Investigating the IPv6 Teredo Tunnelling Capability and
Performance of Internet Clients

Sebastian Zander,
Lachlan L. H. Andrew,
Grenville Armitage
CAIA, Swinburne University of Technology
Melbourne, Australia

{szander,landrew,garmitage}@swin.edu.au

ABSTRACT

The Teredo auto-tunnelling protocol allows IPv6 hosts behind IPv4
NATs to communicate with other IPv6 hosts. It is enabled by de-
fault on Windows Vista and Windows 7. But Windows clients are
self-constrained: if their only IPv6 access is Teredo, they are unable
to resolve host names to IPv6 addresses. We use web-based mea-
surements to investigate the (latent) Teredo capability of Internet
clients, and the delay introduced by Teredo. We compare this with
native IPv6 and 6to4 tunnelling capability and delay. We find that
only 6-7% of connections are from fully IPv6-capable clients, but
an additional 15-16% of connections are from clients that would
be IPv6-capable if Windows Teredo was not constrained. How-
ever, Teredo increases the median latency to fetch objects by 1-1.5
seconds compared to IPv4 or native IPv6, even with an optimally
located Teredo relay. Furthermore, in many cases Teredo fails to
establish a tunnel.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Oper-
ations—~Network Monitoring; C.4 [Performance of Systems]:
Measurement Techniques

Keywords
IPv6, Teredo

1. INTRODUCTION

The IETF standardised several protocols that tunnel IPv6 across
IPv4-only networks. Tunnelling protocols, such as 6to4 [1], re-
quire that the tunnel endpoints have public IPv4 addresses. But due
to the IPv4 address shortage Network Address Translators (NATS)
are now widely deployed in front of home networks [2], and not
all home gateways support IPv6 tunnelling protocols.! Huitema et
al. developed the Teredo protocol [3, 4], which allows IPv6 hosts
behind IPv4 NAT's to communicate with native IPv6 hosts or other
IPv4 NATed IPv6-capable hosts. Other advantages of Teredo are
that it only requires one relay on the path between two hosts (6to4
often requires one relay in each direction due to routing), and it is
more firewall-friendly (6to4 uses protocol 41, which is often fil-
tered). Furthermore, Teredo provides a general method for NAT
traversal that can be used by many applications.

't is unclear how many home gateways support 6to4. However, in
our dataset almost 45% of connections were from Windows Vista
and 7 clients that have 6to4 enabled by default and preferred over
Teredo, yet only 4-5% of connections used 6to4. This indicates
that 6to4 is often deactivated, filtered or not supported.

Geoff Huston,
George Michaelson

Asia Pacific Network Information Centre (APNIC)

_Brisbane, Australia
{gih,ggm}@apnic.net

Teredo is supported by Windows since Windows XP and Win-
dows Server 2003 [5], and is enabled by default on Windows Vista
and Windows 7. Implementations for Linux, BSD variants and
MacOS X also exist (e.g. Miredo [6]). However, on Windows Vista
and Windows 7 by default Teredo is self-constrained: without na-
tive IPv6 network interface both operating systems (OSs) do not
resolve host names to [Pv6 addresses (do not send DNS AAAA re-
quests) [7]. This leaves Teredo enabled for client-side applications
that use it directly, but otherwise avoids unexpected behaviour in
home networks, which are not prepared to handle DNS AAAA re-
quests or IPv6 traffic [8]. Previous studies based on passive mea-
surements [9-11] could not detect latent Teredo capability and also
could not measure the latency introduced by Teredo.

We use web-based measurements to measure the IPv6 capabil-
ity of clients, including latent Windows Teredo capability based on
Steffann’s technique [12]. On certain participating web sites the
clients’ web browsers not only download the “normal” web pages
and images, but also a test script that fetches a few very small invis-
ible images from our test server. One image can only be retrieved
with IPv4, a second only with IPv6 and a third with either IPv4 or
IPv6. To test Windows latent Teredo capability a fourth image is
behind an IPv6 literal URL. The test script also measures the fetch
latencies for these images, so we can analyse the latency introduced
by Teredo and compare it with the latency of IPv4 or native IPv6.

Previously this measurement method limited the test sample to
clients visiting participating web sites. However, we developed a
novel method for embedding the test script in Flash ad banners, and
use Google’s AdSense platform to distribute the test to “random”
clients. Our overall dataset is a combination of both data collec-
tion methods, giving us a broader sample without being limited to
clients running Flash. To reduce the sampling error we re-weight
our statistics based on global traffic data.

The paper is organised as follows. Section 2 outlines related
work. Section 3 provides an overview about the Teredo protocol.
Section 4 describes our experimental measurement setup. Section
5 describes the processing of the data and presents the results. Sec-
tion 6 concludes and outlines future work.

2. RELATED WORK

Over the last decade a number of researchers studied the progress
of IPv6 deployment based on measurements at web servers, passive
traffic measurements, topology measurements, and routing or DNS
root server data. The survey paper [13] provides an excellent sum-
mary and also identifies areas that need further study. Only a few
of the previous studies investigated Teredo.

Huang et al. [14], Hoeher ef al. [15], and Aazam et al. [16]
studied the performance of Teredo in testbeds. They compared the

latency and throughput of Teredo with other IPv6-over-IPv4 tun-
nelling technologies. Since their measured latencies are based on
testbeds, they are not comparable with our results.

Malone [9] studied the fraction of native, 6to4, 6bone and Teredo
IPv6 addresses observed at three servers (WWW, FTP, DNS) in
2007 and found that only 10% of IPv6 connections (0.04% of all
connections) used Teredo. Karpilovsky ef al. [10] quantified the
IPv6 deployment based on NetFlow data. They found that in 2008
Teredo addresses accounted for only 4% of all IPv6 addresses. De-
feche and Wyncke [11] studied the use of IPv6 in the BitTorrent
file-sharing community. The fraction of IPv6-capable BitTorrent
peers was only 1%, but 59% of them used Teredo.

The previous studies used passive measurements (NetFlow
records or log files), and could not observe constrained Windows
Teredo clients. Also, with NetFlow records it is unclear what frac-
tion of the observed Teredo traffic is data exchange, or tunnel setup
and maintenance. Our measurement technique allows detecting la-
tent Teredo clients and differentiating between failed and success-
ful tunnel setups. The data used in previous studies was collected
at very few locations and may be biased heavily. We collected data
from a larger number of sites and via Google ads, and we also use a
technique to mitigate sampling error. Finally, unlike previous stud-
ies, we analyse Teredo’s setup latency in the real world.?

3. TEREDO OVERVIEW

Tunnelling protocols, such as 6to4 [1], require that tunnel end-
points have public IPv4 addresses. But most home networks are
behind IPv4 NATs and home gateways may not be 6to4-capable.
Teredo is an auto-tunnelling protocol, enabling IPv6 hosts behind
IPv4 networks to communicate with other IPV6 hosts, even if they
are behind NATs and have no public IPv4 addresses [3,4].

3.1 Teredo Protocol

The Teredo architecture consists of clients, servers and relays.
Teredo clients run on IPv6-capable hosts behind NATed IPv4 net-
works. Teredo clients use Teredo servers for NAT detection, ad-
dress configuration, and tunnel setup. Teredo servers are not part
of the tunnels; no data traffic is routed across them and they can be
stateless. Teredo relays act as IPv6 routers and forward data traffic
between Teredo clients and native IPv6 hosts.

Initially every Teredo client performs a qualification procedure
by exchanging messages with a Teredo server [3]. During the qual-
ification the client determines whether it is behind a NAT, the type
of NAT, and its public IPv4 address. If Teredo can be used through
the detected NAT?, the client assigns itself a Teredo IPv6 address
that looks as follows [3]. Address bits 0-31 are the Teredo prefix
(2001:0::/32), bits 32—63 are the IPv4 address of the Teredo server,
bits 64-79 are flags, bits 80-95 contain the client’s external port
(obfuscated) and bits 96—127 contain the client’s external IPv4 ad-
dress (obfuscated). The qualification is repeated from time to time
(by default every 30 seconds), since the NAT binding may change
over time.

Figure 1 illustrates the Teredo protocol for our experimental
setup, where NATed clients communicate with a web server con-
nected to an IPv6 network. When an application sends packets
to an IPv6 host, the Teredo client on the sending host queues the
packets, performs the qualification (if not already qualified) and
then performs a direct connectivity test. It sends an ICMPv6 echo
request from its Teredo IPv6 address to the IPv6 destination encap-

2We published a preliminary analysis of Teredo on the web [17].
3Clients behind symmetric NATs cannot use the original protocol,
but extensions exist for some symmetric NAT scenarios [4].

i Teredo Teredo
Server Relay IPv6 Server
TCP :
[y
I SYN \
H : Qualification (simplified

ICMPV6 Echo Request (UDP[IPv4

ICMPv6 Echo Request

CMPVG Echo Res| onse

|ndirect Bubble
—

Indirect Bubble
: Direct Bubble o :
-
: |CMPV6 Echo Response (UDP/IPv4

HTTP/TCP (IPv6 over UDP/IPv4) HTTP/TCP (IPv6)

Figure 1: Teredo client tunnel setup to native IPv6 host

sulated in a UDP/IPv4 packet sent to the Teredo server. The server
decapsulates the ICMPv6 packet and sends it to the destination via
IPv6. The destination responds with an ICMPv6 echo reply des-
tined to the client’s Teredo IPv6 address. The echo reply is routed
to the nearest Teredo relay (relays advertise 2001:0::/32).

The relay queues the ICMPv6 echo reply and sends a so-called
indirect bubble to the Teredo server. An indirect bubble is an IPv6
header destined to the client inside a UDP/IPv4 packet with an ori-
gin indication field containing the relay’s IPv4 address and port.
The server forwards the bubble to the client. The client then sends
a direct bubble (IPv6 header inside UDP/IPv4) to the relay, which
creates an entry in the client’s NAT. After the relay receives the
client’s bubble, it sends the ICMPv6 echo reply encapsulated in
UDP/IPv4 to the client. When the client receives the echo reply,
the tunnel setup is complete. The client can exchange IPv6 packets
with the web server over the UDP/IPv4 tunnel.

3.2 Teredo Implementations

In Windows Vista and Windows 7 Teredo is enabled by default,
butitis constrained. Neither OS will query for DNS AAAA records
if there are only network devices with link-local or Teredo IPv6
addresses [7] — any communications where host names are speci-
fied fail. For example, with a web browser Teredo works with lit-
eral [Pv6 URLs, but not with the more commonly used host name
URLs. Only changing a Windows registry parameter or config-
uring another interface with public IPv6 address will fully enable
Teredo. Windows XP (SP 1 and higher) supports Teredo, but it is
disabled by default. In managed networks with configured domain
controllers Windows Teredo automatically deactivates.

Teredo implementations for Linux, BSD-variants and MacOS X
also exist, most notably Miredo [6]. However, in general Teredo
is not part of the default installation on these OSs and needs to be
installed and enabled manually.

4. EXPERIMENTAL SETUP

We use active web-based measurements based on [12, 18] to
measure whether hosts can use Teredo, 6to4, or native IPv6, pre-
fer IPv6 over IPv4 in dual stack and measure the fetch latencies.

4.1 Web-based measurements

When users visit web sites their web browsers normally down-
load several web pages, scripts, images etc. At certain participating
web sites this includes a small test script that fetches a few invis-
ible one-pixel images via HTTP from URLs pointing to our test
web server and measures the fetch times. We refer to the script as

test and a single image download as sub-test. For URLs with host
names the client’s resolver has to perform DNS look-ups against
our test DNS server prior to sending HTTP requests. Different
sub-tests allow us to test IPv4 and IPv6 connectivity, dual stack
behaviour, and (latent) Teredo behaviour:

1. The image can only be retrieved with IPv4 because the DNS
server only returns an A record (IPv4-only);

2. The image can only be retrieved with [Pv6 because the DNS
server only returns an AAAA record (IPv6-only);

3. The image can be retrieved with IPv4 or IPv6 because the
DNS server returns A and AAAA records (dual-stack);

4. The image is behind an [Pv6 address literal URL (Windows
hosts with only half-enabled Teredo will use it).

A sub-test is deemed successful if the image could be retrieved;
otherwise it is deemed a failure. For each sub-test the test script
measures the time it takes to fetch the image (with millisecond pre-
cision). For failed sub-tests the latency is undefined. After all sub-
tests have been successfully completed or a timeout of ten seconds
(whichever occurs first) the test script sends another HTTP request
to the test web server that acts as a test summary.

The test summary reports the sub-test latencies and allows us
to determine whether a browser has waited a sufficient amount of
time for all sub-tests to complete. Since the test script stops when
users move to another page, which can happen quickly, without
the summary it is impossible to know whether a sub-test was not
successful because a client lacked the capability or because the test
script was interrupted.

The test script starts sub-tests in quick succession, but to which
degree the images are fetched in parallel depends on a web
browser’s connection management. We assume that browsers try
to fetch objects as quickly as possible without unnecessary delay.
The URLS for each sub-test and summary resolve to different IPv4
or IPv6 addresses, which means browsers cannot multiplex differ-
ent sub-tests over one TCP connection.

Figure 2 shows a logical diagram of our experimental setup. The
DNS server handles the incoming DNS queries and the web server
serves the test images. All servers are time-synchronised with NTP.
Local Teredo and 6to4 relays are located close to the web server
to reduce tunnelling delay as much as possible (Teredo server and
client-side 6to4 relay are out of our control).* We collect HTTP log
data, DNS log data, and capture the traffic with tcpdump.

Several data fields are used to convey information from a tested
client to our test servers and prevent caching of DNS records or
test images at the client or intermediate caches (see Figure 2). The
following data is prepended to the host name as well as appended
as URL parameters: Test time, test ID, test version, and sub-test
name. Test time is the time a test started taken from the client’s
clock (Unix time plus milliseconds). Test ID is a “unique” random
32-bit integer number determined by the test script. Test version is
the test’s version number and sub-test name is a unique identifier
for the sub-test, e.g. “IPv4-only”.

4.2 Client sample

Clients interact with our measurement system in two different
ways. A number of participating web sites link our JavaScript
test script (JS-fest) and visiting hosts are tested. The client sam-
ple is biased towards the participating web sites, but since the test

“A Teredo relay close to the web server does not add additional
tunnelling delay during the data exchange. In reality the delay may
be increased, if the relay is off the lowest-latency path [17].

i @ 1
)) 1
| ‘ /V : — | l !
Client ([¢ |
Internet y " LAN : Logging 1
: R = =

1
i 1

DNS Request _ID.Time.Version.v4on| .server.domain _ i

: DNS Response A record 1

TCP handshake (simplified)

'
N
d

HTTP GET 1.png?lD4Time.Version.v4only

'
—~— !

.o —~—
[— —_

HTTP GET 1.png?lD.Time.Version.summary.Latencies E

Figure 2: Experimental setup

is implemented in JavaScript the vast majority of visiting clients
can be tested (we assume there are not many clients with disabled
JavaScript, as it has become essential for many web pages).

We also implemented a Flash ActionScript test and embedded
it in a Flash ad banner (FA-test). The ad is served to hosts via
Google’s AdSense. The test is carried out as soon as the ad is dis-
played by the web browser, the user does not have to click on it. We
selected the ad’s keywords and languages to achieve broad place-
ment across different countries and sites. The FA-test reaches a
more diverse client population, but cannot be carried out by clients
without Flash (e.g. iPhones/iPads during our measurement).

The JS-test uses cookies to ensure clients are only tested once
per day per web site. The FA-test cannot use cookies, so clients
may be tested multiple times. In both cases there can be proxies
or NATs, which look like repeating clients. However, our analysis
shows that under 8% of IPs perform the test more than once and
under 0.1% of IPs perform the test more than 10 times per day.

4.3 User impact

The JS-test script is 12 kB large and executed after a web page
has loaded completely. Hence, it does not delay the loading of the
page. The loading of the FA-test is the same as for other Flash
ads. Our ad is 16 kB large, well below Google’s size limit of 50kB.
The test images are only 157 bytes large. The total size of the test
data transferred is well under 20kB, very small compared to the
average web page size. We argue that overall our test does not
have a significant impact on a user’s browsing experience, which
we confirmed with test users. Also, our test does not trick users into
revealing any sensitive information. Instead, we utilise information
that web clients normally send to every visited web server.

5. TEREDO ANALYSIS
5.1 Methodology

Our analysis is over the time period between 16" of May 2011
and 19% of February 2012. We pre-processed the raw data as fol-
lows. We discarded 1% of tests as “invalid”, such as tests without
latency values for any of the sub-tests. We extracted “completed”
tests where the web server received the test summary. Only for
these we have the latencies and can be sure that the clients tried
long enough. On average there were 180 000-200 000 valid com-
pleted tests per day (of which only 30000-35000 were FA-tests
due to our limited ad budget and the rest were JS-tests). We anal-

ysed the data in blocks of 24 hours, but we will present the statistics
averaged over weekly periods to reduce the error of the estimates.

We interpret the measurement results as statistics of connections
(connections in the sense of connectivity) and not of clients (IPs)
to avoid “observation bias” caused by multiple clients behind web
proxies or NATs, or clients that change their IP addresses more of-
ten (home users, frequently offline clients). Furthermore, we avoid
potential bias because we are more likely to observe clients that are
more likely to use the Internet and potentially have more up-to-date
systems and are more up to date with [Pv6.

Our sample of tested clients is biased towards the web sites acti-
vating the JS-tests and FA-tests. For example, Indonesian JS-test
connections are well over-represented due to a large participat-
ing Indonesian web site. Furthermore, the participating web sites
change over time. To mitigate this bias we weight each test based
on the tested client’s country. The weight for a single test W, is:

T

Wt =P CTC)
where P, is the weight of country ¢ (3, P; = 1), T is the total
number of tests, and 7. is the number of tests of country ¢ . Our
weights P, are based on country traffic statistics estimated by Cisco
[19] for 16 countries that generate 79% of the Internet’s traffic and
Wikipedia country traffic statistics [20] for the remaining countries.
We use MaxMind’s GeoLite country database [21] to map [Pv4
client addresses to countries (claimed accuracy of 99.5%). Our ap-
proach is described in more detail in [18]. All the results presented
in Section 5 are based on the re-weighted data.

There still may be a bias towards clients visiting the particu-
lar set of web sites, but our set of sites is relatively diverse and
large. There are 55-75 different domains (covering universities,
ISPs, gaming sites, blog sites) that refer at least 100 tested clients
per day. Furthermore, we compared conclusions from JS-tests and
FA-tests and found the conclusions match well qualitatively [18].

5.2 Results

We analyse the percentage of Teredo connections, the percentage
of successful and failed Teredo connections per OS, the latency
introduced by Teredo and the reasons for Teredo failures.

5.2.1 Latent Teredo capability

Figure 3 shows the weekly percentages of Teredo, 6to4 and
native IPv6 connections, as identified by the IPv6 address prefix
(native connections possibly include point-to-point IPv6-over-1Pv4
tunnels). Our test period included World IPv6 day (June 8th, 2011),
during which major Internet network and service providers enabled
IPv6 as a test. For native IPv6 the week of the World IPv6 day
shows a little bump and percentages are slightly higher until mid
July 2011. Conversely, for Teredo there is a dent around IPv6 day.
The percentage of Teredo and native IPv6 are relatively constant,
but the percentage of 6to4 shows a slight decrease.

Of the 15-16% Teredo connections, 99.8% were from Windows
Vista and 7 hosts with latent IPv6 capability. These hosts could
be forced to use Teredo with a literal URL, but would not perform
DNS AAAA requests and hence were not truly IPv6-capable. Only
0.1-0.2% of Teredo connections were from IPv6-capable hosts
(manually tuned Windows Teredo or Teredo on other OS). Clients
using 6to4 accounted for 4-5% of connections and 1-2% of con-
nections were from clients with native IPv6. Only clients with na-
tive IPv6 preferred IPv6 in dual-stack (90-100% preferred IPv6).
The proportions of 6to4 and Teredo connections that preferred IPv6
were under 1% and well under 0.1% respectively. Now we focus
on Teredo, for other results see [18].

<

(2]

c

Re]

3 15

c

c

<}

o

©

> 10 4 Teredo
& 6to4
_g Native
S

s 5

<

=]

©

[}

g 0+

o T T T T T T T T
i)

16May 25Jun 04Aug 13Sep 230ct 02Dec 11Jan 20Feb
2011 2011 2011 2011 2011 2011 2012 2012

Date

Figure 3: Weekly percentages of Teredo, 6to4 and native IPv6
connections

@ Win 7 Vista XP Other
o

5 40
(0]

%

o~

32 30
|80

O c

o Q 20 -
gy 2
S u—

‘w ©

3 10
Q

o
@

0_

T T T T T T T T
16May 25Jun 04Aug 13Sep 230ct 02Dec 11Jan 20Feb
2011 2011 2011 2011 2011 2011 2012 2012

Date

Figure 4: Weekly percentages of successful Teredo connections
for each OS

5.2.2 Successful/failed Teredo

Figure 4 shows the percentages of successful Teredo connections
for each OS. For Windows 7 roughly 30-40% of connections were
successful whereas for Windows Vista only 10-20% of connections
were successful. For Windows XP and other OS (mostly Linux and
MacOS X)) the percentages were 1% and 0.2% respectively.

Figure 5 shows the percentages of observed failed Teredo con-
nections for each OS. These are connections where clients started
the tunnel setup (ICMPv6 echo request arrived at server) but could
not complete it. This could be related to issues with creating the
hole in the NAT, but we think a major cause is excessive delay
introduced by Teredo. For Windows 7 and Windows Vista the per-
centages are 20-30%, for Windows XP and other OS the percent-
ages are 0.6% and under 0.1% respectively. For Windows 7 and
Windows Vista for roughly 33% and 60% of connections respec-
tively there was no sign of Teredo. Either Teredo was disabled,
the qualification failed or took too long, or there were other causes,
such as corporate firewalls blocking UDP or misbehaving NATs.

Figure 6 shows the average weekly cycle of the percentage of
all successful Teredo connections. For each test we computed the
client-local test time based on GeolP time zone information and
averaged the hourly percentages. The percentage of successful
Teredo was higher on weekdays during non-working hours and on
weekends. We assume during these times there was a higher per-
centage of home users, and Teredo more likely worked for home
users (no domain controllers or corporate firewalls). Qualitatively
the observed failed Teredo connections have a similar cycle.

Win 7 Vista XP Other

o
B 30
e
B
[0
] g; 20
el
23
2° 10 7
O

O —

16May 25Jun 04Aug 13Sep 230ct 02Dec 11Jan 20Feb
2011 2011 2011 2011 2011 2011 2012 2012

Date

Figure 5: Weekly percentages of observed failed connections
(tunnel setup was started but not completed) for each OS

20
&
o 15 4
o
I
@
S 10 o
@
@
Q
S 5
0 Hourly Daily : : :
T T T T T T T T

Mon Tue Wed Thu Fri Sat Sun

Average weekly cycle

Figure 6: Average hourly/daily successful Teredo percentage

5.2.3 Fetch latency

Figure 7 shows the median fetch latency difference between the
different IPv6 techniques (Teredo, 6to4, native IPv6) and IPv4 con-
nections measured by the clients.> Since the measured latencies
include the time for DNS resolution for all sub-tests except literal
sub-tests (almost all Teredo), we added the estimated time for DNS
resolution to the measured Teredo latencies. As estimate we use
the time difference between the TCP SYN of the HTTP connection
reaching the web server and the DNS query of the client’s DNS
server reaching the DNS server for IPv4 connections. Since the
DNS hierarchy adds latency our estimate is conservative. Com-
pared to IPv4 the median fetch latency of native IPv6 is less than
30 ms higher most of the time, and the median fetch latency of 6to4
is 150-250 ms higher. However, the median fetch latency of Teredo
is 1-1.5 seconds higher. For Teredo it seems the latency difference
is trending down slightly over time.

Figure 8 shows CDFs of the fetch latency differences over the
whole time. For native IPv6 the tail of the distribution is likely
caused by IPv6 point-to-point tunnels, whereas for 6to4 the tail is
likely caused by sub-optimally located relays. For Teredo the tail
is much longer than for native IPv6 or 6to4 and extends to multiple
seconds. Figure 8 also shows the estimated latency difference for
observed failed Teredo connections. Despite not even making it to
a TCP SYN, in many cases the failed attempts took even longer.
The much higher delay for Teredo, especially failed Teredo, is due
to a number of factors we now discuss.

After starting Windows the Teredo client is dormant and it must
perform the qualification procedure before the first tunnel setup,

SLater start date because we only kept DNS logs since July 2011.

1.5
@
8
g 1.0
5 Native
% 6to4
= Teredo
c 0.5
o
©
-
0.0

19Jul 20Aug 21Sep 230ct 24Nov 26Dec 27Jan
2011 2011 2011 2011 2011 2011 2012

Date

Figure 7: Weekly median fetch latency difference between
Teredo, 6tod, native IPv6 and IPv4

1.0
0.8 4
0.6 4
[T
o
o
0.4 Native
6to4
0.2 Teredo
Teredo w/o quali
00 4 —a— Teredo fail

T T T T T T
0 2 4 6 8 10

Fetch latency difference of IPv6 and IPv4 [s]

Figure 8: Fetch latency difference between native IPv6, 6tod,
Teredo (with and without qualification) and IPv4. Latency dif-
ference between observed failed Teredo and IPv4.

which takes at least two round trip times between Teredo client and
server. Afterwards the Teredo client will stay active and period-
ically re-qualify. Since many hosts probably do not use Teredo,
we assume often our tests wake up dormant clients. Figure 8§ also
shows a conservative estimate of the Teredo fetch latency difference
if clients would have been already qualified when the test started.
(The Windows 7 Teredo client starts generating ICMPv6 echo re-
quests when the first TCP SYN from the web client is queued, but
only sends the echo requests after qualification. If qualification
takes long this causes back-to-back echo requests we use as indica-
tor that clients had to qualify.)

Even with an optimally located Teredo relay the initial tunnel
setup still has to go through the Teredo server. The default Win-
dows Teredo servers are located in the US and UK, so for clients
further away from the default servers the tunnel setup adds signif-
icant delay. Teredo tunnels only stay up for 30 seconds without
traffic (typical UDP NAT timeout), so it is likely that clients had
to establish tunnels before they could fetch the test image, but in
reality tunnel setup would also occur frequently.

5.2.4 Failures depending on Teredo servers

The worst problem only became apparent after a number of ex-
periments with a Windows 7 Teredo client. In many cases we ob-
served the loss of one or more packets during the qualification and
tunnel setup. The packet loss causes huge delays, for example one
lost ICMPV6 echo request/response adds 2 seconds of delay. This
explains the longer delays of observed failed connections in Figure
8. Many of these probably effectively failed due to long delays. By

50
o
B 40
2 MS UK
B 30 MS US
B remlab
3 20 Others
P
Q
2 10 A
o

0 —

Mon Tue Wed Thu Fri Sat Sun

Average weekly cycle

Figure 9: Average observed failed Teredo connections as per-
centage of all observed Teredo connections for different Teredo
servers

default a Windows Teredo client only tries to establish a tunnel for
4 seconds (three ICMPv6 echo requests), and only re-retries estab-
lishing a tunnel after a 3™ retransmitted TCP SYN from the web
client arrives at 9 seconds; but this is close to the 10 second test
timeout (and exceeds human patience).

Figure 9 compares the average weekly cycle of observed failed
Teredo connections as percentage of all observed Teredo con-
nections for the default Windows MS Teredo servers (used by
over 99% of connections), the most popular alternative server
(teredo.remlab.net) and an average of all other servers. The av-
erage failure rates are much higher for the default servers, possibly
due to high load.

6. CONCLUSIONS AND FUTURE WORK

We investigated the Teredo capability of Internet clients includ-
ing a large proportion of self-constrained Windows Vista and Win-
dows 7 clients using web-based measurements. While slightly over
6% of connections were from fully IPv6-capable clients using na-
tive IPv6 or 6to4, more than twice as many connections (15-16%)
were from Windows clients that could have used IPv6, if Windows
Teredo was fully enabled by default. However, Teredo greatly in-
creased the median delay to fetch objects by 1-1.5 seconds com-
pared to IPv4 or native IPv6. While we expected an increased de-
lay, the increase is unexpectedly high, especially since we had an
optimally located Teredo relay. Furthermore, for over 80% of Win-
dows Vista and 66% of Windows 7 connections Teredo failed to
establish a tunnel. Dormant Windows Teredo clients and the poor
performance of the default Windows Teredo servers seemed to be
the major causes. Other causes may have been disabled Teredo
clients, firewalls blocking UDP or misbehaving NATs.

Currently Teredo seems limited by a lack of infrastructure. Hav-
ing only a few and possibly unreliable Teredo servers at a few lo-
cations adds significant delay to the qualification and tunnel setup.
Reliable and geographically-spread servers are needed to reduce
the latency. According to Teredo developers the performance of
the default Teredo servers may have been affected by Windows 8
testing [8]. Windows 8 clients, without other IPv6 interfaces, will
use Teredo for IPv6-only sites [8], so it seems likely that in the
future the quality of the default Teredo servers will be improved.

We will continue our measurements in the future and report any
new trends. We also plan to extend our measurement methodol-
ogy so that we can identify the causes for Teredo failures (disabled
Teredo, firewalls or NATS).

Acknowledgements

We thank the anonymous reviewers. This research was supported
under Australian Research Council’s Linkage Projects funding
scheme (project LP110100240) in conjunction with APNIC Pty Ltd
and by Australian Research Council grant FT0991594.

7. REFERENCES

[1] B. Carpenter, K. Moore. Connection of IPv6 Domains via
IPv4 Clouds. RFC 3056 (Proposed Standard), Feb. 2001.

[2] G. Maier, F. Schneider, A. Feldmann. NAT usage in
Residential Broadband Networks. In Passive and Active
Measurement Conference, pages 32-41, 2011.

[3] C. Huitema. Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs). RFC 4380 (Proposed
Standard), February 2006.

[4] D. Thaler. Teredo Extensions. RFC 6081 (Proposed
Standard), January 2011.

[5] Microsoft Technet. Teredo Overview. http://technet.
microsoft.com/en-us/library/bb457011.aspx.

[6] R. Denis-Courmont. Miredo: Teredo for Linux and BSD.
www.remlab.net/miredo/.

[7] Microsoft Technet. DNS Client Behavior in Windows Vista.
http://technet.microsoft.com/en-us/library/
bb727035.aspx.

[8] Private email conversation with Microsoft Teredo developers.

[9] D. Malone. Observations of IPv6 Addresses. In Passive and
Active Measurement Conference (PAM), pages 21-30, 2008.

[10] E. Karpilovsky, A. Gerber, D. Pei, J. Rexford, A. Shaikh.
Quantifying the Extent of [Pv6 Deployment. In Passive and
Active Measurement Conference (PAM), pages 13-22, 2009.

[11] M. Defeche, E. Vyncke. Measuring IPv6 Traffic in
BitTorrent Networks. IETF draft-vyncke-ipv6-traffic-
in-p2p-networks-01.txt, Marc h 2012.

[12] S. Steffann. IPv6 test. http://ipv6test.max.nl/.

[13] ke clafty. Tracking IPv6 Evolution: Data We Have and Data
We Need. ACM SIGCOMM Computer Communication
Review (CCR), (3):43-48, Jul 2011.

[14] S. Huang, Q. Wu, Y. Lin. Tunneling IPv6 through NAT with
Teredo Mechanism. In Conference on Advanced Information
Networking and Applications (AINA), March 2005.

[15] T. Hoeher, M. Petraschek, S. Tomic, M. Hirschbichler.
Evaluating Performance Characteristics of SIP over IPv6.
Journal of Networks, 2(4):40-50, August 2007.

[16] M. Aazam, S. A. H. Shah, I. Khan, A. Qayyum. Deployment
and Performance Evaluation of Teredo and ISATAP over
Real Test-bed Setup. In International Conference on
Management of Emergent Digital EcoSystems, 2010.

[17] G. Huston. Testing Teredo, April 2011. https:
//labs.ripe.net/Members/gih/testing-teredo.

[18] S.Zander, L. L. H. Andrew, G. Armitage, G. Huston, G.
Michaelson. Mitigating Sampling Error when Measuring
Internet Client IPv6 Capabilities. In Internet Measurement
Conference, Nov. 2012. (accepted, to appear).

[19] Cisco Systems. Visual Network Index.
http://www.cisco.com/en/US/netsol/ns827/
networking_solutions_sub_solution.html.

[20] Wikipedia. Wikimedia Traffic Analysis Report.
http://stats.wikimedia.org/wikimedia/squids/
SquidReportPageViewsPerCountryOverview.htm.

[21] MaxMind’s GeolP Country Database.
http://www.maxmind.com/app/geoip_country.

