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nified Approach to Selecting Optimal Step 
engths for Adaptive Vector Quantizers 

Lachlan L. H. Andrew and Marimuthu Palaniswe,  Senior Member, IEEE 

Abstract-This paper presents expressions for the optimal step 
length to use when training a vector quantizer by stochastic 
approximation. By treating each update as an estimation prob- 
lem, it provides a unified framework covering both batch and 
incremental training, which were previously treated separately, 
and extends existing results to the semibatch case. In addition, the 
new results presented here provide a measurable improvement 
over results which were previously thought to be optimal. 

1. INTRODUCTION 

ECTOR quantization is an important technique in data 
compression, in which groups of continuous variables 

are discretized as a single vector rather than individually. An 
N-level k-dimensional vector quantizer (VQ) is a mapping 
V : Rk H C c Rk, where the number of members of 
C is N .  Elements 6 E C are called reconstruction vectors 
or levels, and C is called the codebook. The mapping is 
usually defined to minimize some expected distortion measure, 
E[d(x,  V(x))], typically the mean square error (MSE) given 
by d(x, y )  = ( ~ - y ) ~ ( x - y ) .  With nearest neighbor mapping 
and a tie-break rule, C uniquely determines V. 

Selection of C is, effectively, a search in k-dimensional 
space for a locally optimal codebook. As with most search al- 
gorithms, VQ design usually proceeds by finding the direction 
in which to move and then moves a certain distance in that 
direction. The direction is usually toward the centroid of one 
or more vectors which are represented by the particular level in 
question. This paper is concerned with finding the appropriate 
distance to move, i.e., the step length. 

Earlier work on finding optimal updates includes the seminal 
papers by Lloyd [I] and Linde, Buzo and Gray [2], which deal 
exclusively with the case of batch training, and the work of Wu 
and Fallside [3] which extends the results to the incremental 
case. In the batch case [l], [2] all of the training data [or the 
exact analytic probability density function (pdf)] is assumed 
to be known for each update. Thus, the optimal update is 
to replace the old reconstruction level with the centroid of 
those vectors which map to it. Incremental training updates 
after each single vector is presented [3], which means that 
the "centroid" (the vector itself) is a noisy estimate of the 
ideal reconstruction level. Some form of averaging is required, 
which usually takes the form of an autoregressive update 
which replaces the reconstruction level by the weighted sum 
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of the old level and the training vector. In [3],  the weights 
were chosen such that the reconstruction level was the mean 
of all of the training vectors which have ever been represented 
by that level, but it will be shown in Section HI-B that this 
is not generally optimal. This paper proposes a method for 
determining optimal weights such that the new level is the 
minimum variance unbiased estimator (MVUE) of the centroid 
of the previous partition. The approach leads to a general 
expression which is valid for both batch and incremental 
training. 

The rest of this paper is organized as follows. Section I1 
describes a general update procedure for VQ design. Section 

derives expressions for the optimal step length applicable to 
batch, semibatch, and incremental updates. Section IV presents 
experimental results justifying the approximations made in 
some special cases. Section V contains concluding remarks. 

II. GENERAL TRAINING FRAMEWORK 
Many different schemes have been proposed for VQ code- 

book design, but below is a general description of a training 
scheme which includes the LBG algorithm [2] and incremental 
training as special cases. This description also serves to 
introduce the notation to be used. It is assumed that training 
data is drawn from some stationary probability distribution. 

Training proceeds in batches, not necessarily consisting 
of the same data nor necessarily of the same size. Training 
starts with an initial codebook, consisting of N vectors 6, (O) ,  
i = 1, . . . , N .  In the tth batch, the current codebook {e,(t)} 
defines a partition {Pz ( t )} ,  where Pz(t)  is the set of all vectors 
closer to &(t) than to any C , ( t ) ,  with j # i according to 
the chosen distortion function. Note that Pz(t) changes each 
batch as the &(t) changes; one of the major advantages of 
the proposed approach over previous work [3] is that this 
change is taken into account. For each region Pz(t) ,  there 
is a vector c,'(t + l), called the true centroid of P,(t), such 
that approximating each vector in PZ(t) by c,'(t + 1) produces 
the least rllstortlon (see Fig. 1). This is generally not known 
and must be approximated from the vectors presented in a 
training step. In the case of the MSE, it is the mean of all of 
the vectors in P, ( t )  weighted according to their probabilities. 
(Lloyd's necessary condition for an optimal quantizer [2] can 
be expressed as Vi, &(t) = c:(t).) In the tth training step, 
a batch of training vectors is presented to the suboptimal 
quantizer given by the e,(t), and the training vectors are 
divided up into the partitions, Pz(t). The number of vectors 
falling in Pz(t)  will be denoted N,(t) and their centroid will 
be denoted cz( t ) .  The actual training step consists of finding a 
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Fig. 1. (a) Notation. (b) Approximation 
22( t  + 1) moves toward sample centroid cz ( t  + 1). (c) Partitions move to 
reflect the changed approximations. (d) True centroids move to reflect the 
changed partitions. 

new approximation C; (t  + 1) to the true centroid, c: (t + l), 
of the previous partition. Note that although each step aims 
.to approximate c:(t), there is no fixed “optimum” value of 
6; .  Rather, it is required that &(t) be well matched to P;(t). 
Let the change in optimal centroid between the tth and t + 1st 
batches be denoted by n;(t). Let the error in approximating 
c+(t) by &(t) be ~ i ( t )  and let the sampling error in c;( t )  be 
ei( t ) ,  so 

(1) 
(2) 
(3) 

Stages in a single update of vector 

ni (t) = c+ (t) - c+ (t - 1) 
E ; ( t )  = C,(t) - c+( t )  
e;(t) = c i ( t )  - c+(t). 

Then the training algorithm is given by 

C ; ( t )  = a;( t )&(t  - 1) + b i ( t ) C i ( t )  (4) 

where ai ( t )  and bi ( t )  are parameters to be chosen and b; ( t )  is 
called the step length for the ith codevector in the tth batch. 

Clearly, the above training includes the generalized Lloyd 
update [2] as a special case with a;@) = 0 and b ; ( t )  = 1. 

111. OPTIMAL STEP LENGTH 
In this section, the above algorithm is treated as a problem of 

estimating the true value of c t  ( t )  from the noisy observations 
&(t - 1) and c,( t ) .  The aim is to find a,@) and b,( t ) ,  such 
that e,(t) is the MVUE of c t ( t ) .  

The MVUE was chosen over other “optimal” estimators 
(such as the maximum-likelihood estimator) because it is 
simple and well matched to the MSE criterion. If p(x) denotes 
the probability density function of the source, then by (2) the 
expected distortion for a given reconstruction vector, c,, is 

p(x)(x - dx = p(x)(x - c : ) ~  dx 
X € P ,  
s 

+ 2 6 % .  /p(x)(x - c:) dx + ez2 /p(x) dx. 
X € P %  x € P ,  

But the first term is independent of the estimate, while the 
second term is zero by the definition of c:. Thus, the estimator 
which minimizes ez2  will also minimize the MSE. Since the 
expected value of is equal to the variance if C, is unbiased, 
the MVUE gives the optimal step length in the case of the 
MSE. 

It will be assumed that all of the uncertainties n, (t), e, ( t ) ,  
and c , ( t  - 1) have zero mean and are uncorrelated with each 
other. Now by (1)-(3) 

&(t) = a,(t)&(t - 1) + b,(t)c,(t) 
= a,( t ) (Ez( t  - 1) + c,t(t) - nz(t)) 

= (a , ( t )  + b,(t))c,S(t) 
+ b,( t )  ( C a N  + e$)) 

+ az(t)(~,(t - 1) - n,(t)) + b,(t)e,(t) .  

Clearly, this is unbiased if a,(t)  = 1 - b,( t ) ,  since ~ , ( t  - l ) ,  
n,(t), and e,(t) all have zero mean and are uncorrelated 
with a,@) and b,( t ) .  Hence, it remains to find b,( t )  which 
minimizes the variance of C, ( t ) ,  or equivalently that of E ,  ( t )  = 
a,(t)(~,(t - 1) - n,(t))+b,(t)e,(t). This variance is given by 

a,“(,) = (1 - W 2 ( 4 ( t - l )  + d ( t ) )  + bz( t )20 ,2%(t )  

where 02 denotes the variance of a random variable z. This 
follows from the assumption of uncorrelation. Setting the 
derivative of a%(,) with respect to b,( t )  to zero gives the 
optimal step length 

for the MVUE, giving a variance of 

= 4% ( t )  bz ( t )  * (6) 

Equation ( 5 )  is the exact optimal step length (in the sense 
of the MVUE) without any approximations, but for it to be of 
any use, estimates for the required variances must be available. 
Below are some special cases where the variances are known 
or may be approximated. An important case not considered 
below is that of a VQ which adapts to a slowly varying 
nonstationary source. In this case, n,(t) must consider both 
changes in ( t )  and changes due to the changed distribution. 
Another case is when the structure of the VQ changes during 
training, such as when the size of the codebook grows due 
to splitting [2], [4]. Both of these are the subject of further 
investigation by the authors. 

A. 

Consider the case in which the VQ is being trained from a 
single finite training set which is presented in its entirety for 
each batch. In that case, the best estimate of the underlying 
distribution is simply the distribution of the training set. Thus, 
the sampling uncertainty in cz( t )  is zero, since the entire 
training set is used. This gives 02%(t) = 0 so ( 5 )  becomes 

Full Butch Learning: The LBG Algorithm 
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b , ( t )  = 1. In other words, after each presentation, each 
codeword is simply replaced by the centroid of the training 
vectors in its partition. This is simply the LEG algorithm [2], 
which has long been known to be the optimal learning rule 
for full batch learning. This is a useful check on the validity 
of expression (5). 

B. Incremental Training with Static Partitions 

An earlier work [3, eq. (21)] indicated that for the nth update 
of e,, the optimal value of b , ( t )  is b,( t )  = 1/n. The basis 
for stating this is that a necessary condition for a VQ to be 
optimal is that &(t) be the arithmetic mean of all vectors in 
Pz(t) .  If b,( t )  has the above form, then the estimate will be 
the arithmetic mean of all those which have mapped to the ith 
vector during training. In the case of semibatch updates, the 
requirement generalizes to 

(7) 

However, since the partitions change, these need not all still be 
in P, ( t ) ,  but must merely have been in P, (7 )  for some T 5 t. 

This assumption, that PZ(t) = P, is independent of t ,  can be 
made explicit by setting n,(t) = 0 in the analysis of Section 
111. Thus, and by stationarity, all of the input vectors from a 
given partition will be independent and identically distributed 
(i.i.d.). When the input vector is in PZ(t),  a:%(,) = a:? is 
independent of t. If the input vector in the tth batch is not in 
Pz(t) ,  then no information about ca(t)  is given, so can 
be regarded as infinite, giving b,( t )  = 0. Let b," denote b,(t) 
the nth time 6, is updated. The initial estimate of e,(O) before 
any updates contains no information and can be assumed to 
have infinite variance. Thus, the initial step length will be 
b,' = 1 from (5 )  giving the variance after the first update to 
be 02%. From (5 )  and (6) ,  it is clear that if the single training 
vector in batch t is in Pz(t - I), then b," = bz"-l/(bz"-l+l); 
it then follows by induction on n that for all subsequent t ,  
b," = 1/n and a:t(,) = a,",/n. 

C. Training from a Random Sequence 
This section will consider training from a stream of samples, 

rather than a single batch. A small number of samples (possibly 
one) is collected and then presented as a batch. There are 
several possible reasons for doing this rather than complete 
batch updates. For example, not all of the training data may be 
available at the start of training, or there may be insufficient 
storage to store the entire set. This is the case in adaptive 
systems [5],  [6] .  Another reason is that the stochastic nature 
of incremental training can sometimes avoid minima which 
trap batch algorithms [7]. It may also be faster than fully 
incremental training, since the weights do not need to be 
updated as often. 

In order to estimate the optimal step length, some estimate 
must be found for a:% ( t ) ,  the variance of the amount by which 
the true centroid changes between batches, and the 
sampling variance of the centroid of the training sample. Since 
cZ( t )  is the sum of ca( t ) ,  which is not a random variable, 
and e,(t), which is, the variance of e,(t) is equal to that of 

\ 

Fig 2 Change in a partition when a reconstruction vector changes When 
the appromation &(t)  moves by A, the Voronoi region is translated by 
A/2 in the same direction and distorted slightly 

c,(t). Since cz( t )  is simply the mean of N,(t) i.i.d. vectors, 
this sampling variance is given by a&1) = a,",/N,(t), where 
a;, denotes the variance of a single training sample from the 
region Pa@), which is assumed to be roughly independent of t .  

Since the boundaries of PZ(t) are half way between e,@) 
and the adjacent centroid estimates, it will be assumed that the 
change in true centroid of Pa(t), e:, is half of the change in 
the approximate centroid, ?, (see Fig. 2). This approximation 
assumes that the probability density is locally approximately 
constant and ignores changes in t3 for # i ,  but gives 
sufficiently good results in practice. In general, assume that the 
change in true centroid is l / k  times the change in approximate 
centroid, for some k > 1 rather than necessarily k = 2,  so 

1 
k 

ni(t + 1) M -(&(t) - &(t - 1)) 

1 

1 
= -b,(t)(c,(t) k - e,(t - 1)) 

= -b,(t)(e,(t) k + n,(t) - ~ , ( t  - 1)) 

giving 

Unfortunately, this expression leads to a complicated joint 
recurrence relation between a&,) and a&,). If it is assumed 
that 02% ( t )  is negligible compared to a,", and a2 (,- and that 

M a&,), then a more tractable problem results, with 

Writing b+ for b , ( t ) ,  b for b,(t  - 1), N+ for N,(t) ,  and N 
for N,(t - 1), and using the fact that a:%(,) = b,(t)a&t) = 
b Z ( t ) d %  /N ( t )  from (6)  

a&,) = b y 1  + b)a,2?J/k2N 
so the optimal step length of (5) becomes 

- AN+ 
- 

AN+ + k2N 
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R(ni(t))  R(ei(t)) R(€i(t))  p(ni(t), e i ( t ) )  p(ni(t), ~ ( t  - 1)) 
-0.00380 -0.00739 -0.00201 -0.0180 -0.0718 

TABLE I 
RATIO OF MEAN TO STANDARD DEVIATION, AND CROSS-CORRELATION FOR QUANTITIES nt(t), ez ( t ) ,  AND c z ( t  - 1) 

p(e i ( t ) ,  ~ i ( t  - 1)) 
0.00437 

where 

A = b3 + b2 + k2b. 

D. Some Properties of the Optimal Step-Length Sequence 

For constant Ni(t) ,  the expression in (8) becomes 

+ - (b2  + k2)b  + b2 
- ( b 2 + k 2 ) ( b + l ) '  

(9) 

If b,(O) E (0, l), then b,( t )  -+ 0 as t -i 00 since b,( t )  is 
monotonic decreasing and bounded below by zero and hence, 
convergent, and zero is the only stationary point. 

In the limiting case of small b,( t )  it is easy to show that 
b,( t )  N k 2 / n ( k 2 - 1 )  if k # 1 andb,(t) N (3n)-1/3 otherwise, 
where n denotes the number of times that the ith vector has 
been updated. 

Note that for large k (slowly moving partitions) the result 
reduces to that of [3], b,( t )  = l/n. Also, the step length 
itself converges to zero, while the sum over all time is 
unbounded, ensuring that anomalies early in training are 
completely swamped by later training [8], [9]. 

IV. EXPERIMENTAL RESULTS 

Many approximations were made in the above calculations, 
and while they were heuristically justified, it is useful to 
confirm the results with numerical simulations. In this sec- 
tion, results for uncorrelated two-dimensional unit variance 
Gaussian sources at a rate of one bit per sample (bhample) 
are presented, along with some results for image vector 
quantization. The initial codebooks used were tightly centered 
around zero for the Gaussian sources, and tightly centered 
around the half-scale value of 128 for the image data. For 
comparison, results will be presented both for the step length 
given by (5) and that proposed in [3], which was derived as an 
optimal step length under stronger implicit assumptions than 
those of this paper. 

A. Verifying Assumptions 
Before examining the performance of the system, it is 

important to verify that n;(t), e,(t), and ~ i ( t  - 1) all have 
zero mean and are uncorrelated as assumed in deriving (5).  
A variable 2 can be considered zero mean if IR(z)I << 1, 
where R(z)  = E [z] / d m ,  and IC and y can be considered 
uncorrelated if their correlation satisfies [ p ( z ,  y) [ << 1. Table I 
shows these quantities, which can be seen to be approximately 
zero as required. These results are the average over t and i for 
1000 batches, each of 128 vectors from a uniform distribution 
presented to a 64-level one-dimensional VQ. 

B. Example: Incremental Training of Gaussian VQ 

Fully incremental training with the step length proposed 
here and that proposed in [3] yields similar results, as can 

W m 
I 

W 

8 

proposed 6 ;;I 131 -+- 

0.6 

0.55 
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0.35 
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0.395 

0.39 

0.385 

0.38 

0.375 

0.37 

0.365 

10 100 1000 loo00 100000 le+06 
Number of batches 

(a) 

1 IO i o0  1000 10000 100000 le+06 
Number of batches 

(b) 

Fig. 3. Reconstruction error (outside training sequence) for a Gaussian 
codebook trained with fully incremental training; (a) entire sequence; (b) 
close-up of final stages. 

be seen in Fig. 3. In the early stages, the results are quite 
unreliable due to the random processes involved, but the 
proposed step length gives slightly superior performance in 
the later stages [Fig l(b)]. Although the traces are quite 
close, toward the end of training the actual time taken for 
the proposed scheme to reach any given level, say MSE = 
0.365, is almost half of that required using the step length 
presented in [3]. 

C. Example: Semibatch Gaussian VQ 

Greater improvements can be seen in the case of semibatch 
learning. When samples are taken 100 at a time, training 
proceeds as in Fig. 4. As well as results from the proposed 
optimal approach, this graph includes two sets of results from 
the technique presented in [3]. One is the simple minded use 
of the rule b,( t )  = l /n,  where TZ is the number of times 
that vector i has been updated. This is clearly not what was 
intended, but has been included for comparison. The other case 
is the degenerate case of (8) for large k .  This corresponds to 
the case in which the partitions are assumed not to alter during 
training, and calculates &(t) according to (7). These two rules 
give indistinguishable results. 
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0.42 

0.41 

0.4 ‘ 0.39 
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1 10 100 1000 10000 1oOooo 
Number of batches 

Reconstruction error (outside trainmg sequence) for a Gaussian Fig. 4. 
codebook trained with batches of 100 random vectors. 

All three schemes eventually produce approximately opti- 
mal quantizers, but training is faster when optimal updates are 
made. 

The reason that the results in Fig. 4 show greater improve- 
ment than those in Fig. 3 may be understood by considering 
how the partitions move. In the fully incremental case, vectors 
fall into roughly the correct positions early in training, and 
so the effect of the vectors outside the final partitions is 
swamped by later training. When semibatch training is used, 
many training samples are mapped to the vectors before they 
have had a chance to find their correct positions. Thus, it is 
more important to take into account the effect of changing 
partitions. 

E. Example: Image Data 

In addition to the simple Gaussian example, the updates 
were tested qn data from the popular Lena image. A 64-level 
vector quantizer using 4 x 4 pixel blocks [giving a bit rate 
0.375 bits per pixel (bpp)] was trained on the 256 x 256 
greyscale image, with initial weights clustered around the half- 
scale value of 128. Training vectors were presented in batches 
of one tenth of the entire training set (410 vectors per batch). 
As can be seen from the results in Fig. 5, the step length of the 
proposed scheme provides better performance in this case than 
those of (7), the direct generalization of 131, which ignores the 
change in partitions. In particular, the number of training steps 
required by the proposed scheme to reach a given performance 
level is noticeably less than that required using (7). This more 
than offsets the increased time per iteration to compute the step 
length, although it may not justify the added code complexity. 

V. CONCLUSION 
This paper has presented a new unified approach to selecting 

optimal step lengths for training vector quantizers. By treating 
updating as an estimation task, an expression, (5),  has been 
derived for the optimal step length. Expression (5 )  is valid 
for the cases of batch, semibatch, and incremental training. 
As well as generalizing to the semibatch case, this expression 
has been seen to give results superior to those generated by 
a step-length sequence previously thought to be optimal [3].  

28 

27.5 

a: 5 27 
n 

26.5 

26 

1 10 100 1000 10000 100000 
Number of batches 

Peak signal to noise ratio (PSNR) (within training set) for a Fig. 5. 
@-element codebook designed on 16 dimensional vectors from Lena 

An explicit expression, (8), has been found for an important 
special case-that of training from a random source. 
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