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Price-based Max-Min Fair Rate Allocation in
Wireless Multi-hop Networks

Liansheng Tan, Xiaomei Zhang, Lachlan L. H. Andrew and Moshe Zukerman

Abstract— When allocating rates in wireless multi-hop net-
works, one difficulty comes from the so-called MAC (media access
control) constraint. To overcome this difficulty, this paper pro-
poses a price-based max-min fair rate allocation scheme. Unlike
existing schemes, our scheme is based on the MaxNet principle
using the maximum price of all nodes along a transmission
path to control the flow’s rate. Through theoretical analyses and
simulation results, we show that the algorithm is able to meet the
MAC constraint and to achieve max-min fairness among multi-
hop flows in wireless networks even if the topology varies, as is
the case in a mobile environment.

Index Terms— Rate allocation, Max-min fairness, Flow control,
Wireless networks.

I. I NTRODUCTION

I N recent years, allocating flow rates fairly either in wire-
line networks or in mobile/wireless networks has received

much attention [4], [7], [8], [10], [12], [13], [14], [17], [18],
[19]. As distinct from wire-line networks, in a wireless net-
work an important additional constraint arises from the Media
Access Control (MAC) layer [14]. This constraint requires
that, the same node should not transmit and receive packets
simultaneously [14], [19]. Therefore, when allocating band-
width for wireless networks, both the link capacity restriction
and the time constraint imposed by the MAC layer must be
considered.

The work of [4], [14] provides scheduling schemes for
max-min fair allocation of bandwidth in wireless ad hoc
networks (WANETs) to meet the MAC constraint. These
scheduling schemes require a central controller, which hinders
their application to distributed wireless networks that may not
rely on centralized management or authority. The challenge is
to control the flow rates in a fully distributed manner. In this
paper, we meet this challenge by providing a fully distributed
algorithm for a price based max-min fair bandwidth allocation
over a wireless network.

The use of pricing as a means for allocating bandwidth
has been initially proposed in [6], [7], [8] for wired networks,
where the authors show that the pricing scheme can achieve (in
equilibrium) a proportional fair rate allocation. Such a pricing
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mechanism has been generalized by [12] and [18] to WANETs.
In [12], the authors propose an adaptation algorithm that con-
verges to the unique bandwidth allocation while maximizing
the sum of the user’s utilities without explicitly addressing the
fairness issue. The authors of [18] present a new pricing policy
for end-to-end multi-hop flows in WANETs aiming to achieve
maximized aggregate utility of flows. A more general set of
constraints is investigated in [3], which take into account the
need to schedule transmissions globally so that they do not
interfere. These constraints are considered in an end-to-end
context in [2].

Maximizing aggregate utility is able to approach max-min
fairness if the utility function has a particular asymptotic form
[9], [18]. Max-min fairness is an important requirement for
wireless networks such as multi-hop WANETs, that demand
totally equal treatment of users regardless of the number of
hops they travel. The inability of approaches such as [12],
[18] to achieve max-min fairness may be related to the fact
that these schemes are based on the SumNet architecture [6],
[7], [8], that is the rate regulation is based on the summation of
all the link prices on a given path. In SumNet approaches, there
is an inherent shortcoming. Considering those flows crossing
many hops use more network resources, a utility optimal
solution may penalize those “long” flows more. Recently,
Wydrowski et al. [15], [16], [17] proposed the so-called
MaxNet rate control approach for wireline networks which
is able to achieve max-min fairness. This paper achieves max-
min fair rate allocation in wireless networks by applying the
MaxNet idea and considering the MAC constraint. Mobility
of wireless networks generally leads to variations of topology;
our proposed algorithm is shown to be adaptive to the routing
changeovers arising from the mobility of wireless networks
in the sense that the rate allocation is still able to maintain
max-min fairness for wireless mobile networks. Furthermore,
it facilitates implementation due to its distributed nature.

The rest of the paper is organized as follows. In Section 2,
we specify the MAC constraint and describe the pricing policy
for wireless networks. In Section 3, we analyze the algorithm
and prove that the algorithm reaches max-min fairness. In
Section 4, we validate our algorithm by simulation results.
Finally, we conclude the paper in Section 5.

II. MAC C ONSTRAINS AND PRICING POLICY

A. MAC constraints

In this paper, we consider a static multi-hop wireless net-
work which the links have a fixed capacity. For this model
we assume that the channel’s changes are much slower than
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Fig. 1. An example network for MAC constraints

the response of the congestion control scheme. We assume
that a reliable link layer is used, and so ignore packet loss.
In [14], [19], access constraints at the MAC layers arise due
to the fact that each node is not able to transmit or receive
packets simultaneously in more than one link. Note that a
further restriction whereby a node cannot receive packets when
a nearby node is transmitting was considered in [2], [3], [18].
However, these extra constrains do not apply, and hence the
MAC constrains are sufficient, if interference between links
is negligible. This occurs, for example, in a CDMA system
with sufficient spreading in which each node transmits with
an independent code. This is reportedly the case for Bluetooth
networks [14].

This so-called MAC constraint can be stated as

∑

s∈S(j)

xs

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
≤ ε, (1)

where we useS(j) to denote the set of flows incident on Node
j, xs to denote the rate of Flows. The input and output links
of Flow s on Nodej, in the case Flows passes through Node
j, are denoted byli(j, s) and l0(j, s), respectively.Cl is the
capacity of the channel linkl. Note that for any source node
Cli(j,s) = ∞; while for any destination nodeCl0(j,s) = ∞.
The parameterε is the efficiency factor in MAC protocol.
In this paper, we assume thatε is known and equal for all
nodes. For notational simplicity, we takeε = 1, which is
equivalent to a suitable scaling of the link capacities. Observe
thatxs/Cli(j,s) can be interpreted as the fraction of time Node
j expends to receive data of Flows over a unit interval of
time. xs/Cl0(j,s) is interpreted as the fraction of time Node
j expends to transmit data of Flows over a unit interval of
time. Thus, as total fraction of time expended at Nodej cannot
exceed1(ε).

We further expound the concept of MAC constraint by using
the model depicted in Fig. 1. In Fig. 1, node 3 can transmit
packets of flow 1 or 2 or receive packet from flow 1 or 2 or
receive packet from flow 3 or remain idle.

As described in [19], there are link constraints and time
constraints in wireless networks. For example in Fig. 1, the
network consists of three flows, flow 1, flow 2, and flow 3.
Let xs, s = 1, 2, 3 be the data rate of the flows respectively
andCl be the capacity of linkl. The link constraints are given
as follows:

x1

c1
≤ 1,

x2

c2
≤ 1,

x1 + x2 + x3

c3
≤ 1,

x1

c4
≤ 1,

x2

c5
≤ 1.

(2)

The time constraints are given as follows:

x1

c1
≤ 1,

x2

c2
≤ 1,

x1

c1
+

x2

c2
+

x1 + x2 + x3

c3
≤ 1,

x1 + x2 + x3

c3
+

x1

c4
+

x2

c5
≤ 1,

x1

c4
≤ 1,

x2

c5
≤ 1. (3)

Note that the link constraints can be subsumed into the time
constraints. Subsequently, for wireless networks, we can only
consider the time constraints; while for the wireline case we
can consider only the link constraints.

B. Node pricing: problem formulation

Following [17], we use the same price updating rule as
would be used in Kelly’s theory of utility maximization [6],
[7], subject to additional constraints in the wireless multi-
hop network model. LetS be the set of flows,S(j) be
the set of flows that uses Nodej. The optimization of the
aggregated utility function of the set of flows subject to the
MAC constraint can be formulated as follows:

P : max
∑

s

Us(xs) (4)

Subject to:
∑

s∈S(j)

xs

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
≤ 1. (5)

Note that the main difference between the above optimiza-
tion problem and the wire-line case discussed by Kelly’s
theory [6] [7] lies in the fact that, for wireless case one needs to
consider the MAC constraint. Following a similar procedure,
we reach the following price updating rule:

pj(t + 1) =
pj(t) + γ


 ∑

s∈S(j)

xs(p(t))
(

1
Cli(j,s)

+
1

Cl0(j,s)

)
− 1







+

,

(6)
where the componentγ is a step-size, and the function[z]+

is defined as[z]+ = max{z, 0}. We have put the derivation
of the above updating rule in Appendix.

We can interpretpj as the price per unit time Nodej. This
is also consistent with the following law: if the total fraction
of time at Nodej exceeds1(ε), raise pricepj(t); otherwise
reduce pricepj(t). In our approach, the term “price” can
be regarded simply as a congestion signal to guide sources’
decisions.

III. A LGORITHM DESCRIPTIONS ANDMAX -M IN

FAIRNESSPROOF

A. Algorithm descriptions

On the basis of the derived node’s price updating rule and
adopting the idea of MaxNet [17], this section presents the
whole algorithm.

Let A(s) be the set of nodes Flows traverses. In our
proposed system, the source of Flows is charged a price
qs(t) = max{pj(t), j ∈ A(s)} per unit bandwidth. Therefore,
each node formulates its own price using (6). The network uses
price as a signal to reflect the traffic load on the wireless nodes.
In our network model, the node prices should be the feedback
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Fig. 2. Calculation of the maximal node price along an end-to-end
transmission path

congestion signal to control the flow rates. This congestion
signal, qs, communicated to Flows, is the maximum of
all node prices on the end-to-end transmission path. In this
manner our scheme fulfills the aim of controlling and adjusting
the flows’ rates by using the maximum price of all nodes along
a transmission path. This mechanism is illustrated in Fig. 2.

To achieve this, the packet format must include bits to com-
municate the complete congestion price. Each node replaces
the congestion price in the packet with its own congestion
price if its own price is larger than the one in the packet. The
Flow s is governed by an explicit demand functionDs(·), such
that its transmitting rate isxs = Ds(qs).

In our network model, the demand functions of all the
flows are homogeneous demand functions. We can see that
each flow adapts its rate according to the feedback congestion
signal, which is the maximum of all node prices on the
transmission path.

The algorithm performed by Node j
At times t = 1, 2, . . ., Node j performs the following

calculations:

1. Estimate ratesxs(t) from all packets (other than ac-
knowledgement)s ∈ S(j) that go though Nodej;

2. Compute a new price according to (6);
3. For all flows that go though Nodej, retrieve the price

qs, from their packet headers, comparesqs and the price
pj(t+1) of Nodej. If pj(t+1) is greater thanqs in the
packet, Nodej replace the value ofqs with the value of
pj(t+1). This is also performed for packets originating
at, or destined for, higher layers at Nodej.

The receiver of Flows takes the valueqs from the packets
it receives, and places it in the price field of the acknowledge-
ments it sends.
The algorithm performed by the source of Flow s

At times t = 1, 2, . . ., Flow s performs the following
calculations:

1. Retrieve the priceqs(t) from the headers of the acknowl-
edgements;

2. Compute a new transmission rate for the next period

xs(t + 1) = D(qs(t)). (7)

3. Within one round trip time, the new ratexs(t + 1) will
be observed by those nodesj ∈ A(s) in its path.

B. Max-min fairness proof

In this section we will show that the proposed algorithm
leads to max-min fairness, when all flows have equal demand

functions. Assuming all sources are saturated, a rate allocation
is max-min fair if it is not possible to increase the allocated
rate of a user without lowering the rate of any other user whose
rate is already lower than this user’s [14].

Max-min fairness results when all flows have the same
demand function,D(qs), which is assumed to be continuous,
positive and decreasing. Recallxs = D(qs), whereqs is the
maximum price of any node traversed by Flows.

Let us partition the nodes into classesTi, such thatpn = pn′

for all n, n′ in Ti, and pn > pn′ for all n in Ti and n′ in
Tj with j > i. Let Pi be the price of nodes in classTi.
The network must have at least one node corresponding to the
maximum price,P0. All the flows though node(s) inT0 will be
marked with congestion priceqs = P0 because it is maximal
in the network. LetSi(j) be the set of flows traversing Node
j which traverse nodes inTi, but do not traverse nodes inTi′

for any i′ < i. Let Si be the union of allSi(j). For s ∈ Si,
the price isqs = Pi. Let Xi = D(Pi) be the rate of any flow
s ∈ Si. In particular,X0 = D(P0). Noting thatS0(j) = S(j)
for all j ∈ T0, the updating rule at a nodej ∈ T0 is

pj(t + 1) = pj(t)

+ γ0


 ∑

s∈S0(j)

D(P0) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)
− 1


 . (8)

In steady statepj(t + 1) = pj(t) = P0 for j ∈ T0. Thus

P0 = D−1




1
∑

s∈S0(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)




, j ∈ T0. (9)

The flows of rateX0 have equal rate at their bottleneck nodes.
If we apply the max-min condition only to this set of minimum
rate flows, we see that their rates are equal to their max-
min fair rates, since they are feasible and on account of the
constraint at their bottleneck nodes, no rate can be increased
without decreasing another flow withinS0, and flows not in
S0 have greater rates. We now extend this argument to include
flows with priceP1. The equilibrium price at any nodej ∈ T1

must satisfy

P1(t + 1) = P1(t)

+ γ1


 ∑

s∈S1(j)

D(P1) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)

+
∑

s∈S0(j)

D(P0) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)
− 1


 . (10)

This implies

P1 = D−1




1−
∑

s∈S0(j)

D(P0) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)

∑

s∈S1(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)




,

j ∈ T1.
(11)
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Fig. 3. Network topology (a) before 300 steps, (b) after 300 steps

The flows with priceqs = P0 are not controlled at this node,
and we have already shown that their rates are max-min fair.
All other flows share the remaining resource of the node and
also have equal rate. Their rates are also max-min fair, since
they are feasible and on account of the constraint at their
bottleneck nodes, no rate can be increased without decreasing
another flow having equal or lower rate. Let us assume that
the flows with pricesPk−1, Pk−2, . . . , P0 are max-min fair.
Then we prove that the flows with pricePk are also max-min
fair. We can conclude,j ∈ Tk:

Pk = D−1




1−
∑

s∈Sk−1(j)

D(Pk−1) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)

∑

s∈Sk(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)

− · · · −

∑

s∈S0(j)

D(P0) ·
(

1
Cli(j,s)

+
1

Cl0(j,s)

)

∑

s∈Sk(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)




.

(12)
Then flows with the pricePk−1, Pk−2, . . . , P0 have been

proven to be max-min fair. The remaining resource of this node
j ∈ Tk is shared by the flows with the pricePk. These flows
are also max-min fair. By induction, all flows are max-min
fair and global fairness is thus achieved.

IV. SIMULATION RESULTS

In this section we evaluate the performance of our proposed
algorithm by simulation. We focus on two objectives here: (1)
to compare the rate allocation in the case where a node cannot
receive and transmit simultaneously (which is the wireless

TABLE I

COMPARISON OFRATE ALLOCATION IN WIRELINE AND WIRELESS

NETWORKS

x1 x2 x3 x4

Wireline rate before 300 steps 1 0.5 1 0.5

Wireless rate before 300 steps 0.375 0.25 0.5 0.25

Wireline rate after 300 steps 0.5 0.5 1 0.5

Wireless rate after 300 steps 0.25 0.25 0.5 0.375

case) versus the case where this constraint does not exist
(which is the wireline case); (2) to gain insight into how the
performance of the algorithm is affected by wireless network
topology variations. To meet the first objective, we consider
two networks, designated “wireless” and “wireline”. Our two
networks are the same in all aspects except that in the wireless
network, a node cannot receive and transmit simultaneously.
For both cases, we consider a network with flow 1, flow 2,
flow 3 and flow 4. We further assume that the channel capacity
of wireless networks and the bandwidth of wireline networks
are both 1 Mb/s.

In order to investigate the ability of the network to react
to topology variations, we change the network topology after
300 updating steps of the power control algorithm. Figure
3 shows the topologies before and after this change. After
the changeover of the topology, nodes 8, 12 and 14 become
idle. Note that the source and destination of each flow are
unchanged, and only the routings of the links are changed. The
rate allocations in wireline networks and in wireless networks
before and after the topology change at the iteration 300 are
shown in Fig. 4 and Fig. 5, respectively.

Consider first the performance before the topology change.
Based on link constraints, flow 2 and flow 3 shared the link
between node 3 and node 4 equally. So the rate allocation
in wireline networks is (1, 0.5, 1, 0.5). This equilibrium
is reached after approximately 50 update steps. In wireless
networks, because of time constraints, nodes 3, 4, 8, 11 and
12 are the bottleneck nodes. Node 3 offers equal bandwidth
to all flows that traverse it. Thus flow 2 and flow 4 are offered
1/4 each at node 3. In the same way, flow 1 cannot receive
more than 3/8 on account of constraint at node 8. Flow 3
is offered 3/4 at node 7 and is offered 5/8 at node 13 and
offered 1/2 at node 11, 12. Thus, flow 3 cannot receive more
than 1/2 on account of constraint at node 11 and node 12. The
max-min fair shares are 3/8, 1/4, 1/2, 1/4 for flows 1, 2, 3, 4,
respectively. We can see from Fig. 5, the rates of four flows
all achieve the max-min fairness, again after approximately 50
updates.

We tabulate all the steady state rates of each flow in Table
1 to present comparisons of the rate allocation in the wireline
and wireless networks before and after the network topology
changes. In general, as illustrated in Table 1, the rates of flows
in wireless networks are smaller than the rates of flows in
wireline networks. The reason for this is the MAC constraint
i.e., any node can’t simultaneously transmit or simultaneously
receive in more than one link in wireless networks. Due to this,
the time constraints in wireless networks reduce the utilization
of link (channel) capacity.

The simulation results show that the algorithm converges
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Fig. 4. Transmission rates in wireline networks

Fig. 5. Transmission rates in wireless networks

in approximately 50 updating steps. The actual speed of
the updating depends on the interval between steps. In this
simulation, it was assumed that the flow rates at each interval
fully reflect the changes in the prices of the previous updating.
That requires the update interval be at least one round trip time.
If the network has a maximum round trip time of around 100
ms, the algorithm converges in approximately 5 seconds. The
algorithm itself does not require that the update interval be
less than the round trip time; however, if it is not, convergence
may not be monotonic, and there may be oscillation before the
equilibrium is reached.

At the 300th iteration, the topology changes. The rates for
the wireline network undergo very similar transients to the
ones when the flows first started. This is because all of the
links used in the new topology are unused in the old topology,
and so have price 0. In the wireless network, the transients
are less severe, because prices are associated with nodes, and
many of the nodes used in the new paths already have non-zero
prices.

Once the system reaches equilibrium after the topology
change, we can see that four flows again achieve max-min
fairness. Under max-min fair allocation in the wireless net-
work, every node offers equal bandwidth to all flows traversing
the node. Thus flows 1 and 2 are offered 1/3 each at node
1 and offered 1/4 each at node 5. So flows 1 and 2 cannot
receive more than 1/4 on account of constraint at node 5. In
the same way, flow 4 cannot receive more than 3/8 on account

of constraint at node 6 and flow 3 cannot receive more than
1/2 on account of constraint at node 3 and node 4. Thus the
max-min fair shares are 1/4, 1/4, 1/2, 3/8 for flows 1, 2, 3,
4, respectively. The simulation result is consistent with the
theoretical analyses of max-min fairness in wireless networks.
Compared with the token-based local scheduling policy at
each node to ensure max-min fairness [14], our price-based
approach is designed as a fully distributed algorithm to achieve
max-min fairness in wireless networks.

V. CONCLUSION

In this paper, we developed a MaxNet-based rate allocation
algorithm for multi-hop wireless networks considering a MAC
layer constraint whereby a node cannot transmit and receive
packets simultaneously. This algorithm is designed to facilitate
implementation in wireless networks in a distributed manner.
We showed through both theoretical analysis and simulation
results that our algorithm achieves max-min fair rate alloca-
tion.

APPENDIX

In this appendix, we apply Kelly’s more general theory [6],
[7] to our particular wireless networks, which involve the MAC
constraint. Note that MaxNet [17] uses a price update rule of
the same form as derived in [6]-[8] to optimize the aggregate
utility, even though MaxNet does not itself seek to maximize
the utility. We adopt the same approach here.
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The optimization of the aggregated utility function of the
set of flows subject to the MAC constraint can be formulated
as follows:

P : max
∑

s

Us(xs) (13)

Subject to:
∑

s∈S(j)

xs

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
≤ 1. (14)

We observe that the objective function of (13) is strictly
concave. Similar to [6], [7], we define the Lagrangian:

L(x, p)

=
∑

s

Us(xs)−
∑

j:s∈S(j)

pj


 ∑

s∈S(j)

xs

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
− 1




=
∑

s


Us(xs)− xs

∑

j:s∈S(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
pj




+
∑

j:s∈S(j)

pj

(15)
Following [8], we further have

D(p) = max
xs

L(x, p) =
∑

j:s∈S(j)

pj

+
∑

s

max


Us(xs)− xs

∑

j:s∈S(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
pj


 .

(16)
Denotexs(p) is the unique maximizer in (16), so

D(p) =
∑

j:s∈S(j)

pj

+
∑

s


Us(xs(p))− xs(p)

∑

j:s∈S(j)

(
1

Cli(j,s)
+

1
Cl0(j,s)

)
pj


.

(17)
SinceUs are strictly concave,D(p) is continuously differ-

entiable ([1, pp. 669]) with derivatives given by

∂D

∂pj
(p) = 1−

∑

s∈S(j)

xs(p)
(

1
Cli(j,s)

+
1

Cl0(j,s)

)
. (18)

We will solve the dual problem using gradient projection
method [8] where node prices are adjusted in opposite direc-
tion to the gradient∇D(p). The node prices can be adjusted
according to the following equation:

pj(t + 1) =
[
pj(t)− γ

∂D

∂pj
(p(t))

]+

, (19)

where the componentγ is a step-size, and the function[z]+

is defined as[z]+ = max{z, 0}. By substituting (18) into (19)
one has

pj(t + 1) =

pj(t) + γ


 ∑

s∈S(j)

xs(p(t))
(

1
Cli(j,s)

+
1

Cl0(j,s)

)
− 1







+

.

(20)
This yields the required price-updating rule.
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