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Abstract—Convex optimization has been widely used to
model bandwidth allocation policies among TCP flows in
the Internet. When the offered load is less than capacity,
stochastic stability of networks using such policies has
been established for exponentially distributed file sizes. The
problem has remained open for general file size distribu-
tions, which is very relevant as it is well known that Internet
file sizes follow heavy-tailed distributions. In this paper,
building on existing results on the fluid model of the system,
we use a partial differential equation to characterize the
dynamics. The equation keeps track of residual file size
and therefore is suitable to study networks under general
file size distributions. For alpha fair bandwidth allocation,
with any positive alpha parameter, a Lyapunov function is
constructed to prove stability when the offered load does
not exceed capacity. The result gives an affirmative answer
to this open problem and sets a foundation for further
analysis of such systems.

I. INTRODUCTION AND PRIOR WORK

A fundamental step in the understanding of resource
allocation mechanisms in the Internet has been the
formulation by Kelly et al. [8] of congestion control
in terms of network utility maximization. In a scenario
of a fixed number of connections across routes in a
network, this approach characterizes an equilibrium and
leads to the formulation of dynamic, distributed methods
to achieve it. An interesting class of utility functions is
the “α-fair” family of Mo and Walrand [14]; by varying
the α parameter it encompasses various notions of flow-
level fairness, in particular proportional fairness (α = 1)
and max-min fairness (α →∞).

However, this analysis with fixed numbers of connec-
tions does not capture the reality that flows come and
go in the network, a situation better modeled through
stochastic processes. This issue was identified by Roberts
and Massoulié [15], who studied queueing systems with
random arrivals and workloads, and a processor sharing
discipline where service rates depend on bandwidth allo-
cation, assumed to occur at a faster time-scale. This leads
to a basic stability question, first posed by De Veciana
et al. [5]: under which connection level demands (job
arrival rate and mean workload) is the resulting queueing
process stable? The answers given in [5] apply to Poisson
arrivals and exponentially distributed job sizes, and max-
min fair or proportionally fair bandwidth allocation. In
this case the numbers of connections per route form a

Markov chain, which is shown to be stable (i.e. ergodic)
under the natural stability condition: namely, that the
mean load in each link of the network is strictly less
than the link capacity. In a subsequent paper by Bonald
and Massoulié [1], these results were generalized to
the α-fair case. More recent work where the time-scale
separation assumption is relaxed is reported in [11].

The above results all rely on the critical restriction of
exponentially distributed inter-arrival times and file sizes.
The latter is particularly unsatisfactory, since it has been
observed that file sizes in the Internet follow a heavy
tailed Pareto-type distribution [3]. This has motivated
recent efforts in extending the stability results for general
file-size distributions. Removing the exponential file-size
assumption is “well-known to be a difficult problem”
[11]; without it, the number of ongoing connections is
no longer a Markov state. Some existing partial results
are the following: [12] has showed that for α = 1,
the stability result can be generalized to an appropriate
Jackson-type routing scheme, thus providing the tool to
establish the condition for phase-type file distributions;
[10] gives a result for phase-type file distribution and
general α, in two particular network topologies through
Lyapunov functions obtained numerically.

A strategy that has proven relevant for this problem is
the use of fluid limits, already invoked in [1] and further
studied in [9], for the exponential case. The extension
to general distributions is developed by Gromoll and
Williams [6], [7], as briefly reviewed in Section II.
Based on these models, [2] obtains a stability result for
general file size distributions of bounded support, for a
sufficiently small α. In [6] it is also established that the
stability condition guarantees the fluid model is stable in
the special cases of linear and tree networks.

In this paper, we build on the results of [6], [7] and
establish in Section II a fluid model of the process in
terms of a Partial Differential Equation for the distri-
bution of remaining job workloads. We then show in
Section III that the fluid model is stable under the natural
stability condition regardless of the job size distribution
and the underlying network topology, and for any value
of α, by constructing a Lyapunov function that is shown
to converge to zero. In Section IV we comment on the
stochastic implication of this result.



II. PROBLEM FORMULATION AND PARTIAL
DIFFERENTIAL EQUATION MODEL

The problem under consideration is the stability of a
queueing system where flows arrive at various routes,
and are served according to rates allocated by a conges-
tion control algorithm. The latter is modeled through the
network utility maximization problem

max
∑
m

zmUm

(
ϕm

zm

)
, subject to

∑
m

Rlmϕm ≤ cl.

(1)

Here m denotes the route, zm the number of connections
in the route, and ϕm the total allocated rate of all con-
nections of route m. R is the routing matrix (Rlm = 1
iff route m uses link l) and c = (cl) the vector of link
capacity constraints. The utility function Um is assigned
to each connection as a function of its per-flow rate
ϕm/zm. In this paper we focus on the “α-fair” utility
functions introduced in [14], where U ′

m(x) = x−α.
Given z = (zm), it is assumed the congestion control

sets ϕ = (ϕm) to the optimum of (1); we assume
separation of time-scales, i.e. the mapping z 7→ ϕ is
instantaneous.

Remark 1. A property of α-fair utility functions (with
common α across routes) is that the resource allocation
is invariant under scaling: namely, if all zm are scaled
by a common factor r, the resulting ϕm do not change.

Consider now a network where flows arrive at route m
through a stochastic process of mean intensity λm > 0,
and a general distribution of the file sizes: let Gm(σ) be
the probability that the file size is greater than σ, and

1
µm

=
∫ ∞

0

Gm(σ)dσ

the mean file size, assumed to be finite. At any given
time, currently active flows are served with the rate
ϕm/zm that results from (1).

The aim is to prove that if the loads ρm := λm/µm

strictly satisfy the network capacity constraints,

∑
m

Rlmρm < cl ∀l,

then the stochastic system is stable.
The classically studied case [5], [1] is when the arrival

process is Poisson, and the file distribution exponential.
In that case the process is a Markov chain with state
z = (zm), and stability means positive recurrence. For
the general case, the system state requires substantially
more information, as discussed later on. We now turn
our attention to fluid models for this problem, which are
the basis of our stability studies.

A. Fluid model

We first recall the fluid model for the M/M case,
following [1], [9]. This is obtained in the limit by scaling
time and the initial condition of the process, leaving fixed
the network capacity and the external load. Let r be
the scaling parameter, and define zr(0) = rz(0), where
‖z(0)‖ = 1 in a suitable vector norm. If zr(t) is the
resulting stochastic process as described above, the fluid
limit is defined by

Z(t) = lim
r→∞

zr(rt)
r

.

Invoking the strong law of large numbers, [1] writes the
following ordinary differential equation model:

dZm

dt
= λm − ϕm(t)µm (2)

for each m. Here ϕm(t) corresponds to the service rate
with re-scaled time. Due to the scale invariance of the
resource allocation (see Remark 1) the fluid versions of
ϕ and Z are still related by the the analog of (1), i.e.
ϕ(t) is the maximizer of

max
∑
m

ZmUm

(
ϕm

Zm

)
, s.t.

∑
m

Rlmϕm ≤ cl. (3)

We refer to [9] for more details on this type of scaling.
We now state a basic inequality that will characterize

the resource allocation. It follows directly from the fact
that at the optimal point of (3), the feasible set must
be inside a negative half-space defined by the gradient
vector.

Lemma 1. Let (ϕm) be the vector of rates that optimizes
(3), and (ψm) another vector of rates satisfying the
constraints

∑
m Rlmψm ≤ cl. Then:

∑
m

U ′
m

(
ϕm

Zm

)
(ψm − ϕm) ≤ 0. (4)

B. PDE Model

In the general distribution case, bandwidth alloca-
tion is still a function only of the numbers of flows
Z = (Zm). However, once we remove the memoryless
property of the exponential distribution, characterizing
the network state requires keeping track of residual file-
sizes, not just their number. Furthermore, the resource al-
location per route is a processor sharing discipline, where
all flows present receive equal service. This complicates
the description since we must keep track of residual file
sizes of all flows. In order to proceed, we look at the
problem in more detail by modeling, in a fluid setting,
the evolution of the residual file distribution.

Let Fm(t, σ) (t ≥ 0, and σ ≥ 0) be the number of
class (route) m files at time t with residual file size larger
than σ, in the fluid limit. Fm(t, σ) is a finer descriptor
of the system than Zm(t), indeed the definition implies

Zm(t) = Fm(t, 0). (5)



We now model the evolution of Fm(t, σ) through the
following partial differential equation:

∂Fm(t, σ)
∂t

=
∂Fm(t, σ)

∂σ

ϕm(t)
Zm(t)

+ λmGm(σ). (6)

The above equation holds under the assumption that
Zm(t) > 0; it must be suitably complemented for
Zm = 0, as described below.

Note that (6) reduces to (2) in the exponential file size
distribution case, Gm(σ) = exp(−µmσ). This can be
readily checked by using Fm(t, σ) = Zm(t) exp(−µmσ)
in (6), which reduces it to (2).

C. An intuitive derivation of the PDE

At time t+dt, jobs that have residual file size at least
σ come from two sources:
• New arrivals between t and t + dt of size greater

than σ. With arrival rate λm, we have λmdt Gm(σ)
such jobs, in the fluid limit.

• Files already present at time t, which had at that
time a residual size of at least σ + ϕm(t)

Zm(t)dt. Note
each file receives a service rate ϕm(t)/Zm(t).

Therefore

Fm(t + dt, σ) = Fm

(
t, σ +

ϕm(t)
Zm(t)

dt

)
+ λmGm(σ)dt

(7)
Subtracting Fm(t, σ) from both sides and dividing by dt
gives

Fm(t + dt, σ)− Fm(t, σ)
dt

=

Fm

(
t, σ + ϕm(t)

Zm(t)dt
)
− Fm(t, σ)

dt
+ λmGm(σ).

In the limit when dt → 0 we obtain (6).

D. A formal justification based on [7]

We now explain how to relate (6) to the rigorous fluid
limit set up in Gromoll and Williams [7].

In this formulation, the system state is characterized
by a time-dependent, positive measure ζm(t) for each
class (route) m. The measure is defined over the pos-
itive real numbers, representing distribution of residual
workload. In particular, in the stochastic model ζm(t) at
any given time is a finite sum of Dirac deltas, located
at the sizes of remaining workloads for currently active
jobs. The integral of this measure is the number of active
jobs Zm(t).

In the fluid limit under appropriate scaling, the lim-
iting measure ζm(t) satisfies (for all t except a set of
Lebesgue measure zero) the following:

d

dt
〈f, ζm(t)〉 =

{
−ϕm(t)

Zm(t) 〈f ′, ζm(t)〉+ λm〈f, νm〉, for Zm > 0;

0, for Zm = 0.
(8)

This equation coincides with (5.62) in [7], modulo
notational changes. Here the measure νm represents
the probability distribution of arriving jobs; f(σ) is an
arbitrary bounded and continuously differentiable test
function in the class

C = {f ∈ C1
b (R+), f(0) = f ′(0) = 0};

and 〈f, ν〉 :=
∫∞
0

f(σ)dν.
In this model, the probability of an arriving job being

larger than σ, and the number of jobs at time t with
residual workload greater than σ, are represented by

Gm(σ) :=
∫ ∞

σ

dνm; Fm(t, σ) :=
∫ ∞

σ

dζm(t).

To derive the PDE we assume that the measures νm and
ζm(t) are absolutely continuous with respect to Lebesgue
measure. In particular,

dνm = −G′m(σ)dσ, dζm(t) = −∂Fm(t, σ)
∂σ

dσ.

By integration by parts we have the following identities:

〈f, νm〉 = −
∫ ∞

0

f(σ)G′m(σ)dσ

= −f(σ)Gm(σ)
∣∣∣
∞

σ=0
+

∫ ∞

0

f ′(σ)Gm(σ)dσ.

(9)

〈f, ζm(t)〉 = −
∫ ∞

0

f(σ)
∂Fm(t, σ)

∂σ
dσ

= −f(σ)Fm(t, σ)
∣∣∣
∞

σ=0
+

∫ ∞

0

f ′(σ)Fm(t, σ)dσ.

(10)

Due to the definition of the class C, the incremental terms
above vanish, which turns (8) into

d

dt

∫ ∞

0

f ′(σ)Fm(t, σ)dσ =
ϕm

Zm

∫ ∞

0

f ′(σ)
∂Fm(t, σ)

∂σ
dσ

+ λm

∫ ∞

0

f ′(σ)Gm(σ)dσ,

(11)

for the case Zm > 0. Assuming the differentiation
with respect to t on the left can be interchanged with
integration, the above yields

∫ ∞

0

f ′(σ)D[Fm(t, σ)]dσ = 0, (12)

where D[·] is the differential operator given by

D[Fm] :=
∂Fm

∂t
− ∂Fm

∂σ

ϕm(t)
Zm(t)

− λmGm(σ).

Since f ′(σ) is a free continuous function, we must have
D[Fm] ≡ 0, i.e. (6).

Remarks:
• Going beyond the above assumptions (absolute con-

tinuity, differentiation under the sign) involves deal-
ing with integral equations, in particular equation



(3.1) from [7], the integral version of (8); this can
be interpreted as defining (6) in the distributional
sense. We will not pursue this here, and assume
enough smoothness in Fm(t, σ) for a classical treat-
ment of the PDE, and to interchange differentiation
with respect to t with integration over σ.

• If Zm = 0, (8) leads to the condition ∂Fm

∂t = 0,
i.e. the system can stay at Fm = 0. It may
seem awkward that the arrivals term is turned off
here, as remarked in [7]. In intuitive terms, having
Zm = 0 for an open interval of time represents the
“chattering” of the state around zero, when service
rate is exceeding arrival rate.

III. STABILITY RESULT

We will show that if the loads ρm = λm

µm
strictly

satisfy the capacity constraints,
∑

m Rlmρm < cl, then
the solutions to our fluid model asymptotically converge
to zero. Before proceeding we recapitulate the partial
differential equation model

∂Fm(t, σ)
∂t

=




∂Fm(t,σ)
∂σ

ϕm(t)
Zm(t) + λmGm(σ) Zm > 0,

0 Zm = 0,
(13)

and establish some basic facts involving the residual
workload function Wm(t) for each route m. This mea-
sures the total residual workload at time t, in the fluid
limit, and can be expressed as

Wm(t) =
∫ ∞

0

σdζm(σ) =
∫ ∞

0

Fm(t, σ)dσ. (14)

Here the second step follows by integration by parts.
The following Lemma (analogous to Lemma 3.3 in [7])
describes the evolution of Wm(t).

Lemma 2. Given a solution Fm(t, σ) to (6), the work-
load function Wm(t) defined in (14) satisfies

Ẇm =

{
ρm − ϕm(t), Zm > 0,

0 Zm = 0,
(15)

and therefore the bound Wm(t) ≤ Wm(0) + ρmt. In
particular, it remains finite for all time.

Proof: Focusing on the case Zm > 0, integrating the
PDE with respect to σ and using (5) yields

Ẇ (t) =
∫ ∞

0

∂Fm(t, σ)
∂t

dσ

=
ϕm(t)
Zm(t)

[
Fm(t, σ)

]∞
0

+ λm

∫ ∞

0

Gm(σ)dσ

= −ϕm(t) + ρm.

A. Lyapunov function
Choose a sufficiently small δ > 0 such that both

ρ̃m = (1 + δ)ρm satisfies
∑

m Rlmρ̃m < cl for all l,
and (1 − δ)(1 + δ)α+1 > 1; recall that α > 0 is the
fairness parameter used by the congestion control. The
second inequality always holds for 0 < δ < α/(2 + α);
note δ → 0 as α → 0. Introduce the Lyapunov function

L(t) =
∑
m

Lm(t)

=
∑
m

1
ρ̃α

m

∫ ∞

0

[Fm(t, σ)]α+1pm(σ)dσ. (16)

Here pm(σ) is a “spatial weight” to be selected shortly;
we impose that it is non-negative and bounded in σ ≥ 0,
and normalized to pm(0) = 1.

As a first remark, note that since Fm(t, σ) is by
definition monotonically non-increasing in σ, we have

Fm(t, σ)α+1 ≤ Zm(t)αFm(t, σ),

therefore

Lm(t) ≤ ‖pm‖∞Zα
m(t)

ρ̃α
m

∫ ∞

0

Fm(t, σ)dσ

=
‖pm‖∞Zα

m(t)
ρ̃α

m

Wm(t), (17)

finite for all time using Lemma 2. Therefore the Lya-
punov function is well-defined.

We now compute the time derivative of

[ρ̃m]αLm =
∫ ∞

0

[Fm(t, σ)]α+1pm(σ)dσ (18)

along the trajectory, for any m : Zm > 0. We have:

ρ̃α
mL̇m =

∫ ∞

0

(α + 1)[Fm(t, σ)]α
∂Fm(t, σ)

∂t
pm(σ)dσ

=
ϕm(t)
Zm(t)

∫ ∞

0

∂Fα+1
m (t, σ)

∂σ
pm(σ)dσ

+
∫ ∞

0

(α + 1)[Fm(t, σ)]αλmGm(σ)pm(σ)dσ.

(19)

Integrating by parts in the first term, we have

∫ ∞

0

∂Fα+1
m (t, σ)

∂σ
pm(σ)dσ

= Fα+1
m (t, σ)pm(σ)

∣∣∣
∞

σ=0
−

∫ ∞

0

Fm(t, σ)α+1p′m(σ)dσ

= −Zm(t)α+1 −
∫ ∞

0

Fm(t, σ)α+1p′m(σ)dσ (20)

Substituting in (19) we obtain

ρ̃α
mL̇m =− ϕm(t)Zm(t)α

+
∫ ∞

0

Fm(t, σ)α
{
− ϕm(t)

Zm(t)
Fm(t, σ)p′m(σ)

+ (α + 1)λmGm(σ)pm(σ)
}

dσ.

(21)



B. Choice of weight pm(σ)

We now specify that pm(σ) satisfies the following
differential equation in σ,

p′m(σ) = KµmGm(σ)pm(σ)
α+1

α (22)

for some K ∈ (0, α) to be specified later. This equation
can be readily solved (for pm(0) = 1) to yield

pm(σ) =
(

1− Kµm

α

∫ σ

0

Gm(u)du

)−α

. (23)

Note that since µm

∫∞
0

Gm(u)du = 1, for K < α
the term in brackets is strictly positive, bounded away
from zero, so pm(σ) is well-defined, non-negative and
bounded. With this choice, (21) becomes

ρ̃α
mL̇m =− ϕm(t)Zm(t)α+∫ ∞

0

Fm(t, σ)α
{
− ϕm(t)

Zm(t)
Fm(t, σ)pm(σ)

1
α K

+ (α + 1)ρm

}
µmGm(σ)pm(σ)dσ.

(24)

C. Bounding the Lyapunov derivative.

We wish to upper bound the terms involving Fm(t, σ)
in the above integral. For this we calculate the maximum
of the function

γ(F ) := Fα{(α + 1)ρm − bF},
over F ≥ 0. Here we have denoted

b =
ϕm(t)
Zm(t)

pm(σ)
1
α K. (25)

By differentiation we have

γ′(F ) = Fα−1{α(α + 1)ρm − (α + 1)bF},
which has a root

F ∗ =
αρm

b
=

αρmZm

Kϕmp
1/α
m

,

and yields a maximum

γ(F ∗) =

(
αρmZm

Kϕmp
1/α
m

)α

ρm =
ααρα+1

m Zα
m

Kαϕα
mpm

.

Returning to (24), we obtain the bound

ρ̃α
mL̇m ≤− ϕm(t)Zm(t)α+∫ ∞

0

ααρα+1
m Zm(t)α

Kαϕm(t)αpm(σ)
µmGm(σ)pm(σ)dσ

=− ϕm(t)Zm(t)α

+
ααρα+1

m Zm(t)α

Kαϕm(t)α

∫ ∞

0

µmGm(σ)dσ

=− ϕm(t)Zm(t)α +
ααρα+1

m Zm(t)α

Kαϕm(t)α
. (26)

Since K is a free parameter, restricted only by K < α,
we can now choose it to satisfy

( α

K

)α

= (1− δ)(1 + δ)α+1 > 1. (27)

Then (26) becomes

L̇m ≤ Zm(t)α

{
−ϕm(t)

ρ̃α
m

+
ρ̃m(1− δ)
ϕm(t)α

}
. (28)

Lemma 3. For any positive numbers ρ̃, ϕ,

− ϕ

ρ̃α
+

ρ̃

ϕα
≤ (α + 1)

(ρ̃− ϕ)
ϕα

. (29)

Proof: Bounding the convex function h(x) = xα+1 by
its tangent around the point x = ρ̃ gives

ϕα+1 ≥ ρ̃α+1 + (α + 1)ρ̃α(ϕ− ρ̃)

Dividing by ρ̃αϕα and reordering terms yields (29).
We now state the main result.

Theorem 4. Suppose δ > 0 is such that ρ̃m = (1+δ)ρm

satisfy the capacity constraints
∑

m Rlmρ̃m < cl and
(1 − δ)(1 + δ)α+1 > 1. Then, the Lyapunov function L
defined in (16) with pm(σ) in (23), where K is chosen
as in (27), satisfies

L̇ ≤ −δ
∑

m:Zm>0

ρ̃m

(
Zm

ϕm

)α

. (30)

In particular, limt→∞ L(t) = 0.

Proof: We use the bound (29) in (28), and obtain

L̇m ≤ (α + 1)
(

Zm

ϕm

)α

(ρ̃m − ϕm)− δρ̃m

(
Zm

ϕm

)α

(31)

for any m where Zm > 0. Note also that L̇m = 0
when Zm = 0, (refer to Remark in Section II-D).
Superimposing all terms we get

L̇ =
∑
m

L̇m ≤(α + 1)
∑

m:Zm>0

(
Zm

ϕm

)α

(ρ̃m − ϕm)

− δ
∑

m:Zm>0

ρ̃m

(
Zm

ϕm

)α

. (32)

Noting that
(

Zm

ϕm

)α

= U ′
m

(
ϕm

Zm

)
, we are in a position

to apply (4), with ψm = ρ̃m that satisfy the capacity
constraints. This is the only step that relies on the
underlying congestion control resource allocation. We
have thus proved (30).

To obtain the asymptotic result, we first note that a
bound of the form

Lm ≤ (Am + Bmt)Zα
m (33)

holds for appropriately defined constants Am, Bm. This
follows from (17) and Lemma 2. This leads to the



inequalities

ρ̃m

(
Zm

ϕm

)α

≥ Lmρ̃m

(Am + Bmt)ϕα
m

≥ Lmρ0

Cα(Am + Bmt)

≥ Lm

(A + Bt)
.

Here ρ0 = minm ρm and C = maxl cl, and finally Am,
Bm are maximized across m, defining A, B appropri-
ately. Returning to (30), we obtain

L̇ ≤ − δ

(A + Bt)

∑
m

Lm = − δ

(A + Bt)
L.

This yields

log L(t) ≤ log L(0)−
∫ t

0

δ

(A + Bu)
du.

Since the right-hand side diverges to −∞, we have
L(t) → 0.

The above result shows asymptotic stability, in the
Lyapunov sense, of the fluid model (6). Note that the
speed of convergence is controlled by δ, and this param-
eter goes to zero as α → 0. This is consistent with the
fact that for α = 0, the network need not be stable [1,
Example 1].

We also study the possibility of obtaining convergence
in finite time, often invoked when connecting fluid and
stochastic models. We state the following result.

Proposition 5. Suppose there exists a constant κ such
that the solutions to (6) satisfy the bound

Wm(t) ≤ κZm(t). (34)

Then, under the hypothesis of Theorem 4, L(t) converges
to zero in finite time, proportional to

L(0)
1

α+1 = ‖F (0, τ)‖α+1,

the norm of the initial condition in the function space
Lα+1.

Proof: Applying (34) to (17) yields

Lm ≤ γZα+1
m ,

with γ > 0 appropriately defined, already maximized
over m. This leads to

∑
m

ρ̃m

(
Zm

ϕm

)α

≥ ρ0

Cα

∑
m

Zα
m

≥ ρ0

Cαγ
α

α+1

∑
m

(Lm)
α

α+1

≥ ρ0

Cαγ
α

α+1
max

m
(Lm)

α
α+1

≥ ρ0

Cαγ
α

α+1

(
1
M

∑
m

Lm

) α
α+1

=
ρ0

Cα(γM)
α

α+1
L

α
α+1 .

Here M is the number of sources. Returning again to
(30), we obtain

L̇ ≤ −εL
α

α+1 , ε =
δρ0

Cα(γM)
α

α+1
.

This leads to
d

dt
L

1
α+1 ≤ − ε

α + 1
=⇒ L(t)

1
α+1 ≤ L(0)

1
α+1 − ε

α + 1
t.

Therefore L(t) must reach zero in a finite time bounded
by

α + 1
ε

L(0)
1

α+1 =
(α + 1)Cα(γM)

α
α+1

δρ0
‖F (0, τ)‖α+1.

We have thus showed finite time convergence under
the additional condition (34). A special case in which
this is easily verified in when the file-size distribution
is bounded, i.e. Gm(σ) = 0 for σ > σ0, and the initial
condition Fm(0, σ) satisfies the same bound. In that case,
there are never any residual jobs larger than σ0,

Fm(t, σ) = 0 for σ > σ0, all t ≥ 0;

this can also be verified through (6). From here we
immediately have the workload bound

Wm(t) =
∫ σ0

0

Fm(t, σ)dσ ≤ σ0Zm(t),

of the form (34) as required. So finite-time convergence
follows in this case.

IV. STOCHASTIC STABILITY DISCUSSION

We briefly discuss here the relationship between the
fluid-level stability result and the stability of a network
with stochastic flow arrivals and departures. A first issue
is what is meant by stochastic stability. In the exponential
file size case, the stochastic process is a Markov chain
where the number of connections Z = (Zm) per class
is the state; in this case stability is usually defined to be
positive recurrence of the Markov chain.

The natural generalization of the Markov model to
general arrival times and file sizes (G/G) that form a
renewal process is the one used by Dai [4]. There, a
Markov process is defined where the state keeps track
of residual arrival times and service times of currently
active jobs, in addition to queue sizes. Stability is de-
fined as the positive Harris recurrence of such Markov
process. Dai [4] also obtains a fluid limit model, and
defines a notion of stability for fluid models in terms
of convergence to zero in finite time, similar to the one
obtained in Proposition 5.

Does fluid stability imply stochastic stability? Dai [4]
establishes this for service disciplines where the number
of residual times in the state remains bounded. This does
not cover processor sharing disciplines, where all jobs



present in the system receive service, as is the case
for our problem. Although [4] claims that extensions
to this case “should be evident”, we share the view
of Gromoll and Williams [6], [7] that such extensions
are not straightforward. Indeed, although [6] establishes
the fluid limit stability for certain special topologies
(linear network, tree networks), the authors stop short
of making claims about the stochastic model. To do so
would require a theorem that fluid stability implies Harris
recurrence in the state-space of measures considered by
[7], not currently available to our knowledge.

In the absence of this theorem, an alternative proof
route for stochastic stability would be to apply our
Lyapunov function directly to the Markov process and
invoke generalized versions of Foster’s criterion [13].
This possibility remains open for future research.

V. CONCLUSION

We have considered the conjecture that the natural
condition (all mean link loads strictly below capacity)
suffices for the stability of a network with randomly
arriving files of general size distributions, when jobs
are served with α-fairness. Building on recent fluid
limit studies [7], we formulated a partial differential
equation model for the problem, where the state Fm(t, σ)
represents the residual workload distributions per route.

A Lyapunov function, defined through a suitably
weighted spatial α+1-norm of Fm, is shown to converge
to zero asymptotically along trajectories of the PDE. This
gives an affirmative answer to the conjecture, in the sense
of fluid models. We have also refined the result to finite-
time convergence under an additional condition which is
satisfied for the bounded distribution case.

Future work will involve carrying this conclusion
through to the stochastic process.

ACKNOWLEDGEMENTS

This work was supported by NSF under CCF-
0835706, by AFOSR-US, and by ANII-Uruguay, grant
FCE 2007 265.

REFERENCES
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