leads to the following straightforward result, proven in Appendix A.

Proposition 1 Consider an online gradient descent algorithm A on a finite dimensional
space with learning rates such that

∑T
t=1 ηt = O(ρ1(T)). If R0(A) = O(ρ2(T)), then

R′0(A) = O(ρ1(T) + ρ2(T)).

Interestingly, the choices of ηt used by the algorithms designed for OCO also turn out
to be good choices to control the switching costs of the algorithms. The algorithms of
Zinkevich (2003) and Hazan et al. (2007), which use ηt = 1/

√
t and ηt = 1/(γt), are still

O(
√
T)-regret and O(log T)-regret respectively when switching costs are considered, since

in these cases ρ1(T) = O(ρ2(T)). Note that a similar result can be obtained for Online
Newton Step (Hazan et al., 2007).

Importantly, though the regret of OGD algorithms is sublinear, it can easily be shown
that the competitive ratio of these algorithms is unbounded.

6

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

3.2. Metrical Task Systems

Like OCO, MTS also has a rich history and a wide range of important applications. Histori-
cally, MTS is perhaps most associated with the k-server problem (Coté et al., 2008). In this
problem, there are k servers, each in some state, and a sequence of requests is incrementally
revealed. To serve a request, the system must move one of the servers to the state necessary
to serve the request, which incurs a cost that depends on the source and destination states.

The formulation of SOCO in Section 2 is actually, in many ways, a special case of the
most general MTS formulation. In general, the MTS formulation differs in that (i) the cost
functions ct are not assumed to be convex, (ii) the decision space is typically assumed to
be discrete and is not necessarily embedded in a vector space, and (iii) the switching cost
is an arbitrary metric d(xt, xt−1) rather than a seminorm ‖xt − xt−1‖. In this context, the
cost function studied by MTS is typically C1 and the performance metric of interest is the
competitive ratio, specifically CR1(A), although the α-unfair competitive ratio CRα1 also
receives attention.

The weakening of the assumptions on the cost functions, and the fact that the compet-
itive ratio uses the dynamic optimum as the benchmark, means that most of the results in
the MTS setting are “negative” when compared with those for OCO. In particular, it has
been proven that, given an arbitrary metric decision space of size n, any deterministic algo-
rithm must be Ω(n)-competitive (Borodin et al., 1992). Further, any randomized algorithm
must be Ω(

√
log n/ log logn)-competitive (Blum et al., 1992).

These results motivate imposing additional structure on the cost functions in order to
attain positive results. For example, it is commonly assumed that the metric is the uniform
metric, in which d(x, y) is equal for all x 6= y; that assumption was made by Blum and Burch
(2000) in a study of the tradeoff between competitive ratio and regret. For comparison
with OCO, an alternative natural restriction is to impose convexity assumptions on the
cost function and the decision space, as done in this paper.

Upon restricting ct to be convex, F to be convex, and ‖ · ‖ to be a semi-norm, the
MTS formulation becomes quite similar to the SOCO formulation. This restricted class
has been the focus of a number of recent papers, and some positive results have emerged.
For example, Lin et al. (2011) show that when F is a one dimensional normed space,3 a
deterministic online algorithm called Lazy Capacity Provisioning (LCP) is 3-competitive.

Importantly, though the algorithms described above provide constant competitive ratios,
in all cases it is easy to see that the regret of these algorithms is linear.

4. The incompatibility of regret and the competitive ratio

As noted in the introduction, there is considerable motivation to perform well for regret
and competitive ratio simultaneously. See also Blum et al. (1992); Blum and Burch (2000);
Buchbinder et al. (2012); Hazan and Seshadhri (2009); Blum and Mansour (2005). None of
the algorithms discussed so far achieves this goal. For example, Online Gradient Descent has
sublinear regret but its competitive ratio is infinite. Similarly, Lazy Capacity Provisioning
is 3-competitive but has linear regret.

3. We need only consider the absolute value norm, since for every seminorm ‖ · ‖ on R, ‖x‖ = ‖1‖|x|.

7

Andrew Barman Ligett Lin Meyerson Roytman Wierman

This is no accident. We show below that the two goals are fundamentally incompatible:
any algorithm that has sublinear regret for OCO necessarily has an infinite competitive ratio
for MTS; and any algorithm that has a constant competitive ratio for MTS necessarily has
at least linear regret for OCO. Further, our results give lower bounds on the simultaneous
guarantees that are possible.

In discussing this “incompatibility,” there are a number of subtleties as a result of the
differences in formulation between the OCO literature, where regret is the focus, and the
MTS literature, where competitive ratio is the focus. In particular, there are four key
differences which are important to highlight: (i) OCO uses lookahead i = 0 while MTS
uses i = 1; (ii) OCO does not consider switching costs (α = 0) while MTS does (α = 1);
(iii) regret uses an additive comparison while the competitive ratio uses a multiplicative
comparison; and (iv) regret compares to the static optimal while competitive ratio compares
to the dynamic optimal. Note that the first two are intrinsic to the costs, while the latter are
intrinsic to the performance metric. The following teases apart which of these differences
create incompatibility and which do not. In particular, we prove that (i) and (iv) each
create incompatibilities.

Our first result in this section states that there is an incompatibility between regret in
the OCO setting and the competitive ratio in the MTS setting, i.e., between the two most
commonly studied measures R0(A) and CR1(A). Naturally, the incompatibility remains
if switching costs are added to regret, i.e., R′0(A) is considered. Further, the incompati-
bility remains when the competitive difference is considered, and so both the comparison
with the static optimal and the dynamic optimal are additive. In fact, the incompatibility
remains even when the α-unfair competitive ratio/difference is considered. Perhaps most
surprisingly, the incompatibility remains when there is lookahead, i.e., when Ci and Ci+1

are considered.

Theorem 2 Consider an arbitrary seminorm ‖·‖ on Rn, constants γ > 0, α ≥ 1 and i ∈ N.
There is a C containing a single sequence of cost functions such that, for all deterministic
and randomized algorithms A, either Ri(A) = Ω(T) or for large enough T , both CRαi+1(A) ≥
γ and CDα

i+1(A) ≥ γT .

The incompatibility arises even in “simple” instances; the proof of Theorem 2 uses
linear cost functions and a one-dimensional decision space, and the construction of the cost
functions does not depend on T or A.

The cost functions used by regret and the competitive ratio in Theorem 2 are “off by
one,” motivated by the different settings in OCO and MTS. However, the following shows
that parallel results also hold when the cost functions are not “off by one,” i.e., for R0(A)
vs. CRα0 (A) and R′1(A) vs. CRα1 (A).

Theorem 3 Consider an arbitrary seminorm ‖ · ‖ on Rn, constants γ > 0 and α ≥ 1,
and a deterministic or randomized online algorithm A. There is a C containing two cost
functions such that either R0(A) = Ω(T) or, for large enough T , both CRα0 (A) ≥ γ and
CDα

0 (A) ≥ γT .

Theorem 4 Consider an arbitrary norm ‖ · ‖ on Rn. There is a C containing two cost
functions such that, for any constants γ > 0 and α ≥ 1 and any deterministic or randomized
online algorithm A, either R′1(A) = Ω(T), or for large enough T , CRα1 (A) ≥ γ.

8

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

The impact of these results can be stark. It is impossible for an algorithm to learn static
concepts with sublinear regret in the OCO setting, while having a constant competitive ratio
for learning dynamic concepts in the MTS setting. More strikingly, in control theory, any
dynamic controller that has a constant competitive ratio must have at least linear regret,
and so there are cases where it does much worse than the best static controller. Thus, one
cannot simultaneously guarantee the dynamic policy is always as good as the best static
policy and is nearly as good as the optimal dynamic policy.

Theorem 4 is perhaps the most interesting of these results. Theorem 2 is due to seeking
to minimize different cost functions (ct and ct+1), while Theorem 3 is due to the hardness of
attaining a small CRα0 , i.e., of mimicking the dynamic optimum without 1-step lookahead.
In contrast, for Theorem 4, algorithms exist with strong performance guarantees for each
measure individually, and the measures are aligned in time. However, Theorem 4 must con-
sider the (nonstandard) notion of regret that includes switching costs (R′), since otherwise
the problem is trivial.

4.1. Proofs

We now prove the results above. We use one-dimensional examples; however these exam-
ples can easily be embedded into higher dimensions if desired. We show proofs only for
competitive ratio; the proofs for competitive difference are similar.

Let ᾱ = max(1, ‖α‖). Given a > 0 and b ≥ 0, define two possible cost functions on
F = [0, 1/ᾱ]: fα1 (x) = b + axᾱ and fα2 (x) = b + a(1 − xᾱ). These functions are similar
to those used by Gur et al. (2012) to study online gradient descent to learn a concept of
bounded total variation. To simplify notation, let D(t) = 1/2 − E

[
xt
]
ᾱ, and note that

D(t) ∈ [−1/2, 1/2].

4.1.1. Proof of Theorem 2

To prove Theorem 2, we prove the stronger claim that CRαi+1(A) +Ri(A)/T ≥ γ.
Consider a system with costs ct = fα1 if t is odd and fα2 if t is even. Then Ci(A) ≥

(a/2 + b)T + a
∑T

t=1(−1)tD(t+ i). The static optimum is not worse than the scheme that
sets xt = 1/(2ᾱ) for all t, which has total cost no more than (a/2 + b)T + ‖1/2‖. The
α-unfair dynamic optimum for Ci+1 is not worse than the scheme that sets xt = 0 if t is
odd and xt = 1/ᾱ if t is even, which has total α-unfair cost at most (b+ 1)T . Hence

Ri(A) ≥a
T∑
t=1

(−1)tD(t+ i)− ‖1/2‖,

CRαi+1(A) ≥
(a/2 + b)T + a

∑T
t=1(−1)tD(t+ i+ 1)

(b+ 1)T
.

9

Andrew Barman Ligett Lin Meyerson Roytman Wierman

Thus, since D(t) ∈ [−1/2, 1/2],

(b+ 1)T (CRαi+1(A) +Ri(A)/T) + (b+ 1)‖1/2‖ − (a/2 + b)T

≥a
T∑
t=1

(−1)t(D(t+ i+ 1) + (b+ 1)D(t+ i))

=ab

T∑
t=1

(−1)tD(t+ i)− a
(
D(i+ 1) + (−1)TD(T + i+ 1)

)
≥ −abT/2− a.

To establish the claim, it is then sufficient that (a/2 + b)T − (b + 1)‖1/2‖ − abT/2 − a ≥
γT (b+ 1). For b = 1/2 and a = 30γ + 2 + ‖6‖, this holds for T ≥ 5.

4.1.2. Proof of Theorem 3

To prove Theorem 3, we again prove the stronger claim CRα0 (A) +R0(A)/T ≥ γ.
Consider the cost function sequence with ct(·) = f02 for E

[
xt
]
≤ 1/2 and ct(·) = f01

otherwise, on decision space [0, 1], where xt is the (random) choice of the algorithm at
round t. Here the expectation is taken over the marginal distribution of xt conditioned
on c1, . . . , ct−1, averaging out the dependence on the realizations of x1, . . . , xt−1. Notice
that this sequence can be constructed by an oblivious adversary before the execution of the
algorithm.

The following lemma is proven in Appendix B.

Lemma 5 Given any algorithm, the sequence of cost functions chosen by the above oblivious
adversary makes

R0(A), R′0(A) ≥ a
T∑
t=1

|1/2− E
[
xt
]
| − ‖1/2‖, (7)

CRα0 (A) ≥
(a/2 + b)T + a

∑T
t=1 |1/2− E

[
xt
]
|

(b+ ‖α‖)T
. (8)

From (7) and (8) in Lemma 5, we have CRα0 (A) + R0(A)/T ≥ (a/2+b)T
(b+‖α‖)T −

‖1/2‖
T . For a >

2γ(b+ ‖α‖), the right hand side is bigger than γ for sufficiently large T , which establishes
the claim.

4.1.3. Proof of Theorem 4

Let a = ‖1‖/2 and b = 0. Let M = 4αγ‖1‖/a = 8αγ. For T � M , divide [1, T] into
segments of length 3M . For the last 2M of each segment, set ct = fα1 . This ensures that
the static optimal solution is x = 0. Moreover, if, for all t in the first M time steps, ct

is either fα1 or fα2 , then the optimal dynamic solution is also xt = 0 for the last 2M time
steps.

Consider a solution on which each segment has non-negative regret. Then to obtain
sublinear regret, for any positive threshold ε at least T/(3M) − o(T) of these segments
must have regret below ε‖1/ᾱ‖. We will then show that these segments must have high
competitive ratio. To make this more formal, consider (w.l.o.g.) the single segment [1, 3M].

10

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

Let c̃ be such that c̃t = fα2 for all t ∈ [1,M] and c̃t = fα1 for t > M . Then the optimal
dynamic solution on [1, 3M] is xtd = 1t≤M/ᾱ, which has total cost 2α‖1/ᾱ‖ consisting
entirely of switching costs.

The following lemma is proven in Appendix C.

Lemma 6 For any δ ∈ (0, 1/ᾱ) and integer τ > 0, there exists an ε(δ, τ) > 0 such that, if
ct = fα2 for all 1 ≤ t ≤ τ and xt > δ for any 1 ≤ t ≤ τ , then there exists an m ≤ τ such
that C1(x,m)− C1(OPTs,m) > ε(δ, τ)‖1/ᾱ‖.

Let δ = 1/[5ᾱ] ∈ (0, 1). For any decisions such that xt < δ for all t ∈ [1,M], the
operating cost of x under c̃ is at least 3αγ‖1/ᾱ‖. Let the adversary choose a c on this
segment such that ct = fα2 until (a) the first time t0 < M that the algorithm’s solution
x satisfies C1(x, t0) − C1(OPTs, t0) > ε(δ,M)‖1/ᾱ‖, or (b) t = M . After this, it chooses
ct = fα1 .

In case (a), C1(x, 3M)−C1(OPTs, 3M) > ε(δ,M)‖1/ᾱ‖ by Lemma 6, since OPTs incurs
no cost after t0. Moreover C1(x, 3M) ≥ C1(OPTd, 3M).

In case (b), C1(x, 3M)/C1(OPTd, 3M) ≥ 3αγ‖1/ᾱ‖/(2α‖1/ᾱ‖) = 3γ/2.
To complete the argument, consider all segments. Let g(T) be the number of segments

for which case (a) occurs. The regret then satisfies

R′1(A) ≥ ε(δ,M)‖1/ᾱ‖g(T).

Similarly, the ratio of the total cost to that of the optimum is at least

C1(x, T)

C1(OPTd, T)
≥ [T/(3M)− g(T)]3αγ‖1/ᾱ‖

[T/(3M)]2α‖1/ᾱ‖
=

3

2
γ

(
1− 3Mg(T)

T

)
.

If g(T) = Ω(T), then R′1(A) = Ω(T). Conversely, if g(T) = o(T), then for sufficiently large
T , 3Mg(T)/T < 1/3 and so CRα1 (A) > γ.

5. Balancing regret and the competitive ratio

Given the above incompatibility, it is necessary to reevaluate the goals for algorithm design.
In particular, it is natural now to seek tradeoffs such as being able to obtain εT regret for
arbitrarily small ε while remaining O(1)-competitive, or being log log T -competitive while
retaining sublinear regret.

To this end, in the following we present a novel algorithm, Randomly Biased Greedy
(RBG), which can achieve simultaneous bounds on regret R′0 and competitive ratio CR1,
when the decision space F is one-dimensional. The one-dimensional setting is the natural
starting point for seeking such a tradeoff given that the proofs of the incompatibility results
all focus on one-dimensional examples and that the one-dimensional case has recently been
of practical significance, e.g. Lin et al. (2011). The algorithm takes a norm N as its input:

Algorithm 2 (Randomly Biased Greedy, RBG(N))
Given a norm N , define w0(x) = N(x) for all x and wt(x) = miny{wt−1(y)+ ct(y)+N(x−
y)}. Generate a random number r uniformly in (−1, 1). For each time step t, go to the
state xt which minimizes Y t(xt) = wt−1(xt) + rN(xt).

11

Andrew Barman Ligett Lin Meyerson Roytman Wierman

RBG is motivated by Coté et al. (2008), and makes very limited use of randomness –
it parameterizes its “bias” using a single random r ∈ (−1, 1). It then chooses actions to
greedily minimize its “work function” wt(x).

As stated, RBG performs well for the α-unfair competitive ratio, but performs poorly
for the regret. Theorem 7 will show that RBG(‖ · ‖) is 2-competitive,4 and hence has at
best linear regret. However, the key idea behind balancing regret and competitive ratio is
to run RBG with a “larger” norm to encourage its actions to change less. This can make
the coefficient of regret arbitrarily small, at the expense of a larger (but still constant)
competitive ratio.

Theorem 7 For a SOCO problem in a one-dimensional normed space ‖·‖, running RBG(N)
with a one-dimensional norm having N(1) = θ‖1‖ as input (where θ ≥ 1) attains an α-
unfair competitive ratio CRα1 of (1 + θ)/min{θ, α} and a regret R′0 of O(max{T/θ, θ}).

Note that Theorem 7 holds for the usual metrics of MTS and OCO, which are the
“most incompatible” case since the cost functions are mismatched (cf. Theorem 2). Thus,
the conclusion of Theorem 7 still holds when R0 or R1 is considered in place of R′0.

The best CRα1 , 1 + 1/α, achieved by RBG is obtained with N(·) = α‖ · ‖. However,
choosing N(·) = ‖ · ‖/ε for arbitrarily small ε, gives εT -regret, albeit larger CRα1 . Similarly,
if T is known in advance, choosing N(1) = θ(T) for some increasing function achieves
an O(θ(T)) α-unfair competitive ratio and O(max{T/θ(T), θ(T)}) regret; taking θ(T) =
O(
√
T) gives O(

√
T) regret, which is optimal for arbitrary convex costs (Zinkevich, 2003).

If T is not known in advance, N(1) can increase in t, and bounds similar to those in Theorem
7 still hold.

Proof of Theorem 7

To prove Theorem 7, we derive a more general tool for designing algorithms that simul-
taneously balance regret and the α-unfair competitive ratio. In particular, for any al-
gorithm A, let the operating cost be OC(A) =

∑T
t=1 c

t(xt+1) and the switching cost be

SC(A) =
∑T

t=1 ‖xt+1 − xt‖, so that C1(A) = OC(A) + SC(A). Define OPTN to be the
dynamic optimal solution under the norm N(1) = θ‖1‖ (θ ≥ 1) with α = 1. The following
lemma is proven in Appendix D.

Lemma 8 Consider a one-dimensional SOCO problem with norm ‖ · ‖ and an online al-
gorithm A which, when run with norm N , satisfies OC(A(N)) ≤ OPTN +O(1) along with
SC(A(N)) ≤ βOPTN + O(1) with β = O(1). Fix a norm N such that N(1) = θ‖1‖ with
θ ≥ 1. Then A(N) has α-unfair competitive ratio CRα1 (A(N)) = (1 + β) max{ θα , 1} and
regret R′0(A(N)) = O(max{βT, (1 + β)θ}) for the original SOCO problem with norm ‖ · ‖.

Theorem 7 then follows from the following lemmas, proven in Appendices E and F.

Lemma 9 Given a SOCO problem with norm ‖ · ‖, E [OC(RBG(N))] ≤ OPTN .

Lemma 10 Given a one-dimensional SOCO problem with norm ‖ · ‖,
E [SC(RBG(N))] ≤ OPTN/θ with probability 1.

4. Note that this improves the best known competitive ratio for this setting from 3 (achieved by Lazy
Capacity Provisioning) to 2.

12

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

6. Concluding remarks

This paper studies the relationship between regret and competitive ratio when applied to
the class of SOCO problems. It shows that these metrics, from the learning and algorithms
communities respectively, are fundamentally incompatible, in the sense that algorithms with
sublinear regret must have infinite competitive ratio, and those with constant competitive
ratio have at least linear regret. Thus, the choice of performance measure significantly
affects the style of algorithm designed. It also introduces a generic approach for balancing
these competing metrics, exemplified by a specific algorithm, RBG.

There are a number of interesting directions that this work motivates. In particular, the
SOCO formulation is still under-explored, and many variations of the formulation discussed
here are still not understood. For example, is it possible to tradeoff between regret and the
competitive ratio in bandit versions of SOCO? More generally, the message from this paper
is that regret and the competitive ratio are incompatible within the formulation of SOCO.
It is quite interesting to try to understand how generally this holds. For example, does
the “incompatibility result” proven here extend to settings where the cost functions are
random instead of adversarial, e.g., variations of SOCO such as k-armed bandit problems
with switching costs?

Acknowledgments

This work was supported by NSF grants CNS 0846025 and DoE grant DE-EE0002890, along
with the Australian Research Council (ARC) grants FT0991594 and DP130101378. Katrina
Ligett gratefully acknowledges the generous support of the Charles Lee Powell Foundation.
Alan Roytman was partially supported by NSF grants IIS-1065276, CCF-1016540, CNS-
1118126, and CNS-1136174.

References

Jacob Abernethy, Peter L. Bartlett, Niv Buchbinder, and Isabelle Stanton. A regularization
approach to metrical task systems. In Proc. Algorithmic Learning Theory (ALT), pages
270–284, 2010.

Manjari Asawa and Demosthenis Teneketzis. Multi-armed bandits with switching penalties.
IEEE Trans. Automatic Control, 41(3):328 –348, March 1996.

Avrim Blum and Carl Burch. On-line learning and the metrical task system problem.
Machine Learning, 39(1):35–58, 2000.

Avrim Blum and Yishay Mansour. From external to internal regret. Learning Theory,
LNCS 3559:621–636, 2005.

Avrim Blum, Howard Karloff, Yuval Rabani, and Michael Saks. A decomposition theo-
rem and bounds for randomized server problems. In Proc. IEEE Symp. Foundations of
Computer Science (FOCS), pages 197–207, 1992.

Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In Proc. IEEE
Symp. Foundations of Computer Science (FOCS), pages 450–457, 1999.

13

Andrew Barman Ligett Lin Meyerson Roytman Wierman

Avrim Blum, Suchi Chawla, and Adam Kalai. Static optimality and dynamic search-
optimality in lists and trees. In Proc. ACM-SIAM Symp. Discrete Algorithms (SODA),
pages 1–8, 2002.

Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, 1992.

Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified algorithms for
online learning and competitive analysis. In Proc. Conf. on Learning Theory (COLT),
2012.

Giuseppe Carlo Calafiore. Multi-period portfolio optimization with linear control policies.
Automatica, 44(10):2463–2473, 2008.

Aaron Coté, Adam Meyerson, and Laura Poplawski. Randomized k-server on hierarchical
binary trees. In Proc. ACM Symp. on the Theory of Computing (STOC), 2008.

Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991. ISSN
1467-9965.

Sudipto Guha and Kamesh Munagala. Multi-armed bandits with metric switching costs.
In Automata, Languages and Programming, volume 5556 of Lecture Notes in Computer
Science, pages 496–507. Springer Berlin / Heidelberg, 2009.

Yonatan Gur, Omar Besbes, and Assaf Zeevi. Non-stationary online stochastic approxima-
tion. In Presented at INFORMS general meeting, 2012.

Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In
Proc. International Conference on Machine Learning, pages 393–400. ACM, 2009.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Mach. Learn., 69:169–192, December 2007. ISSN 0885-6125.

Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Mach. Learn., 32(2):
151–178, August 1998. ISSN 0885-6125.

Dara Kusic and Nagarajan Kandasamy. Risk-aware limited lookahead control for dynamic
resource provisioning in enterprise computing systems. Cluster Computing, 10(4):395–
408, 2007.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-
sizing for power-proportional data centers. In Proc. IEEE INFOCOM, 2011.

Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online algorithms
for geographical load balancing. In International Green Computing Conference(IGCC),
2012.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, February 1994. ISSN 0890-5401.

14

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

Tan Lu, Minghua Chen, and Lachlan L. H. Andrew. Simple and effective dynamic provision-
ing for power-proportional data centers. IEEE Trans. Parallel and Distributed Systems,
2012.

Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-line
problems. In Proc. ACM Symp. Theory of Computing (STOC), pages 322–333, 1988.

Rahul Urgaonkar, Bhuvan Urgaonkar, Michael J. Neely, and Anand Sivasubramaniam. Op-
timal power cost management using stored energy in data centers. In Proc. ACM SIG-
METRICS, pages 221–232. ACM, 2011.

Jian Yang, Ke Zeng, Han Hu, and Hongsheng Xi. Dynamic cluster reconfiguration for
energy conservation in computation intensive service. IEEE Trans. Computers, 61(10):
1401–1416, 2012.

Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba, and
Joseph L. Hellerstein. Dynamic energy-aware capacity provisioning for cloud computing
environments. In Proc. IEEE/ACM Int. Conf. Autonomic Computing (ICAC), Septem-
ber 2012.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In T. Fawcett and N. Mishra, editors, Proc. Int. Conf. Machine Learning (ICML), pages
928–936. AAAI Press, 2003.

Appendix A. Proof of Proposition 1

Recall that, by assumption, ‖Oct(·)‖2 is bounded. So, let us define D such that ‖Oct(·)‖2 ≤
D. Next, due to the fact that all norms are equivalent in a finite dimensional space, there
exist m,M > 0 such that for every x, m‖x‖a ≤ ‖x‖b ≤M‖x‖a. Combining these facts, we
can bound the switching cost incurred by an OGD algorithm as follows:

T∑
t=1

‖xt − xt−1‖ ≤M
T∑
t=1

‖xt − xt−1‖2

≤M
T∑
t=1

ηt‖Oct(·)‖2

≤MD
T∑
t=1

ηt.

The second inequality comes from the fact that projection to a convex set under the Eu-
clidean norm is nonexpansive, i.e., ‖P (x) − P (y)‖2 ≤ ‖x − y‖2. Thus, the switching cost
causes an additional regret of

∑T
t=1 ηt = O(ρ1(T)) for the algorithm, completing the proof.

15

Andrew Barman Ligett Lin Meyerson Roytman Wierman

Appendix B. Proof of Lemma 5

Recall that the oblivious adversary chooses ct(·) = f02 for E
[
xt
]
≤ 1/2 and ct(·) = f01

otherwise, where xt is the (random) choice of the algorithm at round t. Therefore,

C0(A) ≥ E

[
T∑
t=1

{
a(1− xt) + b if E

[
xt
]
≤ 1/2

axt + b otherwise

]

=E

[
bT + a

T∑
t=1

(
1/2 + (1/2− xt)sgn(1/2− E

[
xt
]
)
)]

=bT + a
T∑
t=1

(
1/2 + (1/2− E

[
xt
]
)sgn(1/2− E

[
xt
]
)
)

=(a/2 + b)T + a

T∑
t=1

|1/2− E
[
xt
]
|

where sgn(x) = 1 if x > 0 and −1 otherwise. The static optimum is not worse than
the scheme that sets xt = 1/2 for all t, which has total cost (a/2 + b)T + ‖1/2‖. This
establishes (7).

The dynamic scheme which chooses xt+1 = 0 if ct = f01 and xt+1 = 1 if ct = f02 has total
α-unfair cost not more than (b+ ‖α‖)T . This establishes (8).

Appendix C. Proof of Lemma 6

Proof We will consider only the case that ᾱ = 1; other cases are analogous. We prove
the contrapositive (that if C1(x;m) − C1(OPTs,m) ≤ ε‖1‖ for all m then xt ≤ δ for all
t ∈ [1, τ]). We consider the case that xt are non-decreasing; if not, the switching and
operating cost can both be reduced by setting (xt)′ = maxt′≤t x

t′ .
Note that OPTs sets xt = 0 for all t, whence C1(OPTs,m) = am, and that

C1(x;m) = xm‖1‖ − a
m∑
i=1

xi + am.

Thus, we want to show that if xm‖1‖ − a
∑m

i=1 x
i ≤ ε for all m ≤ τ then xt < δ for all

t ∈ [1, τ].
Define fi(·) inductively by f1(y) = 1/(1− y), and

fi(y) =
1

1− y

1 + y
i−1∑
j=1

fj(y)

 .

If y < 1 then {fi(y)} are increasing in i.
Notice that {fi} satisfy

fm(y)(1− y)− y
m−1∑
i=1

fi(y) = 1.

16

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

Expanding the first term gives that for any ε̂,

ε̂fm(a/‖1‖)− a

‖1‖

m∑
i=1

ε̂fi(a/‖1‖) = ε̂. (9)

If for some ε̂ > 0,

xm − a

‖1‖

m∑
j=1

xj ≤ ε̂ (10)

for all m ≤ τ , then by induction xi ≤ ε̂fi(a/‖1‖) ≤ ε̂fτ (a/‖1‖) for all i ≤ τ , where the last
inequality uses the fact that a < ‖1‖ whence {fi(a/‖1‖)} are increasing in i.

The left hand side of (10) is (C1(x;m)−C1(OPTs,m))/‖1‖. Define ε = ε̂ = δ/(2fτ (a/‖1‖)).
Then if (C1(x;m) − C1(OPTs,m)) ≤ ε‖1‖ for all m, then (10) holds for all m, whence
xt ≤ ε̂fτ (a/‖1‖) = δ/2 < δ for all t ∈ [1, τ].

Appendix D. Proof of Lemma 8

We first prove the α-unfair competitive ratio result. Let x̂1, x̂2, . . . , x̂T denote the ac-
tions chosen by algorithm ALG when running on a normed space with N = ‖ · ‖ALG
as input. Let ŷ1, ŷ2, . . . , ŷT be the actions chosen by the optimal dynamic offline algo-
rithm, which pays α times more for switching costs, on a normed space with ‖ · ‖ (i.e.,
OPTαd). Similarly, let ẑ1, ẑ2, . . . , ẑT be the actions chosen by the optimal solution on a
normed space with ‖ · ‖ALG, namely OPT‖·‖ALG

(without an unfairness cost). Recall that

we have C1(ALG) =
∑T

t=1 c
t(x̂t+1) + ‖x̂t+1− x̂t‖, OPTαd =

∑T
t=1 c

t(ŷt) +α‖ŷt− ŷt−1‖, and

OPT‖·‖ALG
=
∑T

t=1 c
t(ẑt) + ‖ẑt − ẑt−1‖ALG. By the assumptions in our lemma, we know

that C1(ALG) ≤ (1 + β)OPT‖·‖ALG
+O(1). Moreover,

OPTαd =
T∑
t=1

ct(ŷt) + α‖ŷt − ŷt−1‖

≥
T∑
t=1

ct(ŷt) +
α

θ
‖ŷt − ŷt−1‖ALG ≥

OPT‖·‖ALG

max{1, θα}
.

The first inequality holds since ‖ · ‖ALG = θ‖ · ‖ with θ ≥ 1. Therefore, C1(ALG) ≤
(1 + β) max{1, θα}OPT

α
d .

We now prove the regret bound. Let dmax denote the diameter of the decision space (i.e.,
the length of the interval). Recall that C0(ALG) =

∑T
t=1 c

t(x̂t) + ‖x̂t − x̂t−1‖ and OPTs =

minx
∑T

t=1 c
t(x). Then we know that C0(ALG) ≤ C1(ALG)+D

∑T
t=1 ‖xt+1 − xt‖+‖dmax‖

for some constant D by (1). Based on our assumptions, we have
∑

t c
t(x̂t+1) ≤ OPT‖·‖ALG

+
O(1) and

∑
t ‖x̂t+1− x̂t‖ ≤ βOPT‖·‖ALG

+O(1). For convenience, we let E = D+1 = O(1).

17

Andrew Barman Ligett Lin Meyerson Roytman Wierman

Then C0(ALG) is at most:

T∑
t=1

ct(x̂t+1) + E‖x̂t+1 − x̂t‖+ ‖dmax‖+O(1)

≤ (1 + Eβ)OPT‖·‖ALG
+ ‖dmax‖+O(1)

≤ (1 + Eβ)(OPTs + ‖dmax‖ALG) + ‖dmax‖+O(1).

Therefore, we get a regret C0(ALG)−OPTs at most

EβOPTs + ‖dmax‖(1 + E(1 + β)θ) +O(1)

=O(βOPTs + (1 + β)θ) = O(max{βOPTs, (1 + β)θ}).

In the OCO setting, the cost functions ct(x) are bounded from below by 0 and are
typically bounded from above by a value independent of T (e.g., Herbster and Warmuth,
1998; Littlestone and Warmuth, 1994), so that OPTs = O(T). This immediately gives the
result that the regret is at most O(max{βT, (1 + β)θ}).

Appendix E. Proof of Lemma 9

In this section, we argue that the expected operating cost of RBG (when evaluated under
‖ ·‖) with input norm N(·) = θ‖ ·‖, θ ≥ 1, is at most the cost of the optimal dynamic offline
algorithm under norm N (i.e., OPTN). Let M denote our decision space. Before proving
this result, let us introduce a useful lemma. Let x̂1, x̂2, . . . , x̂T+1 denote the actions chosen
by RBG (similarly, let x1OPT , . . . , x

T+1
OPT denote the actions chosen by OPTN).

Lemma 11 wt(x̂t+1) = wt−1(x̂t+1) + ct(x̂t+1).

Proof We know that for any state x ∈ M , we have wt(x) = miny∈M{wt−1(y) + ct(y) +
θ‖x − y‖}. Suppose instead wt(x̂t+1) = wt−1(y) + ct(y) + θ‖x̂t+1 − y‖ for some y 6= x̂t+1.
Then

Y t+1(x̂t+1) = wt(x̂t+1) + θr‖x̂t+1‖
= wt−1(y) + ct(y) + θ‖x̂t+1 − y‖+ θr‖x̂t+1‖
> wt−1(y) + ct(y) + θr‖y‖
= Y t+1(y),

which contradicts x̂t+1 = arg miny∈M Y t+1(y). Therefore wt(x̂t+1) = wt−1(x̂t+1) + ct(x̂t+1).

Now let us prove the expected operating cost of RBG is at most the total cost of the
optimal solution, OPTN .

Y t+1(x̂t+1)− Y t(x̂t)

≥Y t+1(x̂t+1)− Y t(x̂t+1)

=(wt(x̂t+1) + θr‖x̂t+1‖)− (wt−1(x̂t+1) + θr‖x̂t+1‖)
=ct(x̂t+1)

18

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

Lemma 9 is proven by summing up the above inequality for t = 1, . . . , T , since Y T+1(x̂T+1) ≤
Y T+1(xT+1

OPT) and E
[
Y T+1(xT+1

OPT)
]

= OPTN by E [r] = 0.

Note that this approach also holds when the decision space F ⊂ Rn for n > 1.

Appendix F. Proof of Lemma 10

To prove Lemma 10 we make a detour and consider a version of the problem with a discrete
state space. We first show that on such spaces the lemma holds for a discretization of RBG,
which we name DRBG. Next, we show that as the discritization becomes finer, the solution
(and hence switching cost) of DRBG approaches that of RBG. The lemma is then proven
by showing that the optimal cost of the discrete approximation approaches the optimal cost
of the continuous problem.

To begin, define a discrete variant of SOCO where the number of states is finite as
follows. Actions can be chosen from m states, denoted by the set M = {x1, . . . , xm}, and
the distances δ = xi+1 − xi are the same for all i. Without loss of generality we define
x1 = 0. Consider the following algorithm.

Algorithm 3 (Discrete RBG, DRBG(N))
Given a norm N and discrete states M = {x1, . . . , xm}, define w0(x) = N(x) and wt(x) =
miny∈M{wt−1(y)+ct(y)+N(x−y)} for all x ∈M . Generate a random number r ∈ (−1, 1).
For each time step t, go to the state xt which minimizes Y t(xt) = wt−1(xt) + rN(xt).

Note that DRBG looks nearly identical to RBG except that the states are discrete.
DRBG is introduced only for the proof and need never be implemented; thus we do not
need to worry about the computational issues when the number of states m becomes large.

F.1. Bounding the switching cost of DRBG

We now argue that the expected switching cost of DRBG (evaluated under the norm ‖ · ‖
and run with input norm N(·) = θ‖ · ‖) is at most the total cost of the optimal solution in
the discrete system (under norm N). We first prove a couple of useful lemmas. The first
lemma states that if the optimal way to get to some state x at time t is to come to state
y in the previous time step, incur the operating cost at state y, and travel from state y
to state x, then in fact the optimal way to get to state y at time t is to come to y at the
previous time step and incur the operating cost at state y.

Lemma 12 If ∃x, y : wt(x) = wt−1(y) + ct(y) + θ‖x− y‖, then wt(y) = wt−1(y) + ct(y).

Proof Suppose towards a contradiction that wt(y) < wt−1(y) + ct(y). Then we have:

wt(y) + θ‖x− y‖ < wt−1(y) + ct(y) + θ‖x− y‖
= wt(x) ≤ wt(y) + θ‖x− y‖

(since one way to get to state x at time t is to get to state y at time t and travel from y to
x). This is a contradiction, which proves the lemma.

19

Andrew Barman Ligett Lin Meyerson Roytman Wierman

We now prove the main lemma. Let SCt =
∑t

i=1 ‖xi−xi−1‖ denote the total switching
cost incurred by DRBG up until time t, and define the potential function φt = 1

2θ (wt(x1) +

wt(xm))− ‖xm−x1‖2 . Then we can show the following lemma.

Lemma 13 For every time step t, E
[
SCt

]
≤ φt.

Proof We will prove this lemma by induction on t. At time t = 0, clearly it is true since the
left hand side E

[
SC0

]
= 0, while the right hand side φ0 = 1

2θ (w0(x1)+w0(xm))− ‖xm−x1‖2 =
1
2θ (0 + θ‖xm − x1‖) − ‖xm−x1‖2 = 0. We now argue that at each time step, the increase in
the left hand side is at most the increase in the right hand side.

Since the operating cost is convex, it is non-increasing until some point xmin and then
non-decreasing over the setM . We can imagine our cost vector arriving in ε-sized increments
as follows. We imagine sorting the cost values so that ct(i1) ≤ ct(i2) ≤ · · · ≤ ct(im), and
then view time step t as a series of smaller time steps where we apply a cost of ε to all
states for the first ct(i1)/ε time steps, followed by applying a cost of ε to all states except
state i1 for the next (ct(i2)− ct(i1))/ε time steps, etc, where ε has a very small value. If
adding this epsilon-sized cost vector would cause us to exceed the original cost ct(ik) for
some k, then we just use the residual ε′ < ε in the last round in which state ik has non-zero
cost. Eventually, these ε-sized cost vectors will add up precisely to the original cost vector
ct. Under these new cost vectors, the behavior of our algorithm will not change (and the
optimal solution cannot get worse). Moreover, we would never move to a state in which ε
cost was added. If the left hand side does not increase at all from time step t− 1 to t, then
the lemma holds (since the right hand side can only increase). Our expected switching cost
is the probability that the algorithm moves multiplied by the distance moved. Suppose the
algorithm is currently in state x. Observe that there is only one state the algorithm could
be moving from (state x) and only one state y the algorithm could be moving to (we can
choose ε to be sufficiently small in order to guarantee this). Notice that the algorithm would
only move to a state y to which no cost was added. First we consider the case x ≥ xmin.

The only reason we would move from state x is if wt(x) increases from the previous
time step, so that we have wt(x) = wt−1(x) + ε. Notice that for any state z > x, we must
have wt(z) = wt−1(z) + ε. If not (i.e., wt(z) < wt−1(z) + ε), then we get a contradiction
as follows. The optimal way to get to z at time step t, wt(z), must go through some point
j in the previous time step and incur the operating cost at j. If j ≥ x, then we know
wt−1(j) + ε + θ‖z − j‖ = wt(z) < wt−1(z) + ε ≤ wt−1(j) + θ‖z − j‖ + ε, which cannot
happen. On the other hand, by Lemma 12, if j < x then we get wt(x) + θ‖z − x‖ ≤
wt(j) + θ‖1‖|x − j| + θ‖1‖|z − x| = wt(j) + θ‖z − j‖ = wt−1(j) + ct(j) + θ‖z − j‖ =
wt(z) < wt−1(z)+ ε ≤ wt−1(x)+θ‖z−x‖+ ε, which cannot happen either. Hence, we know
wt(z) = wt−1(z) + ε for all z ≥ x.

By the above argument, we can conclude a couple of facts. The state y we move to cannot
be such that y ≥ x. Moreover, we also know that wt(xm) = wt−1(xm) + ε (since xm ≥ x).
Notice that for us to move from state x to state y, the random value r must fall within a

20

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

very specific range. In particular, we must have Y t(x) ≤ Y t(y) and Y t+1(y) ≤ Y t+1(x):

(wt−1(x) + θr‖1‖x ≤ wt−1(y) + θr‖1‖y)

∧ (wt(y) + θr‖1‖y ≤ wt(x) + θr‖1‖x)

=⇒wt−1(y)− wt−1(x)− ε ≤ wt(y)− wt(x)

≤ θr‖x− y‖ ≤ wt−1(y)− wt−1(x)

This means r must fall within an interval of length at most ε/θ‖x− y‖. Since r is chosen
from an interval of length 2, this happens with probability at most ε/(2θ‖x− y‖). Hence,
the increase in our expected switching cost is at most ‖x − y‖ · ε/(2θ‖x− y‖) = ε/2θ. On
the other hand, the increase in the right hand side is φt − φt−1 = 1

2θ (wt(x1) − wt−1(x1) +
wt(xm) − wt−1(xm)) ≥ ε/2θ (since wt(xm) = wt−1(xm) + ε). The case when x < xmin is
symmetric. This finishes the inductive claim.

Now we prove the expected switching cost of DRBG is at most the total cost of the
optimal solution for the discrete problem.

By Lemma 13, for all times t we have E
[
SCt

]
≤ φt. Denote by OPT t the optimal solu-

tion at time t (so that OPT t = minxw
t(x) and OPT T = OPTN). Let x∗ = argminxw

t(x)
be the final state which realizes OPT t at time t. We have, for all times t:

E
[
SCt

]
≤φt =

1

2θ
(wt(x1) + wt(xm))− ‖xm − x1‖

2

≤ 1

2θ
(wt(x∗) + θ‖x∗ − x1‖+ wt(x∗) + θ‖xm − x∗‖)

− ‖xm − x1‖
2

=
1

θ
OPT t.

In particular, the equation holds at time T , which gives the bound.

F.2. Convergence of DRBG to RBG

In this section, we are going to show that if we keep splitting δ, the output of DRBG, which
is denoted by xtD, converges to the output of RBG, which is denoted by xtC .

Lemma 14 Consider a SOCO with F = [xL, xH]. Consider a sequence of discrete systems
such that the state spacing δ → 0 and for each system, [x1, xm] = F . Let xi denote
the output of DRBG in the ith discrete system, and x̂ denote the output of RBG in the
continuous system. Then the sequence {xi} converges to x̂ with probability 1 as i increases,
i.e., for all t, limi→∞ |xti − x̂t| = 0 with probability 1.

Proof To prove the lemma, we just need to show that xi converges pointwise to x̂ with
probability 1. For a given δ, let Y t

D denote the Y t used by DRBG in the discrete system
(with feasible set M = {x1, . . . , xm} ⊂ F) and Y t

C denote the Y t used by RBG in the
continuous system (with feasible set F). The output of DRBG and RBG at time t are
denoted by xtD and xtC respectively. The subsequence on which |xtC − xtD| ≤ 2δ clearly has
xtD converge to xtC . Now consider the subsequence on which this does not hold. For each
such system, we can find a x̄tC ∈ {x1, . . . , xm} and |x̄tC − xtC | < δ (and thus |x̄tC − xtD| ≥ δ)

21

Andrew Barman Ligett Lin Meyerson Roytman Wierman

such that Y t
C(x̄tC) ≤ Y t

C(xtD), by the convexity5 of Y t
C . Moreover Y t

D(xtD) ≤ Y t
D(x̄tC) and

Y t
C(xtD) ≤ Y t

D(xtD). So far, we have only rounded the tth component. Now let us consider
a scheme that will round to the set M all components τ < t of a solution to the continuous
problem.

For an arbitrary trajectory x = (xt)Tt=1, define a sequence xR(x) with xτR ∈ {x1, . . . , xm}
as follows. Let l = max{k : xk ≤ xτ}. Set xτR to xl if cτ (xl) ≤ cτ (xl+1) or l = m, and
xl+1 otherwise. This rounding will increase the switching cost by at most 2θ‖δ‖ for each
timeslot. If l = m then the operating cost is unchanged. Next, we bound the increase in
operating cost when l < m.

For each timeslot τ , depending on the shape of cτ on (xl, xl+1), we may have two cases:
(i) cτ is monotone; (ii) cτ is non-monotone. In case (i), the rounding does not make the
operating cost increase for this timeslot. Note that if xτC ∈ {xL, xH} then for all sufficiently
small δ, case (ii) cannot occur, since the location of the minimum of cτ is independent of
δ. We now consider case (ii) with xτC ∈ (xL, xH). Note that there must be a finite left
and right derivative of cτ at all points in (xL, xH) for cτ to be finite on F . Hence these
derivatives must be bounded on any compact subset of (xL, xH). Since xτC ∈ (xL, xH), there
exist a set [x′L, x

′
H] ⊂ (xL, xH) independent of δ such that for sufficiently small δ we have

[xl, xl+1] ⊂ [x′L, x
′
H]. Hence there exists a Hτ such that for sufficiently small δ the gradient

of cτ is bounded by Hτ on [xl, xl+1]. Thus, for sufficiently small δ, the rounding will make
the operating cost increase by at most Hτδ in timeslot τ .

Define H = maxτ{Hτ}. If we apply this scheme to the trajectory which achieves
Y t
C(x̄tC), we get a decision sequence in the discrete system with cost + rθ‖x̄tC‖ not more

than Y t
C(x̄tC) + (Hδ+ 2θ‖δ‖)t (by the foregoing bound on the increase in costs) and not less

than Y t
D(x̄tC) (because the solution of Y t

D(x̄tC) minimizes cost + rθ‖x̄tC‖). Specifically, we
have Y t

D(x̄tC) ≤ Y t
C(x̄tC) + (Hδ + 2θ‖δ‖)t. Therefore,

Y t
C(x̄tC) ≤ Y t

C(xti) = Y t
C(xtD) ≤ Y t

D(xtD) ≤ Y t
D(x̄tC)

≤ Y t
C(x̄tC) + (Hδ + 2θ‖δ‖)t.

Notice that the gradient bound H is independent of δ and so (Hδ + 2θ‖δ‖)t → 0 as
δ → 0. Therefore, |Y t

C(xti)− Y t
C(x̄tC)| converges to 0 as i increases.

Independent of the random choice r, the domain of wtC(·) can be divided into countably
many non-singleton intervals on which wtC(·) is affine, joined by intervals on which it is
strictly convex. Then Y t

C(·) has a unique minimum unless −r is equal to the slope of one of
the former intervals, since Y t

C(·) is convex. Hence it has a unique minimum with probability
one with respect to the choice of r.

Hence w.p.1, xtC is the unique minimum of Y t
C . To see that Y t

C(·) is continuous at
any point a, apply the squeeze principle to the inequality wtC(a) ≤ wtC(x) + θ‖x − a‖ ≤
wtC(a)+2θ‖x−a‖, and note that Y t

C(·) is wt(·) plus a continuous function. The convergence
of |x̄tC−xtC | then implies |Y t

C(x̄tC)−Y t
C(xtC)| → 0 and thus |Y t

C(xti)−Y t
C(xtC)| → 0, or equiv-

alently Y t
C(xti) → Y t

C(xtC). Note that the restriction of Y t
C to [xL, x

t
C] has a well-defined

inverse Y −1, which is continuous at Y t
C(xtC). Hence for the subsequence of xti such that

xti ≤ xtC , we have xti = Y −1(Y t
C(xti)) → Y −1(Y t

C(xtC)) = xtC . Similarly, the subsequence

5. The minimum of a convex function over a convex set is convex, thus by definition, wt is a convex function
by induction. Therefore, Y t

C is convex as well.

22

A Tale of Two Metrics:Simultaneous Bounds on Competitiveness and Regret

such that xti ≥ xtC also converge to xtC .

F.3. Convergence of OPT in discrete system

To show that the competitive ratio holds for RBG, we also need to show that the optimal
costs converge to those of the continuous system.

Lemma 15 Consider a SOCO problem with F = [xL, xH]. Consider a sequence of discrete
systems such that the state spacing δ → 0 and for each system, [x1, xm] = F . Let OPT iD
denote the optimal cost in the ith discrete system, and OPTC denote the optimal cost in
the continuous system (both under the norm N). Then the sequence {OPT iD} converges to
OPTC as i increases, i.e., limi→∞ |OPT iD −OPTC | = 0.

Proof We can apply the same rounding scheme in the proof of Lemma 14 to the solution
vector of OPTC to get a discrete output with total cost bounded by OPTC+(Hδ+2θ‖δ‖)T ,
thus

OPT iD ≤ OPTC + (Hδ + 2θ‖δ‖)T.

Notice that the gradient bound H is independent of δ and so (Hδ+ 2θ‖δ‖)T → 0 as δ → 0.
Therefore, OPT iD converges to OPTC as i increases.

23

	Introduction
	Problem formulation
	Background
	Online convex optimization
	Metrical Task Systems

	The incompatibility of regret and the competitive ratio
	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Balancing regret and the competitive ratio
	Concluding remarks
	Proof of Proposition 1
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Bounding the switching cost of DRBG
	Convergence of DRBG to RBG
	Convergence of OPT in discrete system

